Search results for: food distribution networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11058

Search results for: food distribution networks

6228 A Sociocybernetics Data Analysis Using Causality in Tourism Networks

Authors: M. Lloret-Climent, J. Nescolarde-Selva

Abstract:

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Keywords: attractor, invariant set, tourist flows, orbits, social responsibility, tourism, tourist variables

Procedia PDF Downloads 513
6227 Feasibility Assessment of High-Temperature Superconducting AC Cable Lines Implementation in Megacities

Authors: Andrey Kashcheev, Victor Sytnikov, Mikhail Dubinin, Elena Filipeva, Dmitriy Sorokin

Abstract:

Various variants of technical solutions aimed at improving the reliability of power supply to consumers of 110 kV substation are considered. For each technical solution, the results of calculation and analysis of electrical modes and short-circuit currents in the electrical network are presented. The estimation of electric energy consumption for losses within the boundaries of substation reconstruction was carried out in accordance with the methodology for determining the standards of technological losses of electricity during its transmission through electric networks. The assessment of the technical and economic feasibility of the use of HTS CL compared with the complex reconstruction of the 110 kV substation was carried out. It is shown that the use of high-temperature superconducting AC cable lines is a possible alternative to traditional technical solutions used in the reconstruction of substations.

Keywords: superconductivity, cable lines, superconducting cable, AC cable, feasibility

Procedia PDF Downloads 103
6226 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: mesh network, RFID, wireless sensor network, zigbee

Procedia PDF Downloads 463
6225 Potency of Minapolitan Area Development to Enhance Gross Domestic Product and Prosperty in Indonesia

Authors: Shobrina Silmi Qori Tarlita, Fariz Kukuh Harwinda

Abstract:

Indonesia has 81.000 kilometers coastal line and 70% water surface which is known as the country who has a huge potential in fisheries sector and also which is able to support more than 50 % of Gross Domestic Product. But according to Department of Marine and Fisheries data, fisheries sector supported only 20% of Total GDP in 1998. Not only that, the highest decline in fisheries sector income occured in 2009. Those conditions occur, because of some factors contributed to the lack of integrated working platform for the fisheries and marine management in some areas which have a high productivity to increase the economical profit every year for the country, especially Indonesia, besides the labor requirement for every company, whether a big company or smaller one, depends on the natural condition that makes a lot of people become unemployed if the weather condition or any other conditions dealing with the natural condition is bad for creating fisheries and marine management, especially in aquaculture and fish – captured operation. Not only those, a lot of fishermen, especially in Indonesia, mostly make their job profession as an additional job or side job to fulfill their own needs, although they are averagely poor. Another major problem are the lack of the sustainable developmental program to stabilize the productivity of fisheries and marine natural source, like protecting the environment for fish nursery ground and migration channel, that makes the low productivity of fisheries and marine natural resource, even though the growth of the society in Indonesia has increased for years and needs more food resource to comply the high demand nutrition for living. The development of Minapolitan Area is one of the alternative solution to build a better place for aqua-culturist as well as the fishermen which focusing on systemic and business effort for fisheries and marine management. Minapolitan is kind of integration area which gathers and integrates the ones who is focusing their effort and business in fisheries sector, so that Minapolitan is capable of triggering the fishery activity on the area which using Minapolitan management intensively. From those things, finally, Minapolitan is expected to reinforce the sustainable development through increasing the productivity of fish – capturing operation as well as aquaculture, and it is also expected that Minapolitan will be able to increase GDP, the earning for a lot of people and also will be able to bring prosperity around the world. From those backgrounds, this paper will explain more about the Minapolitan Area and the design of reinforcing the Minapolitan Area by zonation in the Fishery and Marine exploitation area with high productivity as well as low productivity. Hopefully, this solution will be able to answer the economical and social issue for declining food resource, especially fishery and marine resource.

