Search results for: biological process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17193

Search results for: biological process

12333 Evaluation of Liquid Fermentation Strategies to Obtain a Biofertilizer Based on Rhizobium sp.

Authors: Andres Diaz Garcia, Ana Maria Ceballos Rojas, Duvan Albeiro Millan Montano

Abstract:

This paper describes the initial technological development stages in the area of liquid fermentation required to reach the quantities of biomass of the biofertilizer microorganism Rhizobium sp. strain B02, for the application of the unitary stages downstream at laboratory scale. In the first stage, the adjustment and standardization of the fermentation process in conventional batch mode were carried out. In the second stage, various fed-batch and continuous fermentation strategies were evaluated in 10L-bioreactor in order to optimize the yields in concentration (Colony Forming Units/ml•h) and biomass (g/l•h), to make feasible the application of unit operations downstream of process. The growth kinetics, the evolution of dissolved oxygen and the pH profile generated in each of the strategies were monitored and used to make sequential adjustments. Once the fermentation was finished, the final concentration and viability of the obtained biomass were determined and performance parameters were calculated with the purpose of select the optimal operating conditions that significantly improved the baseline results. Under the conditions adjusted and standardized in batch mode, concentrations of 6.67E9 CFU/ml were reached after 27 hours of fermentation and a subsequent noticeable decrease was observed associated with a basification of the culture medium. By applying fed-batch and continuous strategies, significant increases in yields were achieved, but with similar concentration levels, which involved the design of several production scenarios based on the availability of equipment usage time and volume of required batch.

Keywords: biofertilizer, liquid fermentation, Rhizobium sp., standardization of processes

Procedia PDF Downloads 180
12332 Potentiality of a Community of Practice between Public Schools and the Private Sector for Integrating Sustainable Development into the School Curriculum

Authors: Aiydh Aljeddani, Fran Martin

Abstract:

The critical time in which we live requires rethinking of many potential ways in order to make the concept of sustainability and its principles an integral part of our daily life. One of these potential approaches is how to attract community institutions, such as the private sector, to participate effectively in the sustainability industry by supporting public schools to fulfill their duties. A collaborative community of practice can support this purpose and can provide a flexible framework, which allows the members of the community to participate effectively. This study, conducted in Saudi Arabia, aimed to understand the process of a collaborative community of practice of involving the private sector as a member of this community to integrate the sustainability concept in school activities and projects. This study employed a qualitative methodology to understand this authentic and complex phenomenon. A case study approach, ethnography and some elements of action research were followed in this study. The methods of unstructured interviews, artifacts, observation, and teachers’ field notes were used to collect the data. The participants were three secondary teachers, twelve chief executive officers, and one school administrative officer. Certain contextual conditions, as shown by the data, should be taken into consideration when policy makers and school administrations in Saudi Arabia desire to integrate sustainability into school activities. The first of these was the acknowledgement of the valuable role of the members’ personality, efforts, abilities, and experiences, which played vital roles in integrating sustainability. Second, institutional culture, which was not expected to emerge as an important factor in this study, has a significant role in the integration of sustainability. Credibility among the members of the community towards the integration of the sustainability concept and its principles through school activities is another important condition. Fourth, some chief executive officers’ understanding of Corporate Social Responsibility (CSR) towards contribution to sustainability agenda was shallow and limited and this could impede the successful integration of sustainability. Fifth, a shared understanding between the members of the community about integrating sustainability was a vital condition in the integration process. The study also revealed that the integration of sustainability could not be an ongoing process if implemented in isolation of the other community institutions such as the private sector. The study finally offers a number of recommendations to improve on the current practices and suggests areas for further studies.

Keywords: community of practice, public schools, private sector, sustainable development

Procedia PDF Downloads 212
12331 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks

Authors: Yen-Luan Chen

Abstract:

Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.

Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability

Procedia PDF Downloads 284
12330 Multifunctional Janus Microbots for Intracellular Delivery of Therapeutic Agents

Authors: Shilpee Jain, Sachin Latiyan, Kaushik Suneet

Abstract:

