Search results for: electrical resistance tomography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5477

Search results for: electrical resistance tomography

677 Properties and Microstructure of Scaled-Up MgO Concrete Blocks Incorporating Fly Ash or Ground Granulated Blast-Furnace Slag

Authors: L. Pu, C. Unluer

Abstract:

MgO cements have the potential to sequester CO2 in construction products, and can be partial or complete replacement of PC in concrete. Construction block is a promising application for reactive MgO cements. Main advantages of blocks are: (i) suitability for sequestering CO2 due to their initially porous structure; (ii) lack of need for in-situ treatment as carbonation can take place during fabrication; and (iii) high potential for commercialization. Both strength gain and carbon sequestration of MgO cements depend on carbonation process. Fly ash and ground granulated blast-furnace slag (GGBS) are pozzolanic material and are proved to improve many of the performance characteristics of the concrete, such as strength, workability, permeability, durability and corrosion resistance. A very limited amount of work has been reported on the production of MgO blocks on a large scale so far. A much more extensive study, wherein blocks with different mix design is needed to verify the feasibility of commercial production. The changes in the performance of the samples were evaluated by compressive strength testing. The properties of the carbonation products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/ field emission scanning electron microscopy (FESEM), and the degree of carbonation was obtained by thermogravimetric analysis (TGA), XRD and energy dispersive X-ray (EDX). The results of this study enabled the understanding the relationship between lab-scale samples and scale-up blocks based on their mechanical performance and microstructure. Results indicate that for both scaled-up and lab-scale samples, MgO samples always had the highest strength results, followed by MgO-fly ash samples and MgO-GGBS had relatively lowest strength. The lower strength of MgO with fly ash/GGBS samples at early stage is related to the relatively slow hydration process of pozzolanic materials. Lab-scale cubic samples were observed to have higher strength results than scaled-up samples. The large size of the scaled-up samples made it more difficult to let CO2 to reach inner part of the samples and less carbonation products formed. XRD, TGA and FESEM/EDX results indicate the existence of brucite and HMCs in MgO samples, M-S-H, hydrotalcite in the MgO-fly ash samples and C-S-H, hydrotalctie in the MgO-GGBS samples. Formation of hydration products (M-S-H, C-S-H, hydrotalcite) and carbonation products (hydromagnecite, dypingite) increased with curing duration, which is the reason of increasing strength. This study verifies the advantage of large-scale MgO blocks over common PC blocks and the feasibility of commercial production of MgO blocks.

Keywords: reactive MgO, fly ash, ground granulated blast-furnace slag, carbonation, CO₂

Procedia PDF Downloads 192
676 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 87
675 A Strategy for Reducing Dynamic Disorder in Small Molecule Organic Semiconductors by Suppressing Large Amplitude Thermal Motions

Authors: Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Stephen G. Yeates, John E. Anthony, Henning Sirringhaus

Abstract:

Large-amplitude intermolecular vibrations in combination with complex shaped transfer integrals generate a thermally fluctuating energetic landscape. The resulting dynamic disorder and its intrinsic presence in organic semiconductors is one of the most fundamental differences to their inorganic counterparts. Dynamic disorder is believed to govern many of the unique electrical and optical properties of organic systems. However, the low energy nature of these vibrations makes it difficult to access them experimentally and because of this we still lack clear molecular design rules to control and reduce dynamic disorder. Applying a novel technique based on electron diffraction we encountered strong intermolecular, thermal vibrations in every single organic material we studied (14 up to date), indicating that a large degree of dynamic disorder is a universal phenomenon in organic crystals. In this paper a new molecular design strategy will be presented to avoid dynamic disorder. We found that small molecules that have their side chains attached to the long axis of their conjugated core have been found to be less likely to suffer from dynamic disorder effects. In particular, we demonstrate that 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene (C8-BTBT) and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene (C10DNTT) exhibit strongly reduced thermal vibrations in comparison to other molecules and relate their outstanding performance to their lower dynamic disorder. We rationalize the low degree of dynamic disorder in C8-BTBT and C10-DNTT with a better encapsulation of the conjugated cores in the crystal structure which helps reduce large amplitude thermal motions. The work presented in this paper provides a general strategy for the design of new classes of very high mobility organic semiconductors with low dynamic disorder.

Keywords: charge transport, C8-BTBT, C10-DNTT, dynamic disorder, organic semiconductors, thermal vibrations

Procedia PDF Downloads 399
674 The Relationship between Vitamin D and Vitamin B12 Concentrations in Cataract Patients (Senile vs Diabetic)

Authors: Ali Showail Ali Alasmari

Abstract:

Introduction: Cataract is the loss of transparency of the lens inside the eye. It is the most common cause of visual loss and blindness worldwide. This study provides a systemic review of the recent findings on the association of vitamin D, and vitamin B12, and their possible role in preventing cataracts in senile (S) and diabetic mellitus (DM) patient groups. Objective: This study was intended to establish and investigate if there is any role between vitamin D and vitamin B12? Secondly, the connection between serum level of vitamin D and vitamin B12 in cataract incidence senile (s) vs. diabetic mellitus (DM) cataract patient groups. Furthermore, to evaluate and analyze cataract occurrence regarding vitamin D and vitamin B12 levels with other risk factors. Finally, to evaluate lens opacities pre and post treatment with vitamin D and vitaminB12 linked to age and visual acuity loss in both senile(S) and diabetic mellitus (DM) cataract patients’ groups. Methods: This study conducted at the ophthalmology clinic at Muhyail General Hospital. Select a prospective case-control to study the effect of vitamin D and Vit B12 on senile(S) cataracts that caused by age and diabetic mellitus (DM)cataract patients; then we compare these two groups. This study prospectively enrolled a total of 50 samples, 25 with senile cataract and 25 with diabetic cataract, from ophthalmology clinic at Muhyail General Hospital. Measuring 25-hydroxy vitamin D and vitamin B12 level concentrations in the assigned samples. Analyses were performed using SAS (statistical analysis software) program. Results: The most important finding in this study was that the senile(s) cataract patients’ group greatly benefited by the combination therapy of vitamin D, and Vitamin B12 reached (28.5±1.50 and 521.1±21.10) respectively; on the contrary, the diabetic cataract patient group hardly shows any significant improvement (21.5 ± 1.00 and 197.2 ± 7.20) respectively. This is because of the Metformin, the first line drug for treating diabetes, has been reported to potentially decrease vitamin B-12 status. This epigenetic modification was correlated with the diabetic mellitus (DM) cataract patients’ group not responding. Vitamin B12 deficiency also leads to an impairment of the conversion of methylmalonyl-CoA to succinyl-CoA, which has been associated with insulin resistance. There was no significant difference between the age, body mass index (BMI), the mean of Vit-D pre-treatments, and the mean values of Hemoglobin A1C of both senile (S) and diabetic mellitus (DM) cataract patient groups. On other hand, there was a highly significant difference between the mean values of glucose levels in both senile (S) and diabetic mellitus (DM) cataract patient groups. Conclusion: Here we conclude that diabetic mellitus (DM) cataract patient group hardly benefited from this combination therapy vitamin D and vitamin B12; on the other hand senile patient group (s) benefited a lot from the therapy.