Keywords: Minapolitan, fisheries, economy, Indonesia

Procedia PDF Downloads 469
6224 Assessment of Drinking Water Contamination from the Water Source to the Consumer in Palapye Region, Botswana

Authors: Tshegofatso Galekgathege

Abstract:

Poor water quality is of great concern to human health as it can cause disease outbreaks. A standard practice today, in developed countries, is that people should be provided with safe-reliable drinking water, as safe drinking water is recognized as a basic human right and a cost effective measure of reducing diseases. Over 1.1 billion people worldwide lack access to a safe water supply and as a result, the majority are forced to use polluted surface or groundwater. It is widely accepted that our water supply systems are susceptible to the intentional or accidental contamination .Water quality degradation may occur anywhere in the path that water takes from the water source to the consumer. Chlorine is believed to be an effective tool in disinfecting water, but its concentration may decrease with time due to consumption by chemical reactions. This shows that we are at the risk of being infected by waterborne diseases if chlorine in water falls below the required level of 0.2-1mg/liter which should be maintained in water and some contaminants enter into the water distribution system. It is believed that the lack of adequate sanitation also contributes to the contamination of water globally. This study therefore, assesses drinking water contamination from the source to the consumer by identifying the point vulnerable to contamination from the source to the consumer in the study area .To identify the point vulnerable to contamination, water was sampled monthly from boreholes, water treatment plant, water distribution system (WDS), service reservoirs and consumer taps from all the twenty (20) villages of Palapye region. Sampled water was then taken to the laboratory for testing and analysis of microbiological and chemical parameters. Water quality analysis were then compared with Botswana drinking water quality standards (BOS32:2009) to see if they comply. Major sources of water contamination identified during site visits were the livestock which were found drinking stagnant water from leaking pipes in 90 percent of the villages. Soils structure around the area was negatively affected because of livestock movement even vegetation in the area. In conclusion microbiological parameters of water in the study area do not comply with drinking water standards, some microbiological parameters in water indicated that livestock do not only affect land degradation but also the quality of water. Chlorine has been applied to water over some years but it is not effective enough thus preventative measures have to be developed, to prevent contaminants from reaching water. Remember: Prevention is better than cure.

Keywords: land degradation, leaking systems, livestock, water contamination

Procedia PDF Downloads 354
6223 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 145
6222 Secure Image Encryption via Enhanced Fractional Order Chaotic Map

Authors: Ismail Haddad, Djamel Herbadji, Aissa Belmeguenai, Selma Boumerdassi

Abstract:

in this paper, we provide a novel approach for image encryption that employs the Fibonacci matrix and an enhanced fractional order chaotic map. The enhanced map overcomes the drawbacks of the classical map, especially the limited chaotic range and non-uniform distribution of chaotic sequences, resulting in a larger encryption key space. As a result, this strategy improves the encryption system's security. Our experimental results demonstrate that our proposed algorithm effectively encrypts grayscale images with exceptional efficiency. Furthermore, our technique is resistant to a wide range of potential attacks, including statistical and entropy attacks.

Keywords: image encryption, logistic map, fibonacci matrix, grayscale images

Procedia PDF Downloads 320
6221 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 203
6220 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources

Authors: Rade M. Ciric, Nikola L. J. Rajakovic

Abstract:

This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.

Keywords: distributed generation, renewable energy sources, energy policy, curriculum

Procedia PDF Downloads 360
6219 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text

Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman

Abstract:

The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.

Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks

Procedia PDF Downloads 268
6218 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring

Authors: Katerina Krizova, Inigo Molina

Abstract:

The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.

Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content

Procedia PDF Downloads 129
6217 Off-Topic Text Detection System Using a Hybrid Model

Authors: Usama Shahid

Abstract:

Be it written documents, news columns, or students' essays, verifying the content can be a time-consuming task. Apart from the spelling and grammar mistakes, the proofreader is also supposed to verify whether the content included in the essay or document is relevant or not. The irrelevant content in any document or essay is referred to as off-topic text and in this paper, we will address the problem of off-topic text detection from a document using machine learning techniques. Our study aims to identify the off-topic content from a document using Echo state network model and we will also compare data with other models. The previous study uses Convolutional Neural Networks and TFIDF to detect off-topic text. We will rearrange the existing datasets and take new classifiers along with new word embeddings and implement them on existing and new datasets in order to compare the results with the previously existing CNN model.

Keywords: off topic, text detection, eco state network, machine learning

Procedia PDF Downloads 91
6216 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy

Authors: Van Tran Thi Thuy, Dukjoon Kim

Abstract:

A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.