Unlike traditional robots, medical microbots are not only smaller in size, but they also possess various unique properties, for example, biocompatibility, stability in the biological fluids, navigation opposite to the bloodstream, wireless control over locomotion, etc. The idea behind their usage in the medical field was to build a minimally invasive method for addressing the post-operative complications, including longer recovery time, infection eruption and pain. Herein, the present study demonstrates the fabrication of dual nature magneto-conducting Fe3O4 magnetic nanoparticles (MNPs) and SU8 derived carbon-based Janus microbots for the efficient intracellular delivery of biomolecules. The low aspect ratio with feature size 2-5 μm microbots were fabricated by using a photolithography technique. These microbots were pyrolyzed at 900°C, which converts SU8 into amorphous carbon. The pyrolyzed microbots have dual properties, i.e., the half part is magneto-conducting and another half is only conducting for sufficing the therapeutic payloads efficiently with the application of external electric/magnetic field stimulations. For the efficient intracellular delivery of the microbots, the size and aspect ratio plays a significant role. However, on a smaller scale, the proper control over movement is difficult to achieve. The dual nature of Janus microbots allowed to control its maneuverability in the complex fluids using external electric as well as the magnetic field. Interestingly, Janus microbots move faster with the application of an external electric field (44 µm/s) as compared to the magnetic field (18 µm/s) application. Furthermore, these Janus microbots exhibit auto-fluorescence behavior that will help to track their pathway during navigation. Typically, the use of MNPs in the microdevices enhances the tendency to agglomerate. However, the incorporation of Fe₃O₄ MNPs in the pyrolyzed carbon reduces the chances of agglomeration of the microbots. The biocompatibility of the medical microbots, which is the essential property of any biosystems, was determined in vitro using HeLa cells. The microbots were found to compatible with HeLa cells. Additionally, the intracellular uptake of microbots was higher in the presence of an external electric field as compared to without electric field stimulation. In summary, the cytocompatible Janus microbots were fabricated successfully. They are stable in the biological fluids, wireless controllable navigation with the help of a few Guess external magnetic fields, their movement can be tracked because of autofluorescence behavior, they are less susceptible to agglomeration and higher cellular uptake could be achieved with the application of the external electric field. Thus, these carriers could offer a versatile platform to suffice the therapeutic payloads under wireless actuation.

Keywords: amorphous carbon, electric/magnetic stimulations, Janus microbots, magnetic nanoparticles, minimally invasive procedures

Procedia PDF Downloads 128
12329 Authentication Based on Hand Movement by Low Dimensional Space Representation

Authors: Reut Lanyado, David Mendlovic

Abstract:

Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.

Keywords: authentication, feature extraction, hand recognition, security, signal processing

Procedia PDF Downloads 133
12328 Preparation and Quality Control of a New Radiolabelled Complex of Spion

Authors: H. Yousefnia, SJ. Ahmadi, S. Sajadi, S. Zolghadri, A. Bahrami-Samani, M. Bagherzadeh

Abstract:

Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) as the multitask agents have showed advantageous characteristics. The aim of this study was the preparation and quality control of 153Sm-DTPA-DA-SPION complex. Samarium-153 was produced by neutron irradiation of the enriched 152Sm2O3 in a research reactor for 5 d. For radiolabeling purposes, 8 mg of the ligand was added to the vial containing 153SmCl3 and the mixture was sonicated 30 min, while pH was adjusted to 7-8. The radiochemical purity of the complex was checked by the ITLC method using NH4OH:MeOH:H2O (0.2:2:4) as the mobile phase. This new radiolabeled complex was prepared with a radiochemical purity of higher than 98% in 30 min at the optimized condition. The complex was kept at room temperature and in human serum at 37 °C for 48 h, showed no loss of 153Sm from the complex. Considering all of these features, this new radiolabeled complex can be considered as a good therapeutic agent; however, further studies on its biological behavior are still needed.

Keywords: iron nanoparticles, preparation, quality control, 153Sm

Procedia PDF Downloads 334
12327 Communication Tools Used in Teaching and Their Effects: An Empirical Study on the T. C. Selcuk University Samples

Authors: Sedat Simsek, Tugay Arat

Abstract:

Today's communication concept, which has a great revolution with the printing press which has been found by Gutenberg, has no boundary thanks to advanced communication devices and the internet. It is possible to take advantage in many areas, such as from medicine to social sciences or from mathematics to education, from the computers that was first produced for the purpose of military services. The use of these developing technologies in the field of education has created a great vision changes in both training and having education. Materials, which can be considered as basic communication resources and used in traditional education has begun to lose its significance, and some technologies have begun to replace them such as internet, computers, smart boards, projection devices and mobile phone. On the other hand, the programs and applications used in these technologies have also been developed. University students use virtual books instead of the traditional printed book, use cell phones instead of note books, use the internet and virtual databases instead of the library to research. They even submit their homework with interactive methods rather than printed materials. The traditional education system, these technologies, which increase productivity, have brought a new dimension to education. The aim of this study is to determine the influence of technologies in the learning process of students and to find whether is there any similarities and differences that arise from the their faculty that they have been educated and and their learning process. In addition to this, it is aimed to determine the level of ICT usage of students studying at the university level. In this context, the advantages and conveniences of the technology used by students are also scrutinized. In this study, we used surveys to collect data. The data were analyzed by using SPSS 16 statistical program with the appropriate testing.