Keywords: cataract patients, senile, diabetes mellitus, vitamin B12, vitamin D, Muhyail General Hospital, Saudi Arabia

Procedia PDF Downloads 106
673 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 519
672 Graphene-Intercalated P4Se3@CNF Hybrid Electrode for Sustainable Energy Storage Solution: Enabling High Energy Density and Ultra-long Cyclic Stability

Authors: Daya Rani

Abstract:

Non-metal-based compounds have emerged as promising electrodes in recent years to replace scarce and expensive transition-metals for energy storage applications. Herein, a simple electro-spinning technique followed by carbonization is used to create tetraphosphorus triselenide(P4Se3)nano-flakes encapsulated in carbon nanofiber (P4Se3@CNF) to obtain a binder-free, metal-free and flexible hybrid electrode with high electrical conductivity and cyclic stability. A remarkable capacitive performance (5.5-folds@P4Se3) of 810Fg-1/[email protected] has been obtained using P4Se3@CNF electrode with an excellent rate capability compared to pristine(P4Se3) which is further supported by theoretical calculations via intercalating graphene within bare P4Se3 flakes inducing partial charge redistribution in hetero-structure. A flexible pouch-type hybrid-supercapacitor followed by coin-cell has been manufactured offering exceptional energy-density without sacrificing power density and ultra-long durability over 35000 and 100000-cycles with capacitance-retention of 99.77% and 100%, respectively. It has been demonstrated that as-fabricated device has practical usefulness towards renewable energy harvesting and storage via integrating commercial solar cell module with supercapattery array that can enlighten the blue LED approximately for 31minutes, rotate the homemade windmill device, power Arduino and glow “INST” against 2minutes of charging. This work demonstrates a facile route towards the development of metal-free electrochemical renewable energy storage/transfer devices offering an inevitable adoption in industrial platforms.

Keywords: metal free, carbon nano-fiber, pouch-type hybrid super-capacitor, nano-flakes

Procedia PDF Downloads 26
671 Dimensional-Controlled Functional Gold Nanoparticles and Zinc Oxide Nanorods for Solar Water Splitting

Authors: Kok Hong Tan, Hing Wah Lee, Jhih-Wei Chen, Chang Fu Dee, Chung-Lin Wu, Siang-Piao Chai, Wei Sea Chang

Abstract:

Semiconductor photocatalyst is known as one of the key roles in developing clean and sustainable energy. However, most of the semiconductor only possesses photoactivity within the UV light region, and hence, decreases the overall photocatalyst efficiency. Generally, the overall effectiveness of the photocatalyst activity is determined by three critical steps: (i) light absorption efficiency and photoexcitation electron-hole pair generation, (ii) separation and migration of charge carriers to the surface of the photocatalyst, and (iii) surface reaction of the carriers with its environment. Much effort has been invested on optimizing hierarchical nanostructures of semiconductors for efficient photoactivity due to the fact that the visible light absorption capability and occurrence of the chemical reactions mostly depend on the dimension of photocatalysts. In this work, we incorporated zero-dimensional (0D) gold nanoparticles (AuNPs) and one dimensional (1D) Zinc Oxide (ZnO) nanorods (NRs) onto strontium titanate (STO) for efficient visible light absorption, charge transfer, and separation. We demonstrate that the electrical and optical properties of the photocatalyst can be tuned by controlling the dimensional structures of AuNPs and ZnO NRs. We found that smaller AuNPs sizes exhibited higher photoactivity because of Fermi level shifting toward the conductive band of STO, STO band gap narrowing and broadening of absorption spectrum to the visible light region. For ZnO NRs, it was found that the average ZnO NRs c-axis length must achieve of certain length to induce multiphoton absorption as a result of light reflection and trapping behavior in the free space between adjacent ZnO NRs hence broadening the absorption spectrum of ZnO from UV to visible light region. This work opens up a new way of broadening the absorption spectrum by incorporating controllable nanostructures of semiconductors, which is important in optimizing the solar water splitting process.

Keywords: gold nanoparticles, photoelectrochemical, PEC, semiconductor photocatalyst, zinc oxide nanorods

Procedia PDF Downloads 161
670 Time Domain Dielectric Relaxation Microwave Spectroscopy

Authors: A. C. Kumbharkhane

Abstract:

Time domain dielectric relaxation microwave spectroscopy (TDRMS) is a term used to describe a technique of observing the time dependant response of a sample after application of time dependant electromagnetic field. A TDRMS probes the interaction of a macroscopic sample with a time dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the TDRS technique covers an extensive dynamical process. The corresponding frequencies range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy, which yield information on the motions of individual molecules. Recently, we have developed and established the TDR technique in laboratory that provides information regarding dielectric permittivity in the frequency range 10 MHz to 30 GHz. The TDR method involves the generation of step pulse with rise time of 20 pico-seconds in a coaxial line system and monitoring the change in pulse shape after reflection from the sample placed at the end of the coaxial line. There is a great interest to study the dielectric relaxation behaviour in liquid systems to understand the role of hydrogen bond in liquid system. The intermolecular interaction through hydrogen bonds in molecular liquids results in peculiar dynamical properties. The dynamics of hydrogen-bonded liquids have been studied. The theoretical model to explain the experimental results will be discussed.