Keywords: magnetic, nano, PNIPAM, polysuccinimide

Procedia PDF Downloads 419
6215 The Study of the Determinants of Impulse Buying in Algeria

Authors: Amina Merabet, Ali Iznasni, Abderrezzak Benhabib

Abstract:

Impulse buying is of strategic importance to distributors. Currently, distribution companies rely heavily on contextual variables (music, smells, colors, sound, design ...) in order to push customers towards purchase and consumption. As such, a crucial way for commercial brands to increase sales is to stimulate impulse buying. For this reason, this study aims at identifying the factors that initiate and encourage impulse buying, as well as the levers that help distributors highlight effective marketing techniques in order to encourage consumers to make impulse purchase. Thus, we try to show, upon a field survey of 590 buyers, the impact of situational elements of both the store and the product on achieving impulse buying.

Keywords: Algerian shoppers, impulse buying, shopping environment, situational variables, product

Procedia PDF Downloads 353
6214 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: briquetting, chips briquetting, impact briquetting, controlled impact

Procedia PDF Downloads 406
6213 Vibrational Spectra and Nonlinear Optical Investigations of a Chalcone Derivative (2e)-3-[4-(Methylsulfanyl) Phenyl]-1-(3-Bromophenyl) Prop-2-En-1-One

Authors: Amit Kumar, Archana Gupta, Poonam Tandon, E. D. D’Silva

Abstract:

Nonlinear optical (NLO) materials are the key materials for the fast processing of information and optical data storage applications. In the last decade, materials showing nonlinear optical properties have been the object of increasing attention by both experimental and computational points of view. Chalcones are one of the most important classes of cross conjugated NLO chromophores that are reported to exhibit good SHG efficiency, ultra fast optical nonlinearities and are easily crystallizable. The basic structure of chalcones is based on the π-conjugated system in which two aromatic rings are connected by a three-carbon α, β-unsaturated carbonyl system. Due to the overlap of π orbitals, delocalization of electronic charge distribution leads to a high mobility of the electron density. On a molecular scale, the extent of charge transfer across the NLO chromophore determines the level of SHG output. Hence, the functionalization of both ends of the π-bond system with appropriate electron donor and acceptor groups can enhance the asymmetric electronic distribution in either or both ground and excited states, leading to an increased optical nonlinearity. In this research, the experimental and theoretical study on the structure and vibrations of (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP) is presented. The FT-IR and FT-Raman spectra of the NLO material in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP with 6-311++G(d,p) basis set were carried out to study the equilibrium geometry, vibrational wavenumbers, infrared absorbance and Raman scattering activities. The interpretation of vibrational features (normal mode assignments, for instance) has an invaluable aid from DFT calculations that provide a quantum-mechanical description of the electronic energies and forces involved. Perturbation theory allows one to obtain the vibrational normal modes by estimating the derivatives of the Kohn−Sham energy with respect to atomic displacements. The molecular hyperpolarizability β plays a chief role in the NLO properties, and a systematical study on β has been carried out. Furthermore, the first order hyperpolarizability (β) and the related properties such as dipole moment (μ) and polarizability (α) of the title molecule are evaluated by Finite Field (FF) approach. The electronic α and β of the studied molecule are 41.907×10-24 and 79.035×10-24 e.s.u. respectively, indicating that 3Br4MSP can be used as a good nonlinear optical material.

Keywords: DFT, MEP, NLO, vibrational spectra

Procedia PDF Downloads 224
6212 Experimental and Numerical Investigation on the Torque in a Small Gap Taylor-Couette Flow with Smooth and Grooved Surface

Authors: L. Joseph, B. Farid, F. Ravelet

Abstract:

Fundamental studies were performed on bifurcation, instabilities and turbulence in Taylor-Couette flow and applied to many engineering applications like astrophysics models in the accretion disks, shrouded fans, and electric motors. Such rotating machinery performances need to have a better understanding of the fluid flow distribution to quantify the power losses and the heat transfer distribution. The present investigation is focused on high gap ratio of Taylor-Couette flow with high rotational speeds, for smooth and grooved surfaces. So far, few works has been done in a very narrow gap and with very high rotation rates and, to the best of our knowledge, not with this combination with grooved surface. We study numerically the turbulent flow between two coaxial cylinders where R1 and R2 are the inner and outer radii respectively, where only the inner is rotating. The gap between the rotor and the stator varies between 0.5 and 2 mm, which corresponds to a radius ratio η = R1/R2 between 0.96 and 0.99 and an aspect ratio Γ= L/d between 50 and 200, where L is the length of the rotor and d being the gap between the two cylinders. The scaling of the torque with the Reynolds number is determined at different gaps for different smooth and grooved surfaces (and also with different number of grooves). The fluid in the gap is air. Re varies between 8000 and 30000. Another dimensionless parameter that plays an important role in the distinction of the regime of the flow is the Taylor number that corresponds to the ratio between the centrifugal forces and the viscous forces (from 6.7 X 105 to 4.2 X 107). The torque will be first evaluated with RANS and U-RANS models, and compared to empirical models and experimental results. A mesh convergence study has been done for each rotor-stator combination. The results of the torque are compared to different meshes in 2D dimensions. For the smooth surfaces, the models used overestimate the torque compared to the empirical equations that exist in the bibliography. The closest models to the empirical models are those solving the equations near to the wall. The greatest torque achieved with grooved surface. The tangential velocity in the gap was always higher in between the rotor and the stator and not on the wall of rotor. Also the greater one was in the groove in the recirculation zones. In order to avoid endwall effects, long cylinders are used in our setup (100 mm), torque is measured by a co-rotating torquemeter. The rotor is driven by an air turbine of an automotive turbo-compressor for high angular velocities. The results of the experimental measurements are at rotational speed of up to 50 000 rpm. The first experimental results are in agreement with numerical ones. Currently, quantitative study is performed on grooved surface, to determine the effect of number of grooves on the torque, experimentally and numerically.

Keywords: Taylor-Couette flow, high gap ratio, grooved surface, high speed

Procedia PDF Downloads 412
6211 Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm

Authors: K. Roushanger, A. Soleymanzadeh

Abstract:

Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs.

Keywords: discharge coefficient, genetic expression programming, trapezoidal weir

Procedia PDF Downloads 391
6210 Nursing Professionals’ Perception of the Work Environment, Safety Climate and Job Satisfaction in the Brazilian Hospitals during the COVID-19 Pandemic

Authors: Ana Claudia de Souza Costa, Beatriz de Cássia Pinheiro Goulart, Karine de Cássia Cavalari, Henrique Ceretta Oliveira, Edineis de Brito Guirardello

Abstract:

Background: During the COVID-19 pandemic, nursing represents the largest category of health professionals who were on the front line. Thus, investigating the practice environment and the job satisfaction of nursing professionals during the pandemic becomes fundamental since it reflects on the quality of care and the safety climate. The aim of this study was to evaluate and compare the nursing professionals' perception of the work environment, job satisfaction, and safety climate of the different hospitals and work shifts during the COVID-19 pandemic. Method: This is a cross-sectional survey with 130 nursing professionals from public, private and mixed hospitals in Brazil. For data collection, was used an electronic form containing the personal and occupational variables, work environment, job satisfaction, and safety climate. The data were analyzed using descriptive statistics and ANOVA or Kruskal-Wallis tests according to the data distribution. The distribution was evaluated by means of the Shapiro-Wilk test. The analysis was done in the SPSS 23 software, and it was considered a significance level of 5%. Results: The mean age of the participants was 35 years (±9.8), with a mean time of 6.4 years (±6.7) of working experience in the institution. Overall, the nursing professionals evaluated the work environment as favorable; they were dissatisfied with their job in terms of pay, promotion, benefits, contingent rewards, operating procedures and satisfied with coworkers, nature of work, supervision, and communication, and had a negative perception of the safety climate. When comparing the hospitals, it was found that they did not differ in their perception of the work environment and safety climate. However, they differed with regard to job satisfaction, demonstrating that nursing professionals from public hospitals were more dissatisfied with their work with regard to promotion when compared to professionals from private (p=0.02) and mixed hospitals (p< 0.01) and nursing professionals from mixed hospitals were more satisfied than those from private hospitals (p= 0.04) with regard to supervision. Participants working in night shifts had the worst perception of the work environment related to nurse participation in hospital affairs (p= 0.02), nursing foundations for quality care (p= 0.01), nurse manager ability, leadership and support (p= 0.02), safety climate (p< 0.01), job satisfaction related to contingent rewards (p= 0.04), nature of work (p= 0.03) and supervision (p< 0.01). Conclusion: The nursing professionals had a favorable perception of the environment and safety climate but differed among hospitals regarding job satisfaction for the promotion and supervision domains. There was also a difference between the participants regarding the work shifts, being the night shifts, those with the lowest scores, except for satisfaction with operational conditions.