Keywords: education, communication technologies, role of technology, teaching

Procedia PDF Downloads 307
12326 A Study of Basic and Reactive Dyes Removal from Synthetic and Industrial Wastewater by Electrocoagulation Process

Authors: Almaz Negash, Dessie Tibebe, Marye Mulugeta, Yezbie Kassa

Abstract:

Large-scale textile industries use large amounts of toxic chemicals, which are very hazardous to human health and environmental sustainability. In this study, the removal of various dyes from effluents of textile industries using the electrocoagulation process was investigated. The studied dyes were Reactive Red 120 (RR-120), Basic Blue 3 (BB-3), and Basic Red 46 (BR-46), which were found in samples collected from effluents of three major textile factories in the Amhara region, Ethiopia. For maximum removal, the dye BB-3 required an acidic pH 3, RR120 basic pH 11, while BR-46 neutral pH 7 conditions. BB-3 required a longer treatment time of 80 min than BR46 and RR-120, which required 30 and 40 min, respectively. The best removal efficiency of 99.5%, 93.5%, and 96.3% was achieved for BR-46, BB-3, and RR-120, respectively, from synthetic wastewater containing 10 mg L1of each dye at an applied potential of 10 V. The method was applied to real textile wastewaters and 73.0 to 99.5% removal of the dyes was achieved, Indicating Electrocoagulation can be used as a simple, and reliable method for the treatment of real wastewater from textile industries. It is used as a potentially viable and inexpensive tool for the treatment of textile dyes. Analysis of the electrochemically generated sludge by X-ray Diffraction, Scanning Electron Microscope, and Fourier Transform Infrared Spectroscopy revealed the expected crystalline aluminum oxides (bayerite (Al(OH)3 diaspore (AlO(OH)) found in the sludge. The amorphous phase was also found in the floc. Textile industry owners should be aware of the impact of the discharge of effluents on the Ecosystem and should use the investigated electrocoagulation method for effluent treatment before discharging into the environment.

Keywords: electrocoagulation, aluminum electrodes, Basic Blue 3, Basic Red 46, Reactive Red 120, textile industry, wastewater

Procedia PDF Downloads 60
12325 The Study of Biodiversity of Thirty Two Families of Useful Plants Existed in Georgia

Authors: Kacharava Tamar, Korakhashvili Avtandil, Epitashvili Tinatin

Abstract:

The article deals with the database, which was created by the authors, related to biodiversity of some families of useful plants (medicinal, aromatic, spices, dye and poisonous) existing in Georgia considering important taxonomy. Our country is also rich with endemic genera. The results of monitoring of the phytogenetic resources to reveal perspective species and situation of endemic species and resources are also discussed in this paper. To get some new medicinal and preventive treatments using plant raw material in the phytomedicine, phytocosmetics and phytoculinary, the unique phytogenetic resources should be protected because the application of useful plants is becoming irreversible. This can be observed along with intensification and sustainable use of ethnobotanical traditions and promotion of phytoproduction based on the international requirements on biodiversity (Convention on Biological Diversity - CBD). Though Georgian phytopharmacy has the centuries-old traditions, today it is becoming the main concern.

Keywords: aromatic, medicinal, poisonous, spicy, dye plants, endemic biodiversity, endemic, ELISA, GIS

Procedia PDF Downloads 160
12324 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 77
12323 The Effects of Geographical and Functional Diversity of Collaborators on Quality of Knowledge Generated

Authors: Ajay Das, Sandip Basu

Abstract:

Introduction: There is increasing recognition that diverse streams of knowledge can often be recombined in novel ways to generate new knowledge. However, knowledge recombination theory has not been applied to examine the effects of collaborator diversity on the quality of knowledge such collaborators produce. This is surprising because one would expect that a collaborative team with certain aspects of diversity should be able to recombine process elements related to knowledge development, which are relatively tacit, but also complementary because of the collaborator’s varying backgrounds. Theory and Hypotheses: We propose to examine two aspects of diversity in the environments of collaborative teams to try and capture such potential recombinations of relatively tacit, process knowledge. The first aspect of diversity in team members’ environments is geographical. Collaborators with more geographical distance between them (perhaps working in different countries) often have more autonomy in the processes they adopt for knowledge development. In the absence of overt monitoring, such collaborators are likely to adopt differing approaches to knowledge development. The sharing of such varying approaches among collaborators is likely to result in greater quality of the common collaborative pursuit. The second aspect is diversity in the work backgrounds of team members. Such diversity can also increase the potential for knowledge recombination. For example, if one or more members are from a manufacturing center (versus all of them being from a purely R&D center), such members will provide unique perspectives on the implementation of innovative ideas. Again, knowledge that has been evaluated from these diverse perspectives is likely to be of a higher quality. In addition to the above aspects of environmental diversity among team members, we also plan to examine the extent to which individual collaborators are in different environments from the primary innovation center of their employing firms. Proposed Methods: We will test our model on a sample of firms in the semiconductor industry. Our level of analysis will be individual patents generated by these firms and the teams involved in the generation of these. Information on manufacturing activities of our sample firms will be obtained from SEMI, a proprietary database of the semiconductor industry, as well as company 10-K reports. Conclusion: We believe that our results will represent a preliminary attempt to understand how various forms of diversity in collaborative teams impact the knowledge development process. Our dependent variable of knowledge quality is important to study since higher values of this variable can not only drive firm performance but the broader development of regions and societies through spillover impacts on future innovation. The results of this study will, therefore, inform future research and practice in innovation, geographical location, and vertical integration.

