Search results for: zeolite membranes
82 Clinical and Radiographic Evaluation of Split-Crest Technique by Ultrasonic Bone Surgery Combined with Platelet Concentrates Prior to Dental Implant Placement
Authors: Ahmed Mohamed El-Shamy, Akram Abbas El-Awady, Mahmoud Taha Eldestawy
Abstract:
Background: The present study was to evaluate clinically and radiographically the combined effect of split crest technique by ultrasonic bone surgery and platelet concentrates in implant site development. Methods: Forty patients with narrow ridge were participated in this study. Patients were assigned randomly into one of the following four groups according to treatment: Group 1: Patients received split-crest technique by ultrasonic bone surgery with implant placement. Group 2: Patients received split-crest technique by ultrasonic bone surgery with implant placement and PRF. Group 3: Patients received split-crest technique by ultrasonic bone surgery with implant placement and PRP. Group 4: Patients received split-crest technique by ultrasonic bone surgery with implant placement and collagen membrane. Modified plaque index, modified sulcus bleeding index, and implant stability were recorded as a baseline and measured again at 3 and 6 months. CBCT scans were taken immediately after surgery completion and at 9 months to evaluate bone density at the bone-implant interface. Results after 6 months; collagen group showed statistically significantly lower mean modified bleeding index than the other groups. After 3 months, the PRF group showed statistically significantly higher mean implant stability with ostell ISQ units' than the other groups. After 6 months, the PRF group showed statistically significantly higher mean implant stability with ostell ISQ units' than the other groups. After 6 months, the PRF group showed statistically significantly higher mean bone density than the collagen group. Conclusion: Ultrasonic bone surgery in split-crest technique can be a successful option for increasing implant stability values throughout the healing period. The use of a combined technique of ultrasonic bone surgery with PRF and simultaneous implant placement potentially improves osseointegration (bone density). PRF membranes represent advanced technology for the stimulation and acceleration of bone regeneration.Keywords: dental implants, split-crest, PRF, PRP
Procedia PDF Downloads 16281 Physical and Chemical Alternative Methods of Fresh Produce Disinfection
Authors: Tuji Jemal Ahmed
Abstract:
Fresh produce is an essential component of a healthy diet. However, it can also be a potential source of pathogenic microorganisms that can cause foodborne illnesses. Traditional disinfection methods, such as washing with water and chlorine, have limitations and may not effectively remove or inactivate all microorganisms. This has led to the development of alternative/new methods of fresh produce disinfection, including physical and chemical methods. In this paper, we explore the physical and chemical new methods of fresh produce disinfection, their advantages and disadvantages, and their suitability for different types of produce. Physical methods of disinfection, such as ultraviolet (UV) radiation and high-pressure processing (HPP), are crucial in ensuring the microbiological safety of fresh produce. UV radiation uses short-wavelength UV-C light to damage the DNA and RNA of microorganisms, and HPP applies high levels of pressure to fresh produce to reduce the microbial load. These physical methods are highly effective in killing a wide range of microorganisms, including bacteria, viruses, and fungi. However, they may not penetrate deep enough into the product to kill all microorganisms and can alter the sensory characteristics of the product. Chemical methods of disinfection, such as acidic electrolyzed water (AEW), ozone, and peroxyacetic acid (PAA), are also important in ensuring the microbiological safety of fresh produce. AEW uses a low concentration of hypochlorous acid and a high concentration of hydrogen ions to inactivate microorganisms, ozone uses ozone gas to damage the cell membranes and DNA of microorganisms, and PAA uses a combination of hydrogen peroxide and acetic acid to inactivate microorganisms. These chemical methods are highly effective in killing a wide range of microorganisms, but they may cause discoloration or changes in the texture and flavor of some products and may require specialized equipment and trained personnel to produce and apply. In conclusion, the selection of the most suitable method of fresh produce disinfection should take into consideration the type of product, the level of microbial contamination, the effectiveness of the method in reducing the microbial load, and any potential negative impacts on the sensory characteristics, nutritional composition, and safety of the produce.Keywords: fresh produce, pathogenic microorganisms, foodborne illnesses, disinfection methods
Procedia PDF Downloads 7480 Applying Computer Simulation Methods to a Molecular Understanding of Flaviviruses Proteins towards Differential Serological Diagnostics and Therapeutic Intervention
Authors: Sergio Alejandro Cuevas, Catherine Etchebest, Fernando Luis Barroso Da Silva
Abstract:
The flavivirus genus has several organisms responsible for generating various diseases in humans. Special in Brazil, Zika (ZIKV), Dengue (DENV) and Yellow Fever (YFV) viruses have raised great health concerns due to the high number of cases affecting the area during the last years. Diagnostic is still a difficult issue since the clinical symptoms are highly similar. The understanding of their common structural/dynamical and biomolecular interactions features and differences might suggest alternative strategies towards differential serological diagnostics and therapeutic intervention. Due to their immunogenicity, the primary focus of this study was on the ZIKV, DENV and YFV non-structural proteins 1 (NS1) protein. By means of computational studies, we calculated the main physical chemical properties of this protein from different strains that are directly responsible for the biomolecular interactions and, therefore, can be related to the differential infectivity of the strains. We also mapped the electrostatic differences at both the sequence and structural levels for the strains from Uganda to Brazil that could suggest possible molecular mechanisms for the increase of the virulence of ZIKV. It is interesting to note that despite the small changes in the protein sequence due to the high sequence identity among the studied strains, the electrostatic properties are strongly impacted by the pH which also impact on their biomolecular interactions with partners and, consequently, the molecular viral biology. African and Asian strains are distinguishable. Exploring the interfaces used by NS1 to self-associate in different oligomeric states, and to interact with membranes and the antibody, we could map the strategy used by the ZIKV during its evolutionary process. This indicates possible molecular mechanisms that can explain the different immunological response. By the comparison with the known antibody structure available for the West Nile virus, we demonstrated that the antibody would have difficulties to neutralize the NS1 from the Brazilian strain. The present study also opens up perspectives to computationally design high specificity antibodies.Keywords: zika, biomolecular interactions, electrostatic interactions, molecular mechanisms