Keywords: health facility environment, job satisfaction, patient safety, nursing

Procedia PDF Downloads 163
6209 Impact of Water Courses Lining on Water Quality and Distribution of Aquatic Vegetations in Two Egyptian Governorates

Authors: Nahed M. M. Ismail, Bayoumy B. Mostafa, Ahmed Abdel-Kader, Khalil M. El-Said, Asmaa Abdel-Motleb, Hoda M. Abu Taleb

Abstract:

This study was carried out in lined and unlined watercourses in Beheira and Giza governorates to investigate the effect of water canals lining on water quality and aquatic vegetations. Samples of water and aquatic plants were collected from the examining sites during four seasons in two successive years. The main ecological parameters were recorded and water quality was measured. Results showed that the mean value of water conductivity and total dissolved salts in lined sites was significantly lower than those of unlined ones (p < 0.01, p < 0.05). In Beheira, the dissolved oxygen concentrations during autumn and winter were higher in lined sites (3.93±1.3 and 9.6±1.1 ppm, respectively) than those of unlined ones (the same values of 1.2±0.6 ppm). However, it represented by lower values of 5.77±6.05 and 4.9±1.8 ppm in lined watercourses in spring and summer, respectively, comparing with those in unlined ones (14.05±5.59 and 5.83±0.8 ppm, respectively). Generally, Zn, Pb, Fe, Cd were higher in both lined and unlined sites during summer than the other seasons. However, Zn and Fe were higher in lined sites (0.78±0.37 and 17.4±4.3 ppb, respectively) during summer than that of unlined ones (0.4±0.1 and 10.95±1.93 ppb, respectively). Cu was absent during summer in lined and unlined sites and only in unlined ones during spring. Regarding to Giza sites, Cu and Pb were absent in both lined and unlined sites during summer and only in unlined ones during spring. Whereas, Fe recorded higher values in autumn in both lined (8.8±20.1 ppb) and unlined sites (15.16±3 ppb) than the other seasons. Present survey study revealed that 13 species of aquatic plants were collected from lined and unlined sites in Beheira and Giza governorates. Eichhornia crassipes, Ceratophyllum demersum, and Potamogeton sp. were the only plant species infested the examined sites during autumn and winter in Beheira. In autumn C. demersum was the only plant found in lined sites represented by highly lower significant percentage (12.5% of the all examined sites) compared to the unlined sites (50%). E. crassipes was completely absent in the lined sites during the two seasons. In spring, there is only 3 plant species in lined sites compared to 6 ones in unlined. Also, in summer, there is only 2 species in lined sites comparing with 5 in unlined. The percentage of occurrence and density of these plants was highly significant (p < 0.01, p < 0.001) higher in unlined sites compared to the lined ones during all seasons. A diversity of plant species, E. crassipes, C. demersum, Jussias repens, Lemma giba, and Polygonum serr were the most abundant in many examined sites during all seasons in Giza. In summer, the percentage of sites containing the two plants E. crassipes (83.3%) and C. demersum (50%) was highly significant (p < 0.001) higher in unlined sites compared to the lined ones (50% and 0.0%, respectively). It concluded from the results that watercourses lining may play a significant role in preserving water with a good quality and reduces the distribution of aquatic vegetation which rendered the current of water.