Keywords: innovation, manufacturing strategy, knowledge, diversity

Procedia PDF Downloads 357
12322 Linking Supervisor’s Goal Orientation to Post-Training Supportive Behaviors: The Mediating Role of Interest in the Development of Subordinates Skills

Authors: Martin Lauzier, Benjamin Lafreniere-Carrier, Nathalie Delobbe

Abstract:

Supervisor support is one of the main levers to foster transfer of training. Although past and current studies voice its effects, few have sought to identify the factors that may explain why supervisors offer support to their subordinates when they return from training. Based on Goal Orientation Theory and following the principles of supportive supervision, this study aims to improve our understanding of the factors that influence supervisors’ involvement in the transfer process. More specifically, this research seeks to verify the influence of supervisors’ goal orientation on the adoption of post-training support behaviors. This study also assesses the mediating role of the supervisors’ interest in subordinates’ development on this first relationship. Conducted in two organizations (Canadian: N₁ = 292; Belgian: N₂ = 80), the results of this study revealed three main findings. First, supervisors’ who adopt learning mastery goal orientation also tend to adopt more post-training supportive behaviors. Secondly, regression analyses (using the bootstrap method) show that supervisors' interest in developing their subordinates’ skills mediate the relationship between supervisors’ goal orientation and post-training supportive behaviors. Thirdly, the observed mediation effects are consistent in both samples, regardless of supervisors’ gender or age. Overall, this research is part of the limited number of studies that have focused on the determining factors supervisors’ involvement in the learning transfer process.

Keywords: supervisor support, transfer of training, goal orientation, interest in the development of subordinates’ skills

Procedia PDF Downloads 191
12321 A Synthetic Strategy to Attach 2,6-Dichlorophenolindophenol onto Multi Walled Carbon Nanotubes and Their Application for Electrocatalytic Determination of Sulfide

Authors: Alireza Mohadesi, Ashraf Salmanipour

Abstract:

A chemically modified glassy carbon electrode for electrocatalytic determination of sulfide was developed using multiwalled carbon nanotubes (MWCNTs) covalently immobilized with 2,6-dichlorophenolindophenol (DPIP). The immobilization of 2,6-dichlorophenolindophenol with MWCNTs was performed with a new synthetic strategy and characterized by UV–visible absorption spectroscopy, Fourier transform infrared spectroscopy and cyclic voltammetry. The cyclic voltammetric response of DPIP grafted onto MWCNTs indicated that it promotes the low potential, sensitive and stable determination of sulfide. The dependence of response currents on the concentration of sulfide was examined and was linear in the range of 10 - 1100 µM. The detection limit of sulfide was 5 µM and RSD for 100 and 500 µM sulfides were 1.8 and 1.3 %. Many interfering species had little or no effect on the determination of sulfide. The procedure was applied to determination of sulfide in waters samples.

Keywords: functionalized carbon nanotubes, sulfide, biological samples, 2, 6-dichlorophenolindophenol

Procedia PDF Downloads 319
12320 Cytotoxic Effects of Ag/TiO2 Nanoparticles on the Unicellular Organism Paramecium tetraurelia

Authors: Juan Bernal-Martinez, Zoe Quinones-Jurado, Miguel Waldo-Mendoza, Elias Perez

Abstract:

Introduction and Objective: Ag-TiO2 nanoparticles (NP) have been characterized as effective antibacterial compounds against E. aureous, E. coli, Salmonella and others. Because these nanoparticles have been used in plastic-food containers, there is a concern about the toxicity of Ag-TiO2 NP for higher organisms from protozoan, invertebrates, and mammals. The objective of this study is to evaluate the cytotoxic effect of Ag-TiO2 NP on the survival and swimming behavior of the unicellular organism Paramecium tetraurelia. Material and Methods: Preparation of metallic silver on TiO2 surface was based on chemical reduction route of AgNO3. Aqueous suspension of TiO2 nanoparticles was preparing by adding 5 g of TiO2 to 250 ml of deionized water and followed by sonication for 10 min. The required amount of AgNO3 solutions was added to TiO2 suspension, maintaining heating and stirring. Silver concentration was 0.5, 1.5, 5.0, 25, 35 and 45 % w/w versus TiO2. Paramecium tetraurelia (Carolina Biological, Cat. # 131560) was used as a biological preparation. It was cultured in artificial culture media made as follows: Stigmasterol 5 mg/ml of ethanol, Caseaminoacids 0.3 gr/lt.; KCl 4mM; CaCl2 1mM; MgCl2 100uM and MOPS 1mM, pH 7.3. This media was inoculated with Enterobacter-sp. Paramecium was concentrated after 24 hours of incubation by centrifugation. The pellet of cells was resuspended in 4.1.1 solution prepared as follows (in mM): KCl, 4 mM; CaCl2, 1mM and Trizma, 1mM; pH 7.3. Transmission electron microscopy (TEM) studies were performed to evaluate the appropriate dispersion and topographic distribution AgNPs deposited on TiO2. The experimental solutions were prepared as follows: 50 mg of Polyvinyhlpirolidone were added to 5 ml of 4.1.1. solution. Then, 50 mg of powder 25-Ag-TiO2 was added, mixing for 10 min and sonicated for 60 min. Survival of Paramecium and possible toxic effects after 25-Ag-TiO2 treatment was observed through an inverted microscope. The Paramecium swimming behavior and possible dead cells were recorded for periods of approximately 20-50 seconds by using a digital USB camera adapted to the microscope. Results and Discussion: TEM micrographs demonstrated the topographic distribution of AgNPs deposited on TiO2. 25Ag-TiO2 NP was efficiently dissolved and dispersed in 4.1.1 solution at concentrations from 0.1, 1 and 10 mg/ml. When Paramecium were treated with 25Ag-TiO2 NP at 100 ug/ml, it was observed that cells started swimming backwards. This backward swimming behavior is the typical avoiding reaction of the ciliate in response to a noxious stimulus. After 10 min of incubation, it was observed that Paramecium stopped swimming backwards and exploited. We can argue that this toxic effect of 25Ag-TiO2 NP is probably due to the calcium influx and calcium accumulation during the long-lasting swimming backwards. Conclusions: Here we have demonstrated that 25Ag-TiO2 NP has a specific toxic effect on an organism higher than bacteria such as the protozoan Paremecium. Probably these toxic phenomena could be expected to be observed in a higher organism such as invertebrates and mammals.

Keywords: Ag-TiO2, calcium permeability, cytotoxicity, paramecium

Procedia PDF Downloads 293
12319 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries

Authors: Gaurav Kumar Sinha

Abstract:

The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.

Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance

Procedia PDF Downloads 34
12318 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates

Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe

Abstract:

Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.

Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane

Procedia PDF Downloads 80
12317 Examining the Skills of Establishing Number and Space Relations of Science Students with the 'Integrative Perception Test'

Authors: Ni̇sa Yeni̇kalayci, Türkan Aybi̇ke Akarca

Abstract:

The ability of correlation the number and space relations, one of the basic scientific process skills, is being used in the transformation of a two-dimensional object into a three-dimensional image or in the expression of symmetry axes of the object. With this research, it is aimed to determine the ability of science students to establish number and space relations. The research was carried out with a total of 90 students studying in the first semester of the Science Education program of a state university located in the Turkey’s Black Sea Region in the fall semester of 2017-2018 academic year. An ‘Integrative Perception Test (IPT)’ was designed by the researchers to collect the data. Within the scope of IPT, the courses and workbooks specific to the field of science were scanned and the ones without symmetrical structure from the visual items belonging to the ‘Physics - Chemistry – Biology’ sub-fields were selected and listed. During the application, it was expected that students would imagine and draw images of the missing half of the visual items that were given incomplete in the first place. The data obtained from the test in which there are 30 images or pictures in total (f Physics = 10, f Chemistry = 10, f Biology = 10) were analyzed descriptively based on the drawings created by the students as ‘complete (2 points), incomplete/wrong (1 point), empty (0 point)’. For the teaching of new concepts in small aged groups, images or pictures showing symmetrical structures and similar applications can also be used.