Procedia PDF Downloads 13279 Knowledge, Attitude, and Practice Regarding Standard Precautions in Medical Students of Rawalpindi Medical University, Pakistan; A Cross-Sectional Descriptive Study
Authors: Zainab Idrees Ahmad, Mahjabeen Qureshi, Zainab Hussain
Abstract:
Standard precautions are a set of infection control practices used to prevent the transmission of diseases that can be acquired by contact with body fluids, non-intact skin, and mucous membranes. Lack of practice of SPs can result in a considerable increase in morbidity and mortality rates. Medical students (the future physicians) should have the highest knowledge of standard precautions to prevent the spread of nosocomial infections and ensure their safety as well. This study was designed. To assess the knowledge of medical students regarding standard precautions. And explore the attitude of medical students of MBBS in the third, fourth and final year towards standard precautions.: A descriptive cross-sectional study was conducted in the setting of Rawalpindi Medical University, Pakistan including the students of MBBS in their 3rd, 4th and final years. The study duration was from October 2022 to February 2023. The sample size calculated was 282 with a confidence interval of 95%. A questionnaire was structured utilizing the WHO guidelines on SPs assessing knowledge and attitude regarding hand hygiene, needle stick injury, use of gloves and mask, and sharp disposal. A total of 300 responses were received utilizing the technique of non-random convenience sampling. Data was analyzed using the latest version of SPSS.:Knowledge score regarding components of SPs, hand hygiene, and moments of hand hygiene was satisfactory. However, score regarding the use of PPE, needle stick injury, and sharp disposal was low. Almost all the students were compliant with the proper washing of hands but the observation of recommended time length was lacking. Compliance with the use of correct PPE and informing the supervisor upon getting a needle stick injury was low. This study signifies that medical students lack knowledge regarding standard precautions. This is alarming as this can be the vehicle for the spread of nosocomial infections. Proper training should be given to medical students to prevent the spread of hospital-acquired infections.Keywords: attitude, knowledge, medical students, standard precautions
Procedia PDF Downloads 12778 Numerical Analysis of the Response of Thin Flexible Membranes to Free Surface Water Flow
Authors: Mahtab Makaremi Masouleh, Günter Wozniak
Abstract:
This work is part of a major research project concerning the design of a light temporary installable textile flood control structure. The motivation for this work is the great need of applying light structures for the protection of coastal areas from detrimental effects of rapid water runoff. The prime objective of the study is the numerical analysis of the interaction among free surface water flow and slender shaped pliable structures, playing a key role in safety performance of the intended system. First, the behavior of down scale membrane is examined under hydrostatic pressure by the Abaqus explicit solver, which is part of the finite element based commercially available SIMULIA software. Then the procedure to achieve a stable and convergent solution for strongly coupled media including fluids and structures is explained. A partitioned strategy is imposed to make both structures and fluids be discretized and solved with appropriate formulations and solvers. In this regard, finite element method is again selected to analyze the structural domain. Moreover, computational fluid dynamics algorithms are introduced for solutions in flow domains by means of a commercial package of Star CCM+. Likewise, SIMULIA co-simulation engine and an implicit coupling algorithm, which are available communication tools in commercial package of the Star CCM+, enable powerful transmission of data between two applied codes. This approach is discussed for two different cases and compared with available experimental records. In one case, the down scale membrane interacts with open channel flow, where the flow velocity increases with time. The second case illustrates, how the full scale flexible flood barrier behaves when a massive flotsam is accelerated towards it.Keywords: finite element formulation, finite volume algorithm, fluid-structure interaction, light pliable structure, VOF multiphase model
Procedia PDF Downloads 18677 Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent
Authors: Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Phumlane Selby Mdluli, Peter Papoh Ndibewu, Kholofelo Clifford Malematja
Abstract:
This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination.Keywords: molecularly imprinted membrane, triclosan, phase inversion, wastewater
Procedia PDF Downloads 12376 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry
Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu
Abstract:
The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS
Procedia PDF Downloads 28175 Liposome Sterile Filtration Fouling: The Impact of Transmembrane Pressure on Performance
Authors: Hercules Argyropoulos, Thomas F. Johnson, Nigel B Jackson, Kalliopi Zourna, Daniel G. Bracewell
Abstract:
Lipid encapsulation has become essential in drug delivery, notably for mRNA vaccines during the COVID-19 pandemic. However, their sterile filtration poses challenges due to the risk of deformation, filter fouling and product loss from adsorption onto the membrane. Choosing the right filtration membrane is crucial to maintain sterility and integrity while minimizing product loss. The objective of this study is to develop a rigorous analytical framework utilizing confocal microscopy and filtration blocking models to elucidate the fouling mechanisms of liposomes as a model system for this class of delivery vehicle during sterile filtration, particularly in response to variations in transmembrane pressure (TMP) during the filtration process. Experiments were conducted using fluorescent Lipoid S100 PC liposomes formulated by micro fluidization and characterized by Multi-Angle Dynamic Light Scattering. Dual-layer PES/PES and PES/PVDF membranes with 0.2 μm pores were used for filtration under constant pressure, cycling from 30 psi to 5 psi and back to 30 psi, with 5, 6, and 5-minute intervals. Cross-sectional membrane samples were prepared by microtome slicing and analyzed with confocal microscopy. Liposome characterization revealed a particle size range of 100-140 nm and an average concentration of 2.93x10¹¹ particles/mL. Goodness-of-fit analysis of flux decline data at varying TMPs identified the intermediate blocking model as most accurate at 30 psi and the cake filtration model at 5 psi. Membrane resistance analysis showed atypical behavior compared to therapeutic proteins, with resistance remaining below 1.38×10¹¹ m⁻¹ at 30 psi, increasing over fourfold at 5 psi, and then decreasing to 1-1.3-fold when pressure was returned to 30 psi. This suggests that increased flow/shear deforms liposomes enabling them to more effectively navigate membrane pores. Confocal microscopy indicated that liposome fouling mainly occurred in the upper parts of the dual-layer membrane.Keywords: sterile filtration, membrane resistance, microfluidization, confocal microscopy, liposomes, filtration blocking models