Keywords: microwave, time domain reflectometry (TDR), dielectric measurement, relaxation time

Procedia PDF Downloads 336
669 Barriers of the Development and Implementation of Health Information Systems in Iran

Authors: Abbas Sheikhtaheri, Nasim Hashemi

Abstract:

Health information systems have great benefits for clinical and managerial processes of health care organizations. However, identifying and removing constraints and barriers of implementing and using health information systems before any implementation is essential. Physicians are one of the main users of health information systems, therefore, identifying the causes of their resistance and concerns about the barriers of the implementation of these systems is very important. So the purpose of this study was to determine the barriers of the development and implementation of health information systems in terms of the Iranian physicians’ perspectives. In this study conducted in 8 selected hospitals affiliated to Tehran and Iran Universities of Medical Sciences, Tehran, Iran in 2014, physicians (GPs, residents, interns, specialists) in these hospitals were surveyed. In order to collect data, a research made questionnaire was used (Cronbach’s α = 0.95). The instrument included 25 about organizational (9), personal (4), moral and legal (3) and technical barriers (9). Participants were asked to answer the questions using 5 point scale Likert (completely disagree=1 to completely agree=5). By using a simple random sampling method, 200 physicians (from 600) were invited to study that eventually 163 questionnaires were returned. We used mean score and t-test and ANOVA to analyze the data using SPSS software version 17. 52.1% of respondents were female. The mean age was 30.18 ± 7.29. The work experience years for most of them were between 1 to 5 years (80.4 percent). The most important barriers were organizational ones (3.4 ± 0.89), followed by ethical (3.18 ± 0.98), technical (3.06 ± 0.8) and personal (3.04 ± 1.2). Lack of easy access to a fast Internet (3.67±1.91) and the lack of exchanging information (3.61±1.2) were the most important technical barriers. Among organizational barriers, the lack of efficient planning for the development and implementation systems (3.56±1.32) and was the most important ones. Lack of awareness and knowledge of health care providers about the health information systems features (3.33±1.28) and the lack of physician participation in planning phase (3.27±1.2) as well as concerns regarding the security and confidentiality of health information (3.15 ± 1.31) were the most important personal and ethical barriers, respectively. Women (P = 0.02) and those with less experience (P = 0.002) were more concerned about personal barriers. GPs also were more concerned about technical barriers (P = 0.02). According to the study, technical and ethics barriers were considered as the most important barriers however, lack of awareness in target population is also considered as one of the main barriers. Ignoring issues such as personal and ethical barriers, even if the necessary infrastructure and technical requirements were provided, may result in failure. Therefore, along with the creating infrastructure and resolving organizational barriers, special attention to education and awareness of physicians and providing solution for ethics concerns are necessary.

Keywords: barriers, development health information systems, implementation, physicians

Procedia PDF Downloads 346
668 Quality Characteristics of Treated Wastewater of 'Industrial Area Foggia'

Authors: Grazia Disciglio, Annalisa Tarantino, Emanuele Tarantino

Abstract:

The production system of Foggia province (Apulia, Southern Italy) is characterized by the presence of numerous agro-food industries whose activities include the processing of vegetables products that release large quantities of wastewater. The reuse in agriculture of these wastewaters offers the opportunity to reduce the costs of their disposal and minimizing their environmental impact. In addition, in this area, which suffers from water shortage, the use of agro-industrial wastewater is essential in the very intensive irrigation cropping systems. The present investigation was carried out in years 2009 and 2010 to monitor the physico-chemical and microbiological characteristics of the industrial wastewater (IWW) from the secondary treatment plant of the 'Industrial Area of Foggia'. The treatment plant released on average about 567,000 m3y-1 of IWW, which distribution was not uniform over the year. The monthly values were about 250,000 m3 from November to June and about 90,000 m3 from July to October. The obtained results revealed that IWW was characterized by low values of Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Electrical Conductivity (EC) and Sodium Absorption Rate (SAR). An occasional presence of heavy metal and high concentration of total phosphorus, total nitrogen, ammoniacal nitrogen and microbial organisms (Escherichia coli and Salmonella) were observed. Due to the presence of this pathogenic microorganisms and sometimes of heavy metals, which may raise sanitary and environmental problems in order to the possible irrigation reuse of this IWW, a tertiary treatment of wastewater based on filtration and disinfection in line are recommended. Researches on the reuse of treated IWW on crops (olive, artichoke, industrial tomatoes, fennel, lettuce etc.) did not show significant differences among the irrigated plots for most of the soil and yield characteristics.

Keywords: agroindustrial wastewater, irrigation, microbiological characteristic, physico-chemical characteristics

Procedia PDF Downloads 316
667 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources

Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger

Abstract:

Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.

Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity

Procedia PDF Downloads 155
666 In vitro Establishment and Characterization of Oral Squamous Cell Carcinoma Derived Cancer Stem-Like Cells

Authors: Varsha Salian, Shama Rao, N. Narendra, B. Mohana Kumar

Abstract:

Evolving evidence proposes the existence of a highly tumorigenic subpopulation of undifferentiated, self-renewing cancer stem cells, responsible for exhibiting resistance to conventional anti-cancer therapy, recurrence, metastasis and heterogeneous tumor formation. Importantly, the mechanisms exploited by cancer stem cells to resist chemotherapy are very less understood. Oral squamous cell carcinoma (OSCC) is one of the most regularly diagnosed cancer types in India and is associated commonly with alcohol and tobacco use. Therefore, the isolation and in vitro characterization of cancer stem-like cells from patients with OSCC is a critical step to advance the understanding of the chemoresistance processes and for designing therapeutic strategies. With this, the present study aimed to establish and characterize cancer stem-like cells in vitro from OSCC. The primary cultures of cancer stem-like cell lines were established from the tissue biopsies of patients with clinical evidence of an ulceroproliferative lesion and histopathological confirmation of OSCC. The viability of cells assessed by trypan blue exclusion assay showed more than 95% at passage 1 (P1), P2 and P3. Replication rate was performed by plating cells in 12-well plate and counting them at various time points of culture. Cells had a more marked proliferative activity and the average doubling time was less than 20 hrs. After being cultured for 10 to 14 days, cancer stem-like cells gradually aggregated and formed sphere-like bodies. More spheroid bodies were observed when cultured in DMEM/F-12 under low serum conditions. Interestingly, cells with higher proliferative activity had a tendency to form more sphere-like bodies. Expression of specific markers, including membrane proteins or cell enzymes, such as CD24, CD29, CD44, CD133, and aldehyde dehydrogenase 1 (ALDH1) is being explored for further characterization of cancer stem-like cells. To summarize the findings, the establishment of OSCC derived cancer stem-like cells may provide scope for better understanding the cause for recurrence and metastasis in oral epithelial malignancies. Particularly, identification and characterization studies on cancer stem-like cells in Indian population seem to be lacking thus provoking the need for such studies in a population where alcohol consumption and tobacco chewing are major risk habits.