Keywords: aquatic plants, lining of watercourses, physicochemical parameters, water quality

Procedia PDF Downloads 137
6208 The Impact of Neighborhood Effects on the Economic Mobility of the Inhabitants of Three Segregated Communities in Salvador (Brazil)

Authors: Stephan Treuke

Abstract:

The paper analyses the neighbourhood effects on the economic mobility of the inhabitants of three segregated communities of Salvador (Brazil), in other words, the socio-economic advantages and disadvantages affecting the lives of poor people due to their embeddedness in specific socio-residential contexts. Recent studies performed in Brazilian metropolis have concentrated on the structural dimensions of negative externalities in order to explain neighbourhood-level variations in a field of different phenomena (delinquency, violence, access to the labour market and education) in spatial isolated and socially homogeneous slum areas (favelas). However, major disagreement remains whether the contiguity between residents of poor neighbourhoods and higher-class condominio-dwellers provides structures of opportunities or whether it fosters socio-spatial stigmatization. Based on a set of interviews, investigating the variability of interpersonal networks and their activation in the struggle for economic inclusion, the study confirms that the proximity of Nordeste de Amaralina to middle-/upper-class communities affects positively the access to labour opportunities. Nevertheless, residential stigmatization, as well as structures of social segmentation, annihilate these potentials. The lack of exposition to individuals and groups extrapolating from the favela’s social, educational and cultural context restricts the structures of opportunities to local level. Therefore, residents´ interpersonal networks reveal a high degree of redundancy and localism, based on bonding ties connecting family and neighbourhood members. The resilience of segregational structures in Plataforma contributes to the naturalization of social distance patters. It’s embeddedness in a socially homogeneous residential area (Subúrbio Ferroviário), growing informally and beyond official urban politics, encourages the construction of isotopic patterns of sociability, sharing the same values, social preferences, perspectives and behaviour models. Whereas it’s spatial isolation correlates with the scarcity of economic opportunities, the social heterogeneity of Fazenda Grande II interviewees and the socialising effects of public institutions mitigate the negative repercussions of segregation. The networks’ composition admits a higher degree of heterophilia and a greater proportion of bridging ties accounting for the access to broader information actives and facilitating economic mobility. The variability observed within the three different scenarios urges to reflect about the responsability of urban politics when it comes to the prevention or consolidation of the social segregation process in Salvador. Instead of promoting the local development of the favela Plataforma, public housing programs priorize technocratic habitational solutions without providing the residents’ socio-economic integration. The impact of negative externalities related to the homogeneously poor neighbourhood is potencialized in peripheral areas, turning its’ inhabitants socially invisible, thus being isolated from other social groups. The example of Nordeste de Amaralina portrays the failing interest of urban politics to bridge the social distances structuring the brazilian society’s rigid stratification model, founded on mecanisms of segmentation (unequal access to labour market and education system, public transport, social security and law protection) and generating permanent conflicts between the two socioeconomically distant groups living in geographic contiguity. Finally, in the case of Fazenda Grande II, the public investments in both housing projects and complementary infrastructure (e.g. schools, hospitals, community center, police stations, recreation areas) contributes to the residents’ socio-economic inclusion.

Keywords: economic mobility, neighborhood effects, Salvador, segregation

Procedia PDF Downloads 281
6207 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network

Procedia PDF Downloads 134
6206 Analysis of Creative City Indicators in Isfahan City, Iran

Authors: Reza Mokhtari Malek Abadi, Mohsen Saghaei, Fatemeh Iman

Abstract:

This paper investigates the indices of a creative city in Isfahan. Its main aim is to evaluate quantitative status of the creative city indices in Isfahan city, analyze the dispersion and distribution of these indices in Isfahan city. Concerning these, this study tries to analyze the creative city indices in fifteen area of Isfahan through secondary data, questionnaire, TOPSIS model, Shannon entropy and SPSS. Based on this, the fifteen areas of Isfahan city have been ranked with 12 factors of creative city indices. The results of studies show that fifteen areas of Isfahan city are not equally benefiting from creative indices and there is much difference between the areas of Isfahan city.