Procedia PDF Downloads 1974 Photoelectrical Stimulation for Cancer Therapy
Authors: Mohammad M. Aria, Fatma Öz, Yashar Esmaeilian, Marco Carofiglio, Valentina Cauda, Özlem Yalçın
Abstract:
Photoelectrical stimulation of cells with semiconductor organic polymers have been shown promising applications in neuroprosthetics such as retinal prosthesis. Photoelectrical stimulation of the cell membranes can be induced through a photo-electric charge separation mechanism in the semiconductor materials, and it can alter intracellular calcium level through both stimulation of voltage-gated ion channels and increase of intracellular reactive oxygen species (ROS) level. On the other hand, targeting voltage-gated ion channels in cancer cells to induce cell apoptosis through calcium signaling alternation is an effective mechanism which has been explained before. In this regard, remote control of the voltage-gated ion channels aimed to alter intracellular calcium by using photo-active organic polymers can be novel technology in cancer therapy. In this study, we used P (ITO/Indium thin oxide)/P3HT(poly(3-hexylthiophene-2,5-diyl)) and PN (ITO/ZnO/P3HT) photovoltaic junctions to stimulate MDA-MB-231 breast cancer cells. We showed that the photo-stimulation of breast cancer cells through photo capacitive current generated by the photovoltaic junctions are able to excite the cells and alternate intracellular calcium based on the calcium imaging (at 8mW/cm² green light intensity and 10-50 ms light durations), which has been reported already to safety stimulate neurons. The control group did not undergo light treatment and was cultured in T-75 flasks. We detected 20-30% cell death for ITO/P3HT and 51-60% cell death for ITO/ZnO/P3HT samples in the light treated MDA-MB-231 cell group. Western blot analysis demonstrated poly(ADP-ribose) polymerase (PARP) activated cell death in the light treated group. Furthermore, Annexin V and PI fluorescent staining indicated both apoptosis and necrosis in treated cells. In conclusion, our findings revealed that the photoelectrical stimulation of cells (through long time overstimulation) can induce cell death in cancer cells.Keywords: Ca²⁺ signaling, cancer therapy, electrically excitable cells, photoelectrical stimulation, voltage-gated ion channels
Procedia PDF Downloads 17773 Petrology of the Post-Collisional Dolerites, Basalts from the Javakheti Highland, South Georgia
Authors: Bezhan Tutberidze
Abstract:
The Neogene-Quaternary volcanic rocks of the Javakheti Highland are products of post-collisional continental magmatism and are related to divergent and convergent margins of Eurasian-Afroarabian lithospheric plates. The studied area constitutes an integral part of the volcanic province of Central South Georgia. Three cycles of volcanic activity are identified here: 1. Late Miocene-Early Pliocene, 2. Late Pliocene-Early /Middle/ Pleistocene and 3. Late Pleistocene. An intense basic dolerite magmatic activity occurred within the time span of the Late Pliocene and lasted until at least Late /Middle/ Pleistocene. The age of the volcanogenic and volcanogenic-sedimentary formation was dated by geomorphological, paleomagnetic, paleontological and geochronological methods /1.7-1.9 Ma/. The volcanic area of the Javakheti Highland contains multiple dolerite Plateaus: Akhalkalaki, Gomarethi, Dmanisi, and Tsalka. Petrographic observations of these doleritic rocks reveal fairly constant mineralogical composition: olivine / Fo₈₇.₆₋₈₂.₇ /, plagioclase / Ab₂₂.₈ An₇₅.₉ Or₁.₃; Ab₄₅.₀₋₃₂.₃ An₅₂.₉₋₆₂.₃ Or₂.₁₋₅.₄/. The pyroxene is an augite and may exhibit a visible zoning: / Wo 39.7-43.1 En 43.5-45.2 Fs 16.8-11.7/. Opaque minerals /magnetite, titanomagnetite/ is abundant as inclusions within olivine and pyroxene crystals. The texture of dolerites exhibits intergranular, holocrystalline to ophitic to sub ophitic granular. Dolerites are most common vesicular rocks. Vesicles range in shape from spherical to elongated and in size from 0.5 mm to than 1.5-2 cm and makeup about 20-50 % of the volume. The dolerites have been subjected to considerable alteration. The secondary minerals in the geothermal field are: zeolite, calcite, chlorite, aragonite, clay-like mineral /dominated by smectites/ and iddingsite –like mineral; rare quartz and pumpellyite are present. These vesicles are filled by secondary minerals. In the chemistry, dolerites are the calc-alkalic transition to sub-alkaline with a predominance of Na₂O over K₂O. Chemical analyses indicate that dolerites of all plateaus of the Javakheti Highland have similar geochemical compositions, signifying that they were formed from the same magmatic source by crystallization of olivine basalis magma which less differentiated / ⁸⁷Sr \ ⁸⁶Sr 0.703920-0704195/. There is one argument, which is less convincing, according to which the dolerites/basalts of the Javakheti Highland are considered to be an activity of a mantle plume. Unfortunately, there does not exist reliable evidence to prove this. The petrochemical peculiarities and eruption nature of the dolerites of the Javakheti Plateau point against their plume origin. Nevertheless, it is not excluded that they influence the formation of dolerite producing primary basaltic magma.Keywords: calc-alkalic, dolerite, Georgia, Javakheti Highland
Procedia PDF Downloads 27072 Multi-Scale Modelling of the Cerebral Lymphatic System and Its Failure
Authors: Alexandra K. Diem, Giles Richardson, Roxana O. Carare, Neil W. Bressloff
Abstract:
Alzheimer's disease (AD) is the most common form of dementia and although it has been researched for over 100 years, there is still no cure or preventive medication. Its onset and progression is closely related to the accumulation of the neuronal metabolite Aβ. This raises the question of how metabolites and waste products are eliminated from the brain as the brain does not have a traditional lymphatic system. In recent years the rapid uptake of Aβ into cerebral artery walls and its clearance along those arteries towards the lymph nodes in the neck has been suggested and confirmed in mice studies, which has led to the hypothesis that interstitial fluid (ISF), in the basement membranes in the walls of cerebral arteries, provides the pathways for the lymphatic drainage of Aβ. This mechanism, however, requires a net reverse flow of ISF inside the blood vessel wall compared to the blood flow and the driving forces for such a mechanism remain unknown. While possible driving mechanisms have been studied using mathematical models in the past, a mechanism for net reverse flow has not been discovered yet. Here, we aim to address the question of the driving force of this reverse lymphatic drainage of Aβ (also called perivascular drainage) by using multi-scale numerical and analytical modelling. The numerical simulation software COMSOL Multiphysics 4.4 is used to develop a fluid-structure interaction model of a cerebral artery, which models blood flow and displacements in the artery wall due to blood pressure changes. An analytical model of a layer of basement membrane inside the wall governs the flow of ISF and, therefore, solute drainage based on the pressure changes and wall displacements obtained from the cerebral artery model. The findings suggest that an active role in facilitating a reverse flow is played by the components of the basement membrane and that stiffening of the artery wall during age is a major risk factor for the impairment of brain lymphatics. Additionally, our model supports the hypothesis of a close association between cerebrovascular diseases and the failure of perivascular drainage.Keywords: Alzheimer's disease, artery wall mechanics, cerebral blood flow, cerebral lymphatics
Procedia PDF Downloads 52671 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels
Authors: A. Durgadevi, S. Pushpavanam
Abstract:
For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number
Procedia PDF Downloads 17770 A Simple Olfactometer for Odour and Lateralization Thresholds of Chemical Vapours
Authors: Lena Ernstgård, Aishwarya M. Dwivedi, Johan Lundström, Gunnar Johanson
Abstract:
A simple inexpensive olfactometer was constructed to enable valid measures of detection threshold of low concentrations of vapours of chemicals. The delivery system consists of seven syringe pumps, each connected to a Tedlar bag containing a predefined concentration of the test chemical in the air. The seven pumps are connected to a 8-way mixing valve which in turn connects to a birhinal nose piece. Chemical vapor of known concentration is generated by injection of an appropriate amount of the test chemical into a Tedlar bag with a known volume of clean air. Complete vaporization is assured by gentle heating of the bag from the outside with a heat flow. The six test concentrations are obtained by adding different volumes from the starting bag to six new Tedlar bags with known volumes of clean air. One bag contains clean air only. Thus, six different test concentrations and clean air can easily be tested in series by shifting the valve to new positions. Initial in-line measurement with a photoionization detector showed that the delivery system quickly responded to a shift in valve position. Thus 90% of the desired concentration was reached within 15 seconds. The concentrations in the bags are verified daily by gas chromatography. The stability of the system in terms of chemical concentration is monitored in real time by means of a photo-ionization detector. To determine lateralization thresholds, an additional pump supplying clean air is added to the delivery system in a way so that the nostrils can be separately and interchangeably be exposed to clean air and test chemical. Odor and lateralization thresholds were determined for three aldehydes; acrolein, crotonaldehyde, and hexanal in 20 healthy naïve individuals. Aldehydes generally have a strong odour, and the selected aldehydes are also considered to be irritating to mucous membranes. The median odor thresholds of the three aldehydes were 0.017, 0.0008, and 0.097 ppm, respectively. No lateralization threshold could be identified for acrolein, whereas the medians for crotonaldehyde and hexanal were 0.003 and 0.39 ppm, respectively. In conclusion, we constructed a simple, inexpensive olfactometer that allows for stable and easily measurable concentrations of vapors of the test chemical. Our test with aldehydes demonstrates that the system produces valid detection among volunteers in terms of odour and lateralization thresholds.Keywords: irritation, odour delivery, olfactometer, smell
Procedia PDF Downloads 21669 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers
Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz
Abstract:
Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.Keywords: cells integration, electrospun fiber, PHBV, surface characterization
Procedia PDF Downloads 11868 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage
Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan
Abstract:
The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water
Procedia PDF Downloads 19767 Identification of the Best Blend Composition of Natural Rubber-High Density Polyethylene Blends for Roofing Applications
Authors: W. V. W. H. Wickramaarachchi, S. Walpalage, S. M. Egodage
Abstract:
Thermoplastic elastomer (TPE) is a multifunctional polymeric material which possesses a combination of excellent properties of parent materials. Basically, TPE has a rubber phase and a thermoplastic phase which gives processability as thermoplastics. When the rubber phase is partially or fully crosslinked in the thermoplastic matrix, TPE is called as thermoplastic elastomer vulcanizate (TPV). If the rubber phase is non-crosslinked, it is called as thermoplastic elastomer olefin (TPO). Nowadays TPEs are introduced into the commercial market with different products. However, the application of TPE as a roofing material is limited. Out of the commercially available roofing products from different materials, only single ply roofing membranes and plastic roofing sheets are produced from rubbers and plastics. Natural rubber (NR) and high density polyethylene (HDPE) are used in various industrial applications individually with some drawbacks. Therefore, this study was focused to develop both TPO and TPV blends from NR and HDPE at different compositions and then to identify the best blend composition to use as a roofing material. A series of blends by varying NR loading from 10 wt% to 50 wt%, at 10 wt% intervals, were prepared using a twin screw extruder. Dicumyl peroxide was used as a crosslinker for TPV. The standard properties for a roofing material like tensile properties tear strength, hardness, impact strength, water absorption, swell/gel analysis and thermal characteristics of the blends were investigated. Change of tensile strength after exposing to UV radiation was also studied. Tensile strength, hardness, tear strength, melting temperature and gel content of TPVs show higher values compared to TPOs at every loading studied, while water absorption and swelling index show lower values, suggesting TPVs are more suitable than TPOs for roofing applications. Most of the optimum properties were shown at 10/90 (NR/HDPE) composition. However, high impact strength and gel content were shown at 20/80 (NR/HDPE) composition. Impact strength, as being an energy absorbing property, is the most important for a roofing material in order to resist impact loads. Therefore, 20/80 (NR/HDPE) is identified as the best blend composition. UV resistance and other properties required for a roofing material could be achieved by incorporating suitable additives to TPVs.Keywords: thermoplastic elastomer, natural rubber, high density polyethylene, roofing material