Keywords: cancer stem-like cells, characterization, in vitro, oral squamous cell carcinoma

Procedia PDF Downloads 221
665 Evaluation of Mito-Uncoupler Induced Hyper Metabolic and Aggressive Phenotype in Glioma Cells

Authors: Yogesh Rai, Saurabh Singh, Sanjay Pandey, Dhananjay K. Sah, B. G. Roy, B. S. Dwarakanath, Anant N. Bhatt

Abstract:

One of the most common signatures of highly malignant gliomas is their capacity to metabolize more glucose to lactic acid than normal brain tissues, even under normoxic conditions (Warburg effect), indicating that aerobic glycolysis is constitutively upregulated through stable genetic or epigenetic changes. However, oxidative phosphorylation (OxPhos) is also required to maintain the mitochondrial membrane potential for tumor cell survival. In the process of tumorigenesis, tumor cells during fastest growth rate exhibit both high glycolytic and high OxPhos. Therefore, metabolically reprogrammed cancer cells with combination of both aerobic glycolysis and altered OxPhos develop a robust metabolic phenotype, which confers a selective growth advantage. In our study, we grew the high glycolytic BMG-1 (glioma) cells with continuous exposure of mitochondrial uncoupler 2, 4, dinitro phenol (DNP) for 10 passages to obtain a phenotype of high glycolysis with enhanced altered OxPhos. We found that OxPhos modified BMG (OPMBMG) cells has similar growth rate and cell cycle distribution but high mitochondrial mass and functional enzymatic activity than parental cells. In in-vitro studies, OPMBMG cells showed enhanced invasion, proliferation and migration properties. Moreover, it also showed enhanced angiogenesis in matrigel plug assay. Xenografted tumors from OPMBMG cells showed reduced latent period, faster growth rate and nearly five folds reduction in the tumor take in nude mice compared to BMG-1 cells, suggesting that robust metabolic phenotype facilitates tumor formation and growth. OPMBMG cells which were found radio-resistant, showed enhanced radio-sensitization by 2-DG as compared to the parental BMG-1 cells. This study suggests that metabolic reprogramming in cancer cells enhances the potential of migration, invasion and proliferation. It also strengthens the cancer cells to escape the death processes, conferring resistance to therapeutic modalities. Our data also suggest that combining metabolic inhibitors like 2-DG with conventional therapeutic modalities can sensitize such metabolically aggressive cancer cells more than the therapies alone.

Keywords: 2-DG, BMG, DNP, OPM-BMG

Procedia PDF Downloads 226
664 Multilevel Two-Phase Structuring in the Nitrogen Supersaturated AISI316 Stainless Steel

Authors: Tatsuhiko Aizawa, Yohei Suzuki, Tomomi Shiratori

Abstract:

The austenitic stainless steel type AISI316 has been widely utilized as structural members and mold die substrates. The low temperature plasma nitriding has been utilized to harden these AISI316 members, parts, and dies without loss of intrinsic corrosion resistance to AISI316 stainless steels. Formation of CrN precipitates by normal plasma nitriding processes resulted in severe deterioration of corrosion toughness. Most previous studies on this low temperature nitriding of AISI316 only described the lattice expansion of original AISI316 lattices by the occupation of nitrogen interstitial solutes into octahedral vacancy sites, the significant hardening by nitrogen solid solution, and the enhancement of corrosion toughness. In addition to those engineering items, this low temperature nitriding process was characterized by the nitrogen supersaturation and nitrogen diffusion processes. The nitrogen supersaturated zones expanded by the nitrogen solute occupation to octahedral vacancy sites, and the un-nitrided surroundings to these zones were plastically strained to compensate for the mismatch strains across these nitrided and nitrided zones. The microstructure of nitrided AISI316 was refined by this plastic straining. The nitrogen diffusion process was enhanced to transport nitrogen solute atoms through the refined zone boundaries. This synergetic collaboration among the nitrogen supersaturation, the lattice expansion, the plastic straining, and the grain refinement yielded a thick nitrogen supersaturated layer. This synergetic relation was also characterized by the multilevel two-phase structuring. In XRD (X-Ray Diffraction) analysis, the nitrided AISI316 layer had - and -phases with the peak shifts from original lattices. After EBSD (Electron Back Scattering Diffraction) analysis, -grains and -grains homogeneously distributed in the nitrided layer. The scanning transmission electron microscopy (STEM) revealed that g-phase zone is N-poor cluster and a-phase zone is N-rich cluster. This proves that nitrogen supersaturated AISI316 stainless steels have multi-level two-phase structure in a very fine granular system.

Keywords: AISI316 stainless steels, chemical affinity to nitrogen solutes, multi-level two-phase structuring, nitrogen supersaturation

Procedia PDF Downloads 100
663 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Compost Application

Authors: Ayman El Sabagh, SobhySorour, AbdElhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. What adds to the concern is that all the legume crops are sensitive to increasing soil salinity. So it is implacable to either search for salinity enhancement of legume plants. The exogenous of osmoprotectants has been found effective in reducing the adverse effects of salinity stress on plant growth. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine and compost application on soybean plants grown under salinity stress. Experiments were carried out in the greenhouse of the experimental station, plant nutritional physiology, Hiroshima University, Japan in 2011- 2012. The experiment was arranged in a factorial design with 4 replications at NaCl concentrations (0 and 15 mM). The exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Compost treatments (0 and 24 t ha-1). Results indicated that salinity stress induced reduction in all growth and physiological parameters (dry weights plant-1, chlorophyll content, N and K+ content) likewise, seed and quality traits of soybean plant compared with those of the unstressed plants. In contrast, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Thus tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved membrane stability, K+, and proline accumulation on contrary, decreased Na+ content. These results clearly demonstrate that could be used to reduce the harmful effect of salinity on both physiological aspects and growth parameters of soybean. They are capable of restoring yield potential and quality of seed and may be useful in agronomic situations where saline conditions are diagnosed as a problem. Consequently, exogenous osmo-protectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance in the drylands.