Keywords: grading, creative city, creative city evaluation indicators, regional planning model

Procedia PDF Downloads 476
6205 Ecorium: The Ecological Project in Montevideo Uruguay

Authors: Chettou Souhaila, Soufi Omar, Roumia Mohammed Ammar

Abstract:

Protecting the environment is to preserve the survival and future of humanity. Indeed, the environment is our source of food and drinking water, the air is our source of oxygen, the climate allows our survival and biodiversity are a potential drug reservoir. Preserving the environment is, therefore, a matter of survival. The objective of this project is to familiarize the general public with environmental problems not only with the theme of environmental protection, but also with the concept of biodiversity in different ecosystems. For it, the aim of our project was to create the Ecorium which is a place that preserves many species of plants of different ecosystems, schools, malls, buildings, offices, ecological transports, gardens, and many familial activities that participated in the ecosystems development, strategic biodiversity and sustainable development.

Keywords: ecological system, ecorium, environment, sustainable development

Procedia PDF Downloads 346
6204 Data Stream Association Rule Mining with Cloud Computing

Authors: B. Suraj Aravind, M. H. M. Krishna Prasad

Abstract:

There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.

Keywords: data stream, association rule mining, cloud computing, frequent itemsets

Procedia PDF Downloads 505
6203 Chitosan-Whey Protein Isolate Core-Shell Nanoparticles as Delivery Systems

Authors: Zahra Yadollahi, Marjan Motiei, Natalia Kazantseva, Petr Saha

Abstract:

Chitosan (CS)-whey protein isolate (WPI) core-shell nanoparticles were synthesized through self-assembly of whey protein isolated polyanions and chitosan polycations in the presence of tripolyphosphate (TPP) as a crosslinker. The formation of this type of nanostructures with narrow particle size distribution is crucial for developing delivery systems since the functional characteristics highly depend on their sizes. To achieve this goal, the nanostructure was optimized by varying the concentrations of WPI, CS, and TPP in the reaction mixture. The chemical characteristics, surface morphology, and particle size of the nanoparticles were evaluated.

Keywords: whey protein isolated, chitosan, nanoparticles, delivery system

Procedia PDF Downloads 99
6202 Nanotechnolgy for Energy Harvesting Applications

Authors: Eiman Nour

Abstract:

The rising interest in harvesting power is because of the capabilities application of expanding self-powered systems based on nanostructures. Using renewable and self-powered sources is necessary for the growth of green electronics and could be of the capability to wireless sensor networks. The ambient mechanical power is among the ample sources for various power harvesting device configurations that are published. In this work, we design and fabricate a paper-based nanogenerator (NG) utilizing piezoelectric zinc oxide (ZnO) nanowires (NWs) grown hydrothermally on a paper substrate. The fabricated NG can harvest ambient mechanical energy from various kinds of human motions, such as handwriting. The fabricated NG from a single ZnO NWs/PVDF-TrFE NG has been used firstly as handwriting-driven NG. The mechanical pressure applied on the paper platform while handwriting is harvested by the NG to deliver electrical energy; depending on the mode of handwriting, a maximum harvested voltage of 4.8 V was obtained.

Keywords: nanostructure, zinc oxide, nanogenerator, energy harvesting

Procedia PDF Downloads 68
6201 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation: Antimicrobial, Antioxidant, and Physicochemical Investigations

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E. A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for the meat products. However, to the best of our knowledge, the incorporation of the free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for the meats is seldom reported. Therefore, this study aims at the protection of the aqueous crude extract of the hibiscus flowers utilizing the spry drying encapsulation technique. Results of the Fourier transform infrared (FTIR), the scanning electron microscope (SEM), and the particle size analyzer confirmed the successful formation of the assembled capsules via strong interactions, the spherical rough microparticles, and the particle size of ~ 235 nm, respectively. Also, the obtained microcapsules enjoy higher thermal stability than the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration of 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against the microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to the PVA matrix. Application of the prepared films on the real meat samples displayed a low bacterial growth with a slight increase in the pH over the storage time which continued up to 10 days at 4 oC, as further evidence to the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of the prepared composite films pave the way towards combined active and smart food packaging applications. This would play a vital role in the food hygiene, including also the quality control and the assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 94
6200 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 165
6199 Automatic Measurement of Garment Sizes Using Deep Learning

Authors: Maulik Parmar, Sumeet Sandhu

Abstract:

The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.

Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints

Procedia PDF Downloads 317