Procedia PDF Downloads 12666 Emergency Multidisciplinary Continuing Care Case Management
Authors: Mekroud Amel
Abstract:
Emergency departments are known for the workload, the variety of pathologies and the difficulties in their management with the continuous influx of patients The role of our service in the management of patients with two or three mild to moderate organ failures, involving several disciplines at the same time, as well as the effect of this management on the skills and efficiency of our team has been demonstrated Borderline cases between two or three or even more disciplines, with instability of a vital function, which have been successfully managed in the emergency room, the therapeutic procedures adopted, the consequences on the quality and level of care delivered by our team, as well as that the logistical consequences, and the pedagogical consequences are demonstrated. The consequences found are Positive on the emergency teams, in rare situations are negative Regarding clinical situations, it is the entanglement of hemodynamic distress with right, left or global participation, tamponade, low flow with acute pulmonary edema, and/or state of shock With respiratory distress with more or less profound hypoxemia, with haematosis disorder related to a bacterial or viral lung infection, pleurisy, pneumothorax, bronchoconstrictive crisis. With neurological disorders such as recent stroke, comatose state, or others With metabolic disorders such as hyperkalaemia renal insufficiency severe ionic disorders with accidents with anti vitamin K With or without septate effusion of one or more serous membranes with or without tamponade It’s a Retrospective, monocentric, descriptive study Period 05.01.2022 to 10.31.2022 the purpose of our work: Search for a statistically significant link between the type of moderate to severe pathology managed in the emergency room whose problems are multivisceral on the efficiency of the healthcare team and its level of care and optional care offered for patients Statistical Test used: Chi2 test to prove the significant link between the resolution of serious multidisciplinary cases in the emergency room and the effectiveness of the team in the management of complicated cases Search for a statistically significant link : The management of the most difficult clinical cases for organ specialties has given general practitioner emergency teams a great perspective and has been able to improve their efficiency in the face of emergencies receivedKeywords: emergency care teams, management of patients with dysfunction of more than one organ, learning curve, quality of care
Procedia PDF Downloads 8065 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System
Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang
Abstract:
Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube
Procedia PDF Downloads 11264 Ultrastructural Characterization of Lipid Droplets of Rat Hepatocytes after Whole Body 60-Cobalt Gamma Radiation
Authors: Ivna Mororó, Lise P. Labéjof, Stephanie Ribeiro, Kely Almeida
Abstract:
Lipid droplets (LDs) are normally presented in greater or lesser number in the cytoplasm of almost all eukaryotic and some prokaryotic cells. They are independent organelles composed of a lipid ester core and a surface phospholipid monolayer. As a lipid storage form, they provide an available source of energy for the cell. Recently it was demonstrated that they play an important role in other many cellular processes. Among the many unresolved questions about them, it is not even known how LDs is formed, how lipids are recruited to LDs and how they interact with the other organelles. Excess fat in the organism is pathological and often associated with the development of some genetic, hormonal or behavioral diseases. The formation and accumulation of lipid droplets in the cytoplasm can be increased by exogenous physical or chemical agents. It is well known that ionizing radiation affects lipid metabolism resulting in increased lipogenesis in cells, but the details of this process are unknown. To better understand the mode of formation of LDs in liver cells, we investigate their ultrastructural morphology after irradiation. For that, Wistar rats were exposed to whole body gamma radiation from 60-cobalt at various single doses. Samples of the livers were processed for analysis under a conventional transmission electron microscope. We found that when compared to controls, morphological changes in liver cells were evident at the higher doses of radiation used. It was detected a great number of lipid droplets of different sizes and homogeneous content and some of them merged each other. In some cells, it was observed diffused LDs, not limited by a monolayer of phospholipids. This finding suggests that the phospholipid monolayer of the LDs was disrupted by ionizing radiation exposure that promotes lipid peroxydation of endo membranes. Thus the absence of the phospholipid monolayer may prevent the realization of some cellular activities as follow: - lipid exocytosis which requires the merging of LDs membrane with the plasma membrane; - the interaction of LDs with other membrane-bound organelles such as the endoplasmic reticulum (ER), the golgi and mitochondria and; - lipolysis of lipid esters contained in the LDs which requires the presence of enzymes located in membrane-bound organelles as ER. All these impediments can contribute to lipid accumulation in the cytoplasm and the development of diseases such as liver steatosis, cirrhosis and cancer.Keywords: radiobiology, hepatocytes, lipid metabolism, transmission electron microscopy
Procedia PDF Downloads 31463 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes
Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma
Abstract:
Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry
Procedia PDF Downloads 7062 Analysis of Sickle Cell Disease and Maternal Mortality in United Kingdom
Authors: Basma Hassabo, Sarah Ahmed, Aisha Hameed
Abstract:
Aims and Objectives: To determine the incidence of maternal mortality amongst pregnant women with sickle cell disease (SCD) in the United Kingdom and to determine exact cause of death in these women. Background: SCD is caused by the ‘sickle’ gene and is characterized by episodes of severe bone pain and other complications like acute chest syndrome, chronic pulmonary hypertension, stroke, retinopathy, chronic renal failure, hepato-splenic crises, avascular bone necrosis, sepsis and leg ulcers. SCD is a continual cause of maternal mortality and fetal complications, and it comprises 1.5% of all Direct and Indirect deaths in the UK. Sepsis following premature rupture of membranes with ascending infection, post-partum infection and pre-labour overwhelming septic shock is one of its leading causes of death. Over the last fifty years of maternal mortality reports in UK, between 1 to 4 pregnant women died in each triennium. Material and Method: This is a retrospective study that involves pregnant women who died from SCD complications in the UK between 1952-2012. Data were collected from the UK Confidential Enquiries into Maternal Death and its causes between 1952–2012. Prior to 1985, exact cause of death in this cohort was not recorded. Results: 33 deaths reported between 1964 and 1984. 17 deaths were reported due to sickle cell disease between 1985 and 2012. Five women in this group died of sickle cell crisis, one woman had liver sequestration crisis, two women died of venous thromboembolism, two had myocardial fibrosis and three died of sepsis. Remaining women died of amniotic fluid embolism, SUDEP, myocardial ischemia and intracranial haemorrhage. Conclusion: The leading causes of death in sickle cell sick pregnant women are sickle cell crises, sepsis, venous thrombosis and thromboembolism. Prenatal care for women with SCD should be managed by a multidisciplinary team that includes an obstetrician, nutritionist, primary care physician, and haematologist. In every sick Sickle Cell woman Sickle Cell crises should be on the top of the list of differential diagnosis. Aggressive treatment of complications with low threshold to commence broad-spectrum antibiotics and LMWH contribute to better outcomes.Keywords: incidence, maternal mortality, sickle cell disease (SCD), uk
Procedia PDF Downloads 23761 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis
Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval
Abstract:
Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.Keywords: bioreactors, ergosterol, fermentation, oxygen-vector
Procedia PDF Downloads 18960 Anti-Inflammatory Effect of Carvedilol 1% Ointment in Topical Application to the Animal Model
Authors: Berina Pilipović, Saša Pilipović, Maja Pašić-Kulenović
Abstract:
Inflammation is the body's response to impaired homeostasis caused by infection, injury or trauma resulting in systemic and local effects. Inflammation causes the body's response to injury and is characterized by a series of events including inflammatory response, response to pain receptors and the recovery process. Inflammation can be acute and chronic. The inflammatory response is described in three different phases. Free radical is an atom or molecule that has the unpaired electron and is therefore generally very reactive chemical species. Biologically important example of reaction with free radicals is called Lipid peroxidation (LP). Lipid peroxidation reactions occur in biological membranes, and if at the outset is not stopped with the action of antioxidants, it will bring damage to the membrane, which results in partial or complete loss of their physiological functions. Calcium antagonists and beta-adrenergic receptor antagonists are known drugs, and for many years and widely used in the treatment of cardiovascular diseases. Some of these compounds also show antioxidant activity. The mechanism of antioxidant activities of calcium antagonists and beta-blockers is unknown, since their structure varies widely. This research investigated the possible local anti-inflammatory activity of ointments containing 1% carvedilol in the white petrolatum USP. Ear inflammation was induced by 3% croton oil acetone solution, in quantity of 10 µl on both mouse ears. Albino Swiss mouse (n = 8) are treated with 2.5 mg/ear ointment, and control group was treated on the same way as previous with hydrocortisone 1% ointment (2.5 mg/ear). The other ear of the same animal was used as control one. Ointments were administered once per day, on the left ear. After treatment, ears were observed for three days. After three days, we measured mass (mg) of 6 mm ear punch of treated and controlled ears. The results of testing anti-inflammatory effects of ointments with carvedilol in the mouse ear model show stronger observed effect than ointment with 1% hydrocortisone in the same basis. Identical results were confirmed by the difference between the mass of 6 mm ears punch. The results were also confirmed by histological examination. Ointments with carvedilol showed significant reduction of the inflammation process caused by croton oil on the mouse inflammation model.Keywords: antioxidant, carvedilol, inflammation, mouse ear
Procedia PDF Downloads 23459 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors
Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub
Abstract:
Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance
Procedia PDF Downloads 27158 Profile of Programmed Death Ligand-1 (PD-L1) Expression and PD-L1 Gene Amplification in Indonesian Colorectal Cancer Patients
Authors: Akterono Budiyati, Gita Kusumo, Teguh Putra, Fritzie Rexana, Antonius Kurniawan, Aru Sudoyo, Ahmad Utomo, Andi Utama
Abstract:
The presence of the programmed death ligand-1 (PD-L1) has been used in multiple clinical trials and approved as biomarker for selecting patients more likely to respond to immune checkpoint inhibitors. However, the expression of PD-L1 is regulated in different ways, which leads to a different significance of its presence. Positive PD-L1 within tumors may result from two mechanisms, induced PD-L1 expression by T-cell presence or genetic mechanism that lead to constitutive PD-L1 expression. Amplification of PD-L1 genes was found as one of genetic mechanism which causes an increase in PD-L1 expression. In case of colorectal cancer (CRC), targeting immune checkpoint inhibitor has been recommended for patients with microsatellite instable (MSI). Although the correlation between PD-L1 expression and MSI status has been widely studied, so far the precise mechanism of PD-L1 gene activation in CRC patients, particularly in MSI population have yet to be clarified. In this present study we have profiled 61 archived formalin fixed paraffin embedded CRC specimens of patients from Medistra Hospital, Jakarta admitted in 2010 - 2016. Immunohistochemistry was performed to measure expression of PD-L1 in tumor cells as well as MSI status using antibodies against PD-L1 and MMR (MLH1, MSH2, PMS2 and MSH6), respectively. PD-L1 expression was measured on tumor cells with cut off of 1% whereas loss of nuclear MMR protein expressions in tumor cells but not in normal or stromal cells indicated presence of MSI. Subset of PD-L1 positive patients was then assessed for copy number variations (CNVs) using single Tube TaqMan Copy Number Assays Gene CD247PD-L1. We also observed KRAS mutation to profile possible genetic mechanism leading to the presence or absence of PD-L1 expression. Analysis of 61 CRC patients revealed 15 patients (24%) expressed PD-L1 on their tumor cell membranes. The prevalence of surface membrane PD-L1 was significantly higher in patients with MSI (87%; 7/8) compared to patients with microsatellite stable (MSS) (15%; 8/53) (P=0.001). Although amplification of PD-L1 gene was not found among PD-L1 positive patients, low-level amplification of PD-L1 gene was commonly observed in MSS patients (75%; 6/8) than in MSI patients (43%; 3/7). Additionally, we found 26% of CRC patients harbored KRAS mutations (16/61), so far the distribution of KRAS status did not correlate with PD-L1 expression. Our data suggest genetic mechanism through amplification of PD-L1 seems not to be the mechanism underlying upregulation of PD-L1 expression in CRC patients. However, further studies are warranted to confirm the results.Keywords: colorectal cancer, gene amplification, microsatellite instable, programmed death ligand-1