Keywords: compost, glycine betaine, proline, salinity tolerance, soybean

Procedia PDF Downloads 374
662 Gis-Based Water Pollution Assesment of Buriganga River, Bangladesh

Authors: Nur-E-Jannat Tinu

Abstract:

Water is absolutely vital not only for the survival of human beings but also for plants, animals, and all other living organisms. Water bodies, such as lakes, rivers, ponds, and estuaries, are the source of water supply in domestic, industrial, agriculture, and aquaculture purposes. The Buriganga River flows through the south and west of Dhaka city. The water quality of this river has become a matter of concern due to anthropogenic intervention of vital pollutants such as industrial effluents, urban sewage, and solid wastes in this area. Buriganga River is at risk to contamination from untreated municipal wastes, industrial discharges, runoff from organic and inorganic fertilizers, pesticides, insecticides, and oil emission around the river. The residential and commercial establishments along the river discharge wastewater either directly into the river or through drains and canals into the river. However, several regulatory measures and policies have been enforced by the Government to protect the river Buriganga from pollution, in most cases to no affect. Water quality assessment reveals that the water is also not appropriate for irrigation purposes. The physical parameters (pH, TDS, EC, Temperature, DO, COD, BOD) indicated that the water is too poor to be useable for agricultural, drinking, or other purposes. Chemical concentrations showed significant seasonal variations with high-level concentrations during the monsoon season, presumably due to extreme seasonal surface runoff. A comparative study of Electrical Conductivity (EC) and Total Dissolved Solids (TDS) indicated a considerable increase over the last five years A change in trend was observed from 2020 June-July, probably due to monsoon and post-monsoon. EC values decreased from 775 to 665 mmho/cm during this period. DO increased significantly from the mid-post-monsoon months to the early monsoon period. The pH value of river water is strongly alkaline, ranging between 6.5 and 7.79. This indicates that ecological organic compounds cause the water to become alkaline after the monsoon and monsoon seasons. As the water pollution level is very high, an effective remediation and pollution control plan should be considered.

Keywords: precipitation, spatial distribution, effluent, remediation

Procedia PDF Downloads 140
661 Anti-Leishmanial Compounds from the Seaweed Padina pavonica

Authors: Nahal Najafi, Afsaneh Yegdaneh, Sedigheh Saberi

Abstract:

Introduction: Leishmaniasis poses a substantial global risk, affecting millions and resulting in thousands of cases each year in endemic regions. Challenges in current leishmaniasis treatments include drug resistance, high toxicity, and pancreatitis. Marine compounds, particularly brown algae, serve as a valuable source of inspiration for discovering treatments against Leishmania. Material and method: Padina pavonica was collected from the Persian Gulf. The seaweeds were dried and extracted with methanol: ethylacetate (1:1). The extract was partitioned to hexane (Hex), dicholoromethane (DCM), butanol, and water by Kupchan partitioning method. Hex partition was fractionated by silica gel column chromatography to 10 fractions (Fr. 1-10). Fr. 6 was further separated by the normal phase HPLC method to yield compounds 1-3. The structures of isolated compounds were elucidated by NMR, Mass, and other spectroscopic methods. Hex and DCM partitions, Fr. 6 and compounds 1-3, were tested for anti-leishmanicidal activity. RAW cell lines were cultured in enriched RPMI (10% FBS, 1% pen-strep) in a 37°C CO2 5% incubator, while promastigote cells were initially cultured in NNN culture and subsequently transferred to the aforementioned medium. Cytotoxicity was assessed using MTT tests, anti-promastigote activity was evaluated through Hemocytometer chamber promastigote counting, and the impact of amastigote damage was determined by counting amastigotes within 100 macrophages. Results: NMR and Mass identified isolated compounds as fucosterol and two sulfoquinovosyldiacylglycerols (SQDG). Among the samples tested, Fr.6 exhibited the highest cytotoxicity (CC50=60.24), while compound 2 showed the lowest cytotoxicity (CC50=21984). Compound 1 and dichloromethane fraction demonstrated the highest and lowest anti-promastigote activity (IC50=115.7, IC50=16.42, respectively), and compound 1 and hexane fraction exhibited the highest and lowest anti-amastigote activity (IC50=7.874, IC50=40.18, respectively). Conclusion: All six samples, including Hex and DCM partitions, Fr.6, and compounds 1-3, demonstrate a noteworthy correlation between rising concentration and time, with a statistically significant P-value of ≤0.05. Considering the higher selectivity index of compound 2 compared to others, it can be inferred that the presence of sulfur groups and unsaturated chains potentially contributes to these effects by impeding the DNA polymerase, which, of course, needs more research.

Keywords: Padina, leishmania, sulfoquinovosyldiacylglycerol, cytotoxicity

Procedia PDF Downloads 23
660 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes

Authors: Hacer Sule Gonul, Vedat Uyak

Abstract:

Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.

Keywords: pesticide, drinking water, carbon nanotube, adsorption

Procedia PDF Downloads 171
659 Development of Generally Applicable Intravenous to Oral Antibiotic Switch Therapy Criteria

Authors: H. Akhloufi, M. Hulscher, J. M. Prins, I. H. Van Der Sijs, D. Melles, A. Verbon

Abstract:

Background: A timely switch from intravenous to oral antibiotic therapy has many advantages, such as reduced incidence of IV-line related infections, a decreased hospital length of stay and less workload for healthcare professionals with equivalent patient safety. Additionally, numerous studies have demonstrated significant decreases in costs of a timely intravenous to oral antibiotic therapy switch, while maintaining efficacy and safety. However, a considerable variation in iv to oral antibiotic switch therapy criteria has been described in literature. Here, we report the development of a set of iv to oral switch criteria that are generally applicable in all hospitals. Material/methods: A RAND-modified Delphi procedure, which was composed of 3 rounds, was used. This Delphi procedure is a widely used structured process to develop consensus using multiple rounds of questionnaires within a qualified panel of selected experts. The international expert panel was multidisciplinary and composed out of clinical microbiologists, infectious disease consultants and clinical pharmacists. This panel of 19 experts appraised 6 major intravenous to oral antibiotic switch therapy criteria and operationalized these criteria using 41 measurable conditions extracted from the literature. The procedure to select a concise set of iv to oral switch criteria included 2 questionnaire rounds and a face-to-face meeting. Results: The procedure resulted in the selection of 16 measurable conditions, which operationalize 6 major intravenous to oral antibiotic switch therapy criteria. The following 6 major switch therapy criteria were selected: (1) Vital signs should be good or improving when bad. (2) Signs and symptoms related to the infection have to be resolved or improved. (3) The gastrointestinal tract has to be intact and functioning. (4) The oral route should not be compromised. (5) Absence of contra-indicated infections. (6) An oral variant of the antibiotic with good bioavailability has to exist. Conclusions: This systematic stepwise method which combined evidence and expert opinion resulted in a feasible set of 6 major intravenous to oral antibiotic switch therapy criteria operationalized by 16 measurable conditions. This set of early antibiotic iv to oral switch criteria can be used in daily practice in all adult hospital patients. Future use in audits and as rules in computer assisted decision support systems will lead to improvement of antimicrobial steward ship programs.