Keywords: integrative perception, number and space relations, science education, scientific process skills

Procedia PDF Downloads 155
12316 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 352
12315 Influence of Intelligence and Failure Mindsets on Parent's Failure Feedback

Authors: Sarah Kalaouze, Maxine Iannucelli, Kristen Dunfield

Abstract:

Children’s implicit beliefs regarding intelligence (i.e., intelligence mindsets) influence their motivation, perseverance, and success. Previous research suggests that the way parents perceive failure influences the development of their child’s intelligence mindsets. We invited 151 children-parent dyads (Age= 5–6 years) to complete a series of difficult puzzles over zoom. We assessed parents’ intelligence and failure mindsets using questionnaires and recorded parents’ person/performance-oriented (e.g., “you are smart” or "you were almost able to complete that one) and process-oriented (e.g., “you are trying really hard” or "maybe if you place the bigger pieces first") failure feedback. We were interested in observing the relation between parental mindsets and the type of feedback provided. We found that parents’ intelligence mindsets were not predictive of the feedback they provided children. Failure mindsets, on the other hand, were predictive of failure feedback. Parents who view failure-as-debilitating provided more person-oriented feedback, focusing on performance and personal ability. Whereas parents who view failure-as-enhancing provided process-oriented feedback, focusing on effort and strategies. Taken all together, our results allow us to determine that although parents might already have a growth intelligence mindset, they don’t necessarily have a failure-as-enhancing mindset. Parents adopting a failure-as-enhancing mindset would influence their children to view failure as a learning opportunity, further promoting practice, effort, and perseverance during challenging tasks. The focus placed on a child’s learning, rather than their performance, encourages them to perceive intelligence as malleable (growth mindset) rather than fix (fixed mindset). This implies that parents should not only hold a growth mindset but thoroughly understand their role in the transmission of intelligence beliefs.

Keywords: mindset(s), failure, intelligence, parental feedback, parents

Procedia PDF Downloads 144
12314 Parameters Identification of Granular Soils around PMT Test by Inverse Analysis

Authors: Younes Abed

Abstract:

The successful application of in-situ testing of soils heavily depends on development of interpretation methods of tests. The pressuremeter test simulates the expansion of a cylindrical cavity and because it has well defined boundary conditions, it is more unable to rigorous theoretical analysis (i. e. cavity expansion theory) then most other in-situ tests. In this article, and in order to make the identification process more convenient, we propose a relatively simple procedure which involves the numerical identification of some mechanical parameters of a granular soil, especially, the elastic modulus and the friction angle from a pressuremeter curve. The procedure, applied here to identify the parameters of generalised prager model associated to the Drucker & Prager criterion from a pressuremeter curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the curve obtained by integrating the model along the loading path in in-situ testing. The numerical process implemented here is based on the established finite element program. We present a validation of the proposed approach by a database of tests on expansion of cylindrical cavity. This database consists of four types of tests; thick cylinder tests carried out on the Hostun RF sand, pressuremeter tests carried out on the Hostun sand, in-situ pressuremeter tests carried out at the site of Fos with marine self-boring pressuremeter and in-situ pressuremeter tests realized on the site of Labenne with Menard pressuremeter.

Keywords: granular soils, cavity expansion, pressuremeter test, finite element method, identification procedure

Procedia PDF Downloads 298
12313 New Approach to Construct Phylogenetic Tree

Authors: Ouafae Baida, Najma Hamzaoui, Maha Akbib, Abdelfettah Sedqui, Abdelouahid Lyhyaoui

Abstract:

Numerous scientific works present various methods to analyze the data for several domains, specially the comparison of classifications. In our recent work, we presented a new approach to help the user choose the best classification method from the results obtained by every method, by basing itself on the distances between the trees of classification. The result of our approach was in the form of a dendrogram contains methods as a succession of connections. This approach is much needed in phylogeny analysis. This discipline is intended to analyze the sequences of biological macro molecules for information on the evolutionary history of living beings, including their relationship. The product of phylogeny analysis is a phylogenetic tree. In this paper, we recommend the use of a new method of construction the phylogenetic tree based on comparison of different classifications obtained by different molecular genes.

Keywords: hierarchical classification, classification methods, structure of tree, genes, phylogenetic analysis

Procedia PDF Downloads 514
12312 Transforming Identities and Relations: A Case of Taliban Peace Talks in the Pakistani Press

Authors: Zil e Huma

Abstract:

This study explores the role of Pakistani conventional print media in edging peace talks between the Taliban and the Government of Pakistan from 1st January 2015 till 1st July 2015. The study examines the role of Pakistan's print media during the efforts for peace talks in the context of a Low-Intensity Conflict (LIC). This quantitative research study utilizes content analysis to examine how Pakistan's print media framed the peace negotiations between the government and the TTP. Editorials and columns from two English newspapers, Dawn and The News, were analyzed. The findings reveal that during the peace talks, the print media in Pakistan did not actively contribute to fostering constructive dialogue to support the peace process. Instead, the media failed to provide the necessary communicative space for the political negotiations to move forward, with narratives of fear and despair being dominant. This study offers insight into the psychology of newspapers, showing how they frame news, columns, and articles on complex issues such as the Taliban peace talks. Additionally, it highlights the importance of understanding the role of newspapers in shaping identities and relationships. By examining how Pakistan's print media framed peace initiatives, this research contributes to the existing literature on conflict resolution between the Taliban and the government of Pakistan. Furthermore, it explores the connection between media framing of the peace talks and the actual trajectory of the negotiations, questioning whether the Pakistani print media acted as a facilitator or portrayed the peace process as an inevitable risk of further violence.