Procedia PDF Downloads 22257 Cytokine Profiling in Cultured Endometrial Cells after Hormonal Treatment
Authors: Mark Gavriel, Ariel J. Jaffa, Dan Grisaru, David Elad
Abstract:
The human endometrium-myometrium interface (EMI) is the uterine inner barrier without a separatig layer. It is composed of endometrial epithelial cells (EEC) and endometrial stromal cells (ESC) in the endometrium and myometrial smooth muscle cells (MSMC) in the myometrium. The EMI undergoes structural remodeling during the menstruation cycle which are essential for human reproduction. Recently, we co-cultured a layer-by-layer in vitro model of EEC, ESC and MSMC on a synthetic membrane for mechanobiology experiments. We also treated the model with progesterone and β-estradiol in order to mimic the in vivo receptive uterus In the present study we analyzed the cytokines profile in a single layer of EEC the hormonal treated in vitro model of the EMI. The methodologies of this research include simple tissue-engineering . First, we cultured commercial EEC (RL95-2, ATCC® CRL-1671™) in 24-wellplate. Then, we applied an hormonal stimuli protocol with 17-β-estradiol and progesterone in time dependent concentration according to the human physiology that mimics the menstrual cycle. We collected cell supernatant samples of control, pre-ovulation, ovulation and post-ovulaton periods for analysis of the secreted proteins and cytokines. The cytokine profiling was performed using the Proteome Profiler Human XL Cytokine Array Kit (R&D Systems, Inc., USA) that can detect105 human soluble cytokines. The relative quantification of all the cytokines will be analyzed using xMAP – LUMINEX. We conducted a fishing expedition with the 4 membranes Proteome Profiler. We processed the images, quantified the spots intensity and normalized these values by the negative control and reference spots at the membrane. Analyses of the relative quantities that reflected change higher than 5% of the control points of the kit revealed the The results clearly showed that there are significant changes in the cytokine level for inflammation and angiogenesis pathways. Analysis of tissue-engineered models of the uterine wall will enable deeper investigation of molecular and biomechanical aspects of early reproductive stages (e.g. the window of implantation) or developments of pathologies.Keywords: tissue-engineering, hormonal stimuli, reproduction, multi-layer uterine model, progesterone, β-estradiol, receptive uterine model, fertility
Procedia PDF Downloads 13256 Evaluation of Human Amnion Hemocompatibility as a Substitute for Vessels
Authors: Ghasem Yazdanpanah, Mona Kakavand, Hassan Niknejad
Abstract:
Objectives: An important issue in tissue engineering (TE) is hemocompatibility. The current engineered vessels are seriously at risk of thrombus formation and stenosis. Amnion (AM) is the innermost layer of fetal membranes that consists of epithelial and mesenchymal sides. It has the advantages of low immunogenicity, anti-inflammatory and anti-bacterial properties as well as good mechanical properties. We recently introduced the amnion as a natural biomaterial for tissue engineering. In this study, we have evaluated hemocompatibility of amnion as potential biomaterial for tissue engineering. Materials and Methods: Amnions were derived from placentas of elective caesarean deliveries which were in the gestational ages 36 to 38 weeks. Extracted amnions were washed by cold PBS to remove blood remnants. Blood samples were obtained from healthy adult volunteers who had not previously taken anti-coagulants. The blood samples were maintained in sterile tubes containing sodium citrate. Plasma or platelet rich plasma (PRP) were collected by blood sample centrifuging at 600 g for 10 min. Hemocompatibility of the AM samples (n=7) were evaluated by measuring of activated partial thromboplastin time (aPTT), prothrombin time (PT), hemolysis, and platelet aggregation tests. P-selectin was also assessed by ELISA. Both epithelial and mesenchymal sides of amnion were evaluated. Glass slide and expanded polytetrafluoroethylene (ePTFE) samples were defined as control. Results: In comparison with glass as control (13.3 ± 0.7 s), prothrombin time was increased significantly while each side of amnion was in contact with plasma (p<0.05). There was no significant difference in PT between epithelial and mesenchymal surfaces (17.4 ± 0.7 s vs. 15.8 ± 0.7 s, respectively). However, aPPT was not significantly changed after incubation of plasma with amnion epithelial and mesenchymal surfaces or glass (28.61 ± 1.39 s, 31.4 ± 2.66 s, glass, 30.76 ± 2.53 s, respectively, p>0.05). Amnion surfaces, ePTFE and glass samples have less hemolysis induction than water considerably (p<0.001), in which no differences were detected. Platelet aggregation measurements showed that platelets were less stimulated by the amnion epithelial and mesenchymal sides, in comparison with ePTFE and glass. In addition, reduction in amount of p-selectin, as platelet activation factor, after incubation of samples with PRP indicated that amnion has less stimulatory effects on platelets than ePTFE and glass. Conclusion: Amnion as a natural biomaterial has the potential to be used in tissue engineering. Our results suggest that amnion has appropriate hemocompatibility to be employed as a vascular substitute.Keywords: amnion, hemocompatibility, tissue engineering, biomaterial
Procedia PDF Downloads 39555 Nanostructured Multi-Responsive Coatings for Tuning Surface Properties
Authors: Suzanne Giasson, Alberto Guerron
Abstract:
Stimuli-responsive polymer coatings can be used as functional elements in nanotechnologies, such as valves in microfluidic devices, as membranes in biomedical engineering, as substrates for the culture of biological tissues or in developing nanomaterials for targeted therapies in different diseases. However, such coatings usually suffer from major shortcomings, such as a lack of selectivity and poor environmental stability. The study will present multi-responsive hierarchical and hybrid polymer-based coatings aiming to overcome some of these limitations. Hierarchical polymer coatings, consisting of two-dimensional arrays of thermo-responsive cationic PNIPAM-based microgels and surface-functionalized with non-responsive or pH-responsive polymers, were covalently grafted to substrates to tune the surface chemistry and the elasticity of the surface independently using different stimuli. The characteristic dimensions (i.e., layer thickness) and surface properties (i.e., adhesion, friction) of the microgel coatings were assessed using the Surface Forces Apparatus. The ability to independently control the swelling and surface properties using temperature and pH as triggers were investigated for microgels in aqueous suspension and microgels immobilized on substrates. Polymer chain grafting did not impede the ability of cationic PNIPAM microgels to undergo a volume phase transition above the VPTT, either in suspension or immobilized on a substrate. Due to the presence of amino groups throughout the entirety of the microgel polymer network, the swelling behavior was also pH dependent. However, the thermo-responsive swelling was more significant than the pH-triggered one. The microgels functionalized with PEG exhibited the most promising behavior. Indeed, the thermo-triggered swelling of microgel-co-PEG did not give rise to changes in the microgel surface properties (i.e., surface potential and adhesion) within a wide range of pH values. It was possible for the immobilized microgel-co-PEG to undergo a volume transition (swelling/shrinking) with no change in adhesion, suggesting that the surface of the thermal-responsive microgels remains rather hydrophilic above the VPTT. This work confirms the possibility of tuning the swelling behavior of microgels without changing the adhesive properties. Responsive surfaces whose swelling properties can be reversibly and externally altered over space and time regardless of the surface chemistry are very innovative and will enable revolutionary advances in technologies, particularly in biomedical surface engineering and microfluidics, where advanced assembly of functional components is increasingly required.Keywords: responsive materials, polymers, surfaces, cell culture
Procedia PDF Downloads 7654 Development of an Integrated Methodology for Fouling Control in Membrane Bioreactors
Authors: Petros Gkotsis, Anastasios Zouboulis, Manasis Mitrakas, Dimitrios Zamboulis, E. Peleka
Abstract:
The most serious drawback in wastewater treatment using membrane bioreactors (MBRs) is membrane fouling which gradually leads to membrane permeability decrease and efficiency deterioration. This work is part of a research project that aims to develop an integrated methodology for membrane fouling control, using specific chemicals which will enhance the coagulation and flocculation of compounds responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate acting as a pre-treatment step. For this purpose, a pilot-scale plant with fully automatic operation achieved by means of programmable logic controller (PLC) has been constructed and tested. The experimental set-up consists of four units: wastewater feed unit, bioreactor, membrane (side-stream) filtration unit and permeate collection unit. Synthetic wastewater was fed as the substrate for the activated sludge. The dissolved oxygen (DO) concentration of the aerobic tank was maintained in the range of 2-3 mg/L during the entire operation by using an aerator below the membrane module. The membranes were operated at a flux of 18 LMH while membrane relaxation steps of 1 min were performed every 10 min. Both commercial and composite coagulants are added in different concentrations in the pilot-scale plant and their effect on the overall performance of the ΜΒR system is presented. Membrane fouling was assessed in terms of TMP, membrane permeability, sludge filterability tests, total resistance and the unified modified fouling index (UMFI). Preliminary tests showed that particular attention should be paid to the addition of the coagulant solution, indicating that pipe flocculation effectively increases hydraulic retention time and leads to voluminous sludge flocs. The most serious drawback in wastewater treatment using MBRs is membrane fouling, which gradually leads to membrane permeability decrease and efficiency deterioration. This results in increased treatment cost, due to high energy consumption and the need for frequent membrane cleaning and replacement. Due to the widespread application of MBR technology over the past few years, it becomes clear that the development of a methodology to mitigate membrane fouling is of paramount importance. The present work aims to develop an integrated technique for membrane fouling control in MBR systems and, thus, contribute to sustainable wastewater treatment.Keywords: coagulation, membrane bioreactor, membrane fouling, pilot plant
Procedia PDF Downloads 30953 Study of Durability of Porous Polymer Materials, Glass-Fiber-Reinforced Polyurethane Foam (R-PUF) in MarkIII Containment Membrane System
Authors: Florent Cerdan, Anne-Gaëlle Denay, Annette Roy, Jean-Claude Grandidier, Éric Laine
Abstract:
The insulation of MarkIII membrane of the Liquid Natural Gas Carriers (LNGC) consists of a load- bearing system made of panels in reinforced polyurethane foam (R-PUF). During the shipping, the cargo containment shall be potentially subject to risk events which can be water leakage through the wall ballast tank. The aim of these present works is to further develop understanding of water transfer mechanisms and water effect on properties of R-PUF. This multi-scale approach contributes to improve the durability. Macroscale / Mesoscale Firstly, the use of the gravimetric technique has allowed to define, at room temperature, the water transfer mechanisms and kinetic diffusion, in the R-PUF. The solubility follows a first kinetic fast growing connected to the water absorption by the micro-porosity, and then evolves linearly slowly, this second stage is connected to molecular diffusion and dissolution of water in the dense membranes polyurethane. Secondly, in the purpose of improving the understanding of the transfer mechanism, the study of the evolution of the buoyant force has been established. It allowed to identify the effect of the balance of total and partial pressure of mixture gas contained in pores surface. Mesoscale / Microscale The differential scanning calorimetry (DSC) and Dynamical Mechanical Analysis (DMA), have been used to investigate the hydration of the hard and soft segments of the polyurethane matrix. The purpose was to identify the sensitivity of these two phases. It been shown that the glass transition temperatures shifts towards the low temperatures when the solubility of the water increases. These observations permit to conclude to a plasticization of the polymer matrix. Microscale The Fourier Transform Infrared (FTIR) study has been used to investigate the characterization of functional groups on the edge, the center and mid-way of the sample according the duration of submersion. More water there is in the material, more the water fix themselves on the urethanes groups and more specifically on amide groups. The pic of C=O urethane shifts at lower frequencies quickly before 24 hours of submersion then grows slowly. The intensity of the pic decreases more flatly after that.Keywords: porous materials, water sorption, glass transition temperature, DSC, DMA, FTIR, transfer mechanisms
Procedia PDF Downloads 529