Keywords: antibiotic resistance, antibiotic stewardship, intravenous to oral, switch therapy

Procedia PDF Downloads 357
658 The Electrophysiology Study Results in Patients with Guillain Barre Syndrome (GBS): A Retrospective Study in a TertiaryHospital in Cebu City, Philippines

Authors: Dyna Ann C. Sevilles, Noel J. Belonguel, Jarungchai Anton S. Vatanagul, Mary Jeanne O. Flordelis, Grace G. Anota

Abstract:

Guillain Barre syndrome is an acute inflammatory polyradiculoneuropathy causing progressive symmetrical weakness which can be debilitating to the patient. Early diagnosis is important especially in the acute phase when treatment favors good outcome and reduces the incidence of the need for mechanical ventilation. Electrodiagnostic studies aid in the evaluation of patients suspected with GBS. However, the characteristic electrical changes may not be evident until after several weeks. Thus, studies performed early in the course may give unclear results. The aim of this study is to associate the symptom onset of patients diagnosed with Guillain Barre syndrome with the EMG NCV results and determine the earliest time when there is evident findings supporting the diagnosis. This is a retrospective descriptive chart review study involving patients of >/= 18 years of age with GBS written on their charts in a Tertiaty hospital in Cebu City, Philippines from January 2000 to July 2014. Twenty patients showed electrodiagnostic findings suggestive of GBS. The mean day of illness when EMG NCV was carried out was 7 days. The earliest with suggestive findings was done on day 2 (10%) of illness. Moreover, the highest frequency with positive results was done on day 3 (20%) of illness. Based on the Dutch Guillain Barre Study group criteria, the most frequent variables noted were: prolonged distal motor latency in both median and ulnar nerves(65%) and both peroneal and tibial nerves (71%); and reduced CMAP in both median and ulnar nerves (65%) and both tibial and peroneal nerves (71%). The EMG NCV findings showed majority of demyelinating type (59%). Electrodiagnostic studies are helpful in aiding the physician in the diagnosis and treatment of the disease in the early stage. Based on this study, neurophysiologic evidence of GBS can be seen in as early as day 2 of clinical illness.

Keywords: Acute Inflammatory Demyelinating Polyneuropathy, electrophysiologic study, EMG NCV, Guillain Barre Syndrome

Procedia PDF Downloads 287
657 Internal Power Recovery in Cryogenic Cooling Plants, Part II: Compressor Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The electrical power consumption related to refrigeration systems is evaluated to be in the order of 15% of the total electricity consumption worldwide. For this reason, in the last years several energy saving techniques have been suggested to reduce the power demand of refrigeration and air conditioning plants. The research work deals with the development of an innovative internal power recovery system for industrial cryogenic cooling plants. Such system is based on a Compressor-Expander Group (CEG). Both the expander and the compressor have been designed starting from automotive turbocharging components, strongly modified to take refrigerant fluid properties and specific system requirements into consideration. A preliminary choice of the machines (radial compressors and expanders) among existing components available on the market was realised according to the rules of the similarity theory. Once the expander was selected, it was strongly modified and performance verified by means of steady-state 3D CFD simulations. This paper focuses the attention on the development of the second CEG main component: the compressor. Once the preliminary selection has been done, the compressor geometry has been modified to take the new boundary conditions into account. In particular, the impeller has been machined to address the required total enthalpy increase. Such evaluation has been carried out by means of a simplified 1D model. Moreover, a vaneless diffuser has been added, modifying the shape of casing rear and front disks. To verify the performance of the modified compressor geometry and suggest improvements, a numerical fluid dynamic model has been set up and the commercial Ansys-CFX software has been used to perform steady-state 3D simulations. In this work, all the numerical results will be shown, highlighting critical aspects and suggesting further developments to increase compressor performance and flexibility.

Keywords: vapour compression systems, energy saving, refrigeration plant, organic fluids, centrifugal compressor

Procedia PDF Downloads 219
656 Learnings From Sri Lanka: Theorizing of Grassroots Women’s Participation in NGO Peacebuilding Activism Against Transnational and Third-World Feminist Perspectives

Authors: Piumi L. Denagamage, Vibusha Madanayake

Abstract:

At the end of a 30-year civil war in Sri Lanka in 2009, Non-Governmental Organizations (NGOs) played a prominent role in post-war development and peacebuilding. Women were a major “beneficiary” of NGO activities on socio-economic empowerment, capacity building for advocacy, and grassroots participation in activism. Undoubtedly, their contribution to Sri Lanka’s post-war transition is tremendous. As development practitioners and researchers who have worked closely with several international and national NGOs in Sri Lanka’s post-war setting, the authors, while practicing self-reflexivity, intend to theorize the grey literature prepared by NGOs against the theoretical frameworks of Transnational and Third World feminisms. Using examples of the grassroots activities conducted by the NGOs with war-affected women, the paper questions whether Colombo-based feminism represents the lived realities of grassroots women at the transnational level. It argues that Colombo-based feminists use their power and exposure to Western feminist approaches to portray diverse forms of oppression women face at grassroots levels, their needs for advocacy, and different modes of resistance on the ground. Many NGOs depend on international donor funding for their grassroots work, which also contributes to their utilization of Western-led knowledge. Despite their efforts to “save marginalized women from oppression,” these modes of intervention are often rejected by the public, including women at local levels. This has also resulted in the rejection of feminism entirely as a culturally root-less alien Western ideology. The analysis connects with the Transnational and Third World theoretical feminist perspectives to problematize the power relations between Western knowledge systems and the lived experiences of grassroots women in the peacebuilding process through NGO activism in Sri Lanka. It also emphasizes that the infiltration of Western knowledge through NGOs has led to the participation of grassroots women only through adjustments of their lived experiences to match the alien knowledge rather than theorizing based on their own lived realities. While sharing a concern that NGOs’ power to adopt Western knowledge systems is often unchecked and unmitigated, the paper signifies the importance of adopting the methods of alternative theorizing to ensure meaningful participation of Third World women in peacebuilding.