Keywords: changing identities, low-intensity, peace journalism, terrorism, the conflict, taliban peace talks, pakistani press

Procedia PDF Downloads 27
12311 Development of High Strength Self Curing Concrete Using Super Absorbing Polymer

Authors: K. Bala Subramanian, A. Siva, S. Swaminathan, Arul. M. G. Ajin

Abstract:

Concrete is an essential building material which is widely used in construction industry all over the world due to its compressible strength. Curing of concrete plays a vital role in durability and other performance necessities. Improper curing can affect the concrete performance and durability easily. When areas like scarcity of water, structures is not accessible by humans external curing cannot be performed, so we opt for internal curing. Internal curing (or) self-curing plays a major role in developing the concrete pore structure and microstructure. The concept of internal curing is to enhance the hydration process to maintain the temperature uniformly. The evaporation of water in the concrete is reduced by self-curing agent (Super Absorbing Polymer – SAP) thereby increasing the water retention capacity of the concrete. The research work was carried out to reduce water, which is prime material used for concrete in the construction industry. Concrete curing plays a major role in developing hydration process. Concept of self-curing will reduce the evaporation of water from concrete. Self-curing will increase water retention capacity as compared to the conventional concrete. Proper self-curing (or) internal curing increases the strength, durability and performance of concrete. Super absorbing Polymer (SAP) used as internal curing agent. In this study 0.2% to 0.4% of SAP was varied in different grade of high strength concrete. In the experiment replacement of cement by silica fumes with 5%, 10% and 15% are studied. It is found that replacement of silica fumes by 10 % gives more strength and durability when compared to others

Keywords: compressive strength, high strength concrete rapid chloride permeability, super absorbing polymer

Procedia PDF Downloads 378
12310 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis

Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi

Abstract:

Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.

Keywords: Lab-on-chip, LOC, micro-mixer, OpenFOAM, PDMS

Procedia PDF Downloads 169
12309 Energy Efficiency Measures in Canada’s Iron and Steel Industry

Authors: A. Talaei, M. Ahiduzzaman, A. Kumar

Abstract:

In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.

Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation

Procedia PDF Downloads 401
12308 An Exploration of Nursing Assistants' Continuing Professional Development (CPD) Engagement in a Acute Healthcare Setting: A Qualitative Case Study Pilot in England

Authors: Ana Fouto

Abstract:

Background: Continuing Personal Development (CPD) enables professionals to keep up to date with the professional requirements, broadening their knowledge and expertise. However, much of the research explores the registered professionals’ experiences and the factors that influence their choice of engaging, despite the unregistered staff providing the majority of the direct patient care. Aim: To explore the Nursing/Midwifery Assistants’ (NAs) perception of the concept of CPD, as well as explore the factors that influence the NAs to engage (or not) with CPD experiences. Methodology: This pilot study used a qualitative approach through a case study, where a semi-structured interview was applied to three NAs to explore the factors that influence the decision-making of process of CPD engagement. Thematic analysis was used to analyse their answers and interpret patterns and associations. Findings: All the participants agreed that CPD is important and relevant to their practice and personal lives. Five main categories were identified: NAs’ scope of practice, the impact of CPD; decision-making process; challenges; changes required. Although similar findings to the registered nurses were identified, the lack of CPD regulation for NAs and the rapid evolution of their role make the CPD engagement more problematic. Conclusion: Engagement with CPD is influenced by a wide range of professional (organisational and national) and personal factors. NAs perceive lack of management support at different stages of the CPD activities as a main influence. Organisations should be more flexible in the recruitment, offer of CPD choices, content, delivery, and contractual arrangements of NAs, which may increase engagement.

Keywords: nursing assistants, engagement, factors, pilot, continuing professional development (CPD)

Procedia PDF Downloads 159
12307 Chromium (VI) Removal from Aqueous Solutions by Ion Exchange Processing Using Eichrom 1-X4, Lewatit Monoplus M800 and Lewatit A8071 Resins: Batch Ion Exchange Modeling

Authors: Havva Tutar Kahraman, Erol Pehlivan

Abstract:

In recent years, environmental pollution by wastewater rises very critically. Effluents discharged from various industries cause this challenge. Different type of pollutants such as organic compounds, oxyanions, and heavy metal ions create this threat for human bodies and all other living things. However, heavy metals are considered one of the main pollutant groups of wastewater. Therefore, this case creates a great need to apply and enhance the water treatment technologies. Among adopted treatment technologies, adsorption process is one of the methods, which is gaining more and more attention because of its easy operations, the simplicity of design and versatility. Ion exchange process is one of the preferred methods for removal of heavy metal ions from aqueous solutions. It has found widespread application in water remediation technologies, during the past several decades. Therefore, the purpose of this study is to the removal of hexavalent chromium, Cr(VI), from aqueous solutions. Cr(VI) is considered as a well-known highly toxic metal which modifies the DNA transcription process and causes important chromosomic aberrations. The treatment and removal of this heavy metal have received great attention to maintaining its allowed legal standards. The purpose of the present paper is an attempt to investigate some aspects of the use of three anion exchange resins: Eichrom 1-X4, Lewatit Monoplus M800 and Lewatit A8071. Batch adsorption experiments were carried out to evaluate the adsorption capacity of these three commercial resins in the removal of Cr(VI) from aqueous solutions. The chromium solutions used in the experiments were synthetic solutions. The parameters that affect the adsorption, solution pH, adsorbent concentration, contact time, and initial Cr(VI) concentration, were performed at room temperature. High adsorption rates of metal ions for the three resins were reported at the onset, and then plateau values were gradually reached within 60 min. The optimum pH for Cr(VI) adsorption was found as 3.0 for these three resins. The adsorption decreases with the increase in pH for three anion exchangers. The suitability of Freundlich, Langmuir and Scatchard models were investigated for Cr(VI)-resin equilibrium. Results, obtained in this study, demonstrate excellent comparability between three anion exchange resins indicating that Eichrom 1-X4 is more effective and showing highest adsorption capacity for the removal of Cr(VI) ions. Investigated anion exchange resins in this study can be used for the efficient removal of chromium from water and wastewater.

Keywords: adsorption, anion exchange resin, chromium, kinetics

Procedia PDF Downloads 264
12306 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process

Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar

Abstract:

In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.

Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm

Procedia PDF Downloads 349
12305 Removal of Nickel and Vanadium from Crude Oil by Using Solvent Extraction and Electrochemical Process

Authors: Aliya Kurbanova, Nurlan Akhmetov, Abilmansur Yeshmuratov, Yerzhigit Sugurbekov, Ramiz Zulkharnay, Gulzat Demeuova, Murat Baisariyev, Gulnar Sugurbekova

Abstract:

Last decades crude oils have tended to become more challenge to process due to increasing amounts of sour and heavy crude oils. Some crude oils contain high vanadium and nickel content, for example Pavlodar LLP crude oil, which contains more than 23.09 g/t nickel and 58.59 g/t vanadium. In this study, we used two types of metal removing methods such as solvent extraction and electrochemical. The present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Applying the cyclic voltametric analysis (CVA) and Inductively coupled plasma mass spectrometry (ICP MS), these mentioned types of metal extraction methods were compared in this paper. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for nickel and 51.2% for vanadium content from crude oil. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits into the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V.

Keywords: demetallization, deasphalting, electrochemical removal, heavy metals, petroleum engineering, solvent extraction

Procedia PDF Downloads 338
12304 Enhancement of Mechanical and Biological Properties in Wollastonite Bioceramics by MgSiO3 Addition

Authors: Jae Hong Kim, Sang Cheol Um, Jong Kook Lee

Abstract:

Strong and biocompatible wollastonite (CaSiO3) was fabricated by pressureless sintering at temperature range of 1250~ 1300 ℃ and phase transition of to β-wollastonite with an addition of MgSiO3. Starting pure α-wollastonite powder were prepared by solid state reaction, and MgSiO3 powder was added to α-wollastonite powder to induce the phase transition α to β-wollastonite over 1250℃. Sintered wollastonite samples at 1250℃ with 5 and 10 wt% MgSiO3 were α+β phase and β phase respectively, and showed higher densification rate than that of α or β-wollastonite, which are almost the same as the theoretical density. Hardness and Young’s modulus of sintered wollastonite were dependent on the apparent density and the amount of β-wollastonite. Young’s modulus (78GPa) of β-wollastonite added 10 wt% MgSiO3 was almost double time of sintered α-wollastonite. From the in-vitro test, biphasic (α+β) wollastonite with 5wt% MgSiO3 addition had good bioactivity in simulated body fluid solution.

Keywords: β-wollastonite, high density, MgSiO3, phase transition

Procedia PDF Downloads 585