Keywords: alternative theorizing, colombo-based feminism, grassroots women in peacebuilding, NGO activism, transnational and third world feminisms

Procedia PDF Downloads 57
655 Prospective Analysis of Micromobility in the City of Medellín

Authors: Saúl Rivero, Estefanya Marín, Katherine Bolaño, Elena Urán, Juan Yepes, Andrés Cossio

Abstract:

Medellín is the Colombian city with the best public transport systems in the country, which is made up of two metro lines, five metrocables, two BRT-type bus lines, and a tram. But despite the above, the Aburrá Valley, the area in which the city is located, has about 3000 km of roads, which for the existing population of 3.2 million inhabitants, gives an indicator of 900 meters of road per 1000 inhabitants, which is lower than the country's average, which is approximately 3900 meters. In addition, given that in Medellín, there is approximately one vehicle for every three inhabitants, the problems of congestion and environmental pollution have worsened over the years. In this sense, due to the limitations of physical space, the low public investment in road infrastructure, it is necessary to opt for mobility alternatives according to the above. Among the options for the city, there is what is known as micromobility. Micromobility is understood to be those small and light means of transport that are used for short distances, that use electrical energy, such as skateboards and bicycles. Taking into account the above, in this work, the current state and future of micromobility in the city of Medellín were analyzed, carrying out a prospective analysis, supported by a PEST analysis, but also of the crossed impact matrices; of influence and dependence; and the technique of the actor's game. The analysis was carried out for two future scenarios: one normal and one optimistic. Result of the analysis, it was determined that micromobility as an alternative social practice to mobility in the city of Medellín has favorable conditions since the local government has adopted strategies such as the Metropolitan Bicycle Master Plan of Valle de Aburrá and the plan " Bicycle paths in the city: more public spaces for life,” where a projection of 400 kilometers of bicycle paths was estimated by the year 2030, as for that same year it is expected that 10% of all trips in the region will be in bike mode. The total trip indicator is an achievable goal, while that of the number of kilometers of bike paths would be close to being met.

Keywords: electric vehicles, micromobilty, public transport, sustainable transport

Procedia PDF Downloads 203
654 Arc Interruption Design for DC High Current/Low SC Fuses via Simulation

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This report summarizes a simulation-based approach to estimate the current interruption behavior of a fuse element utilized in a DC network protecting battery banks under different stresses. Due to internal resistance of the battries, the short circuit current in very close to the nominal current, and it makes the fuse designation tricky. The base configuration considered in this report consists of five fuse units in parallel. The simulations are performed using a multi-physics software package, COMSOL® 5.6, and the necessary material parameters have been calculated using two other software packages.The first phase of the simulation starts with the heating of the fuse elements resulted from the current flow through the fusing element. In this phase, the heat transfer between the metallic strip and the adjacent materials results in melting and evaporation of the filler and housing before the aluminum strip is evaporated and the current flow in the evaporated strip is cut-off, or an arc is eventually initiated. The initiated arc starts to expand, so the entire metallic strip is ablated, and a long arc of around 20 mm is created within the first 3 milliseconds after arc initiation (v_elongation = 6.6 m/s. The final stage of the simulation is related to the arc simulation and its interaction with the external circuitry. Because of the strong ablation of the filler material and venting of the arc caused by the melting and evaporation of the filler and housing before an arc initiates, the arc is assumed to burn in almost pure ablated material. To be able to precisely model this arc, one more step related to the derivation of the transport coefficients of the plasma in ablated urethane was necessary. The results indicate that an arc current interruption, in this case, will not be achieved within the first tens of milliseconds. In a further study, considering two series elements, the arc was interrupted within few milliseconds. A very important aspect in this context is the potential impact of many broken strips parallel to the one where the arc occurs. The generated arcing voltage is also applied to the other broken strips connected in parallel with arcing path. As the gap between the other strips is very small, a large voltage of a few hundred volts generated during the current interruption may eventually lead to a breakdown of another gap. As two arcs in parallel are not stable, one of the arcs will extinguish, and the total current will be carried by one single arc again. This process may be repeated several times if the generated voltage is very large. The ultimate result would be that the current interruption may be delayed.

Keywords: DC network, high current / low SC fuses, FEM simulation, paralle fuses

Procedia PDF Downloads 68
653 Estimating the Impact of Appliance Energy Efficiency Improvement on Residential Energy Demand in Tema City, Ghana

Authors: Marriette Sakah, Samuel Gyamfi, Morkporkpor Delight Sedzro, Christoph Kuhn

Abstract:

Ghana is experiencing rapid economic development and its cities command an increasingly dominant role as centers of both production and consumption. Cities run on energy and are extremely vulnerable to energy scarcity, energy price escalations and health impacts of very poor air quality. The overriding concern in Ghana and other West African states is bridging the gap between energy demand and supply. Energy efficiency presents a cost-effective solution for supply challenges by enabling more coverage with current power supply levels and reducing the need for investment in additional generation capacity and grid infrastructure. In Ghana, major issues for energy policy formulation in residential applications include lack of disaggregated electrical energy consumption data and lack of thorough understanding with regards to socio-economic influences on energy efficiency investment. This study uses a bottom up approach to estimate baseline electricity end-use as well as the energy consumption of best available technologies to enable estimation of energy-efficiency resource in terms of relative reduction in total energy use for Tema city, Ghana. A ground survey was conducted to assess the probable consumer behavior in response to energy efficiency initiatives to enable estimation of the amount of savings that would occur in response to specific policy interventions with regards to funding and incentives provision targeted at households. Results show that 16% - 54% reduction in annual electricity consumption is reasonably achievable depending on the level of incentives provision. The saved energy could supply 10000 - 34000 additional households if the added households use only best available technology. Political support and consumer awareness are necessary to translate energy efficiency resources into real energy savings.

Keywords: achievable energy savings, energy efficiency, Ghana, household appliances

Procedia PDF Downloads 216
652 Computational Simulations and Assessment of the Application of Non-Circular TAVI Devices

Authors: Jonathon Bailey, Neil Bressloff, Nick Curzen

Abstract:

Transcatheter Aortic Valve Implantation (TAVI) devices are stent-like frames with prosthetic leaflets on the inside, which are percutaneously implanted. The device in a crimped state is fed through the arteries to the aortic root, where the device frame is opened through either self-expansion or balloon expansion, which reveals the prosthetic valve within. The frequency at which TAVI is being used to treat aortic stenosis is rapidly increasing. In time, TAVI is likely to become the favoured treatment over Surgical Valve Replacement (SVR). Mortality after TAVI has been associated with severe Paravalvular Aortic Regurgitation (PAR). PAR occurs when the frame of the TAVI device does not make an effective seal against the internal surface of the aortic root, allowing blood to flow backwards about the valve. PAR is common in patients and has been reported to some degree in as much as 76% of cases. Severe PAR (grade 3 or 4) has been reported in approximately 17% of TAVI patients resulting in post-procedural mortality increases from 6.7% to 16.5%. TAVI devices, like SVR devices, are circular in cross-section as the aortic root is often considered to be approximately circular in shape. In reality, however, the aortic root is often non-circular. The ascending aorta, aortic sino tubular junction, aortic annulus and left ventricular outflow tract have an average ellipticity ratio of 1.07, 1.09, 1.29, and 1.49 respectively. An elliptical aortic root does not severely affect SVR, as the leaflets are completely removed during the surgical procedure. However, an elliptical aortic root can inhibit the ability of the circular Balloon-Expandable (BE) TAVI devices to conform to the interior of the aortic root wall, which increases the risk of PAR. Self-Expanding (SE) TAVI devices are considered better at conforming to elliptical aortic roots, however the valve leaflets were not designed for elliptical function, furthermore the incidence of PAR is greater in SE devices than BE devices (19.8% vs. 12.2% respectively). If a patient’s aortic root is too severely elliptical, they will not be suitable for TAVI, narrowing the treatment options to SVR. It therefore follows that in order to increase the population who can undergo TAVI, and reduce the risk associated with TAVI, non-circular devices should be developed. Computational simulations were employed to further advance our understanding of non-circular TAVI devices. Radial stiffness of the TAVI devices in multiple directions, frame bending stiffness and resistance to balloon induced expansion are all computationally simulated. Finally, a simulation has been developed that demonstrates the expansion of TAVI devices into a non-circular patient specific aortic root model in order to assess the alterations in deployment dynamics, PAR and the stresses induced in the aortic root.

Keywords: tavi, tavr, fea, par, fem

Procedia PDF Downloads 440
651 Assessment of Genetic Variability of Potato Genotypes for Proline Under Salt Stress Conditions

Authors: Elchin Hajiyev, Afet Memmedova Dadash, Sabina Hajiyeva, Aynur Karimova, Ramiz Aliyev

Abstract:

Although potatoes have a wide distribution range, the yield potential of varieties varies greatly depending on the region. Our country is made up of agricultural regions with very different environmental characteristics.In this case, we cannot expect the introduced varieties to show the same adaptation to the different conditions of our country. For this reason, in our country, varieties with high general adaptability should be used, rather than varieties with special adaptability in certain areas. Soil salinization has become a global problem.Increased salinity has a serious impact on food security by reducing plant productivity. Plants have protective mechanisms of adaptation to salt stress, such as the synthesis of physiologically active substances, resistance to antioxidant stress and oxidation of membrane lipids. One of these substances is free proline. Our study revealed genetic variation in proline accumulation among samples exposed to stress factors.Changes in proline content under stress conditions were studied in 50 samples. There was wide variation across all treatments.The amount of proline varied between 7.2–37.7 μM/g under salinity conditions.The lowest rate was in the SF33 genotype (1.5 times more than the control (2.5 μM/g)).The highest level of proline under the influence of salt stress was in the SF45 genotype (7.25 times higher than the control (32.5 μM/g)). Our studies have found that the protective system reacts differently to the influence of stress factors. According to the results obtained on the amount of proline, adaptation mechanisms must be more actively activated to maintain metabolism and ensure viability in sensitive forms under the influence of stress factors. At high doses of the salt stressor, a tenfold increase in proline compared to the control indicates significant damage to the plant organism as a result of stress.To prevent damage to the body, the antioxidant system needs to quickly mobilize and work at full capacity in adverse conditions. An increase in the dose of the stress factor salt in our study caused a greater increase in the amount of free proline in plant tissues. Considering the functions of proline as an osmoprotector and antioxidant, it was found that increasing its amount is aimed at protecting the plant from the acute effects of stressors.

Keywords: genetic variability, potato, genotypes, proline, stress

Procedia PDF Downloads 53
650 Search of Сompounds with Antimicrobial and Antifungal Activity in the Series of 1-(2-(1H-Tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas

Authors: O. Antypenko, I. Vasilieva, S. Kovalenko

Abstract:

Investigations for new effective and less toxic antimicrobials agents are always up-to-date. The tetrazole derivatives are quite interesting objects as for synthesis as well as for pharmacological screening. Thus, some derivatives of tetrazole demonstrated antimicrobial activity, namely 5-phenyl-tetrazolo[1,5-c]quinazoline was effective one against Staphylococcus aureus and Esherichia faecalis (MIC = 250 mg/L). Besides, investigation of the 9-bromo(chloro)-5-morpholin(piperidine)-4-yl-tetrazolo[1,5-c]quinazoline’s antimicrobial activity against Esherichia coli and Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus revealed that sensitivity of Gram-positive bacteria to the compounds was higher than that of Gram-negative bacteria. So, our previously synthesized, 31 derivatives of 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas were decided to test for their in vitro antibacterial activity against Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Enterobacter aerogenes, Enterococcus faecalis ATCC 29212), Gram-negative bacteria (Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 25922, Klebsiella pneumoniae 68) and antifungal properties against Candida albicans ATCC 885653. Agar-diffusion method was used for determination of the preliminary activity compared to well-known reference antimicrobials. All the compounds were dissolved in DMSO at a concentration of 100 μg/disk, using inhibition zone diameter (IZD, mm) as a measure for the antimicrobial activity. The most active turned to be 3 structures, that inhibited several bacterial strains: 1-ethyl-3-(5-fluoro-2-(1H-tetrazol-5-yl)phenyl)urea (1), 1-(4-bromo-2-(1H-tetrazol-5-yl)-phenyl)-3-(4-(trifluoromethyl)phenyl)urea (2) and 1-(4-chloro-2-(1H-tetrazol-5-yl)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (3). IZM (mm) was 40 (Escherichia coli), 25 (Klebsiella pneumonia) for compound 1; 12 (Pseudomonas aeruginosa), 15 (Staphylococcus aureus), 10 (Enterococcus faecalis) for compound 2; 25 (Staphylococcus aureus), 15 (Enterococcus faecalis) for compound 3. The most sensitive to the activity of the substances were Gram-negative bacteria Pseudomonas aeruginosa. While none of compound effected on Candida albicans. Speaking about, reference drugs: Amikacin (30 µg/disk) showed 27 and Ceftazide (30 µg/disk) 25 against Pseudomonas aeruginosa. That is, unfortunately, higher than studied 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas. Obtained results will be used for further purposeful optimization of the leading compounds in the more effective antimicrobials because of the ever-mounting problem of microorganism’s resistance.

Keywords: antimicrobial, antifungal, compounds, 1-(2-(1H-tetrazol-5-yl)-R1-phenyl)-3-R2-phenyl(ethyl)ureas

Procedia PDF Downloads 361
649 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors

Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller

Abstract:

In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.

Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault

Procedia PDF Downloads 53
648 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Tejinder Singh Sidhu

Abstract:

Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.

Keywords: hot corrosion, coating, HVOF, oxidation

Procedia PDF Downloads 85