Search results for: urea deep placement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2741

Search results for: urea deep placement

2291 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm

Authors: Monojit Manna, Arpan Adhikary

Abstract:

In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.

Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection

Procedia PDF Downloads 77
2290 UAV Based Visual Object Tracking

Authors: Vaibhav Dalmia, Manoj Phirke, Renith G

Abstract:

With the wide adoption of UAVs (unmanned aerial vehicles) in various industries by the government as well as private corporations for solving computer vision tasks it’s necessary that their potential is analyzed completely. Recent advances in Deep Learning have also left us with a plethora of algorithms to solve different computer vision tasks. This study provides a comprehensive survey on solving the Visual Object Tracking problem and explains the tradeoffs involved in building a real-time yet reasonably accurate object tracking system for UAVs by looking at existing methods and evaluating them on the aerial datasets. Finally, the best trackers suitable for UAV-based applications are provided.

Keywords: deep learning, drones, single object tracking, visual object tracking, UAVs

Procedia PDF Downloads 158
2289 A Numerical Study for Mixing Depth and Applicability of Partial Cement Mixing Method Utilizing Geogrid and Fixing Unit

Authors: Woo-seok Choi, Eun-sup Kim, Nam-Seo Park

Abstract:

The demand for new technique in soft ground improvement continuously increases as general soft ground methods like PBD and DCM have a application problem in soft grounds with deep depth and wide distribution in Southern coast of Korea and Southeast. In this study, partial cement mixing method utilizing geogrid and fixing unit(CMG) is suggested and Finite element analysis is performed for analyzing the depth of surface soil and deep soil stabilization and comparing with DCM method. In the result of the experiment, the displacement in DCM method were lower than the displacement in CMG, it's because the upper load is transferred to deep part soil not treated by cement in CMG method case. The differential settlement in DCM method was higher than the differential settlement in CMG, because of the effect load transfer effect by surface part soil treated by cement and geogrid. In conclusion, CMG method has the advantage of economics and constructability in embankment road, railway, etc in which differential settlement is the important consideration.

Keywords: soft ground, geogrid, fixing unit, partial cement mixing, finite element analysis

Procedia PDF Downloads 378
2288 Designing Presentational Writing Assessments for the Advanced Placement World Language and Culture Exams

Authors: Mette Pedersen

Abstract:

This paper outlines the criteria that assessment specialists use when they design the 'Persuasive Essay' task for the four Advanced Placement World Language and Culture Exams (AP French, German, Italian, and Spanish). The 'Persuasive Essay' is a free-response, source-based, standardized measure of presentational writing. Each 'Persuasive Essay' item consists of three sources (an article, a chart, and an audio) and a prompt, which is a statement of the topic phrased as an interrogative sentence. Due to its richness of source materials and due to the amount of time that test takers are given to prepare for and write their responses (a total of 55 minutes), the 'Persuasive Essay' is the free-response task on the AP World Language and Culture Exams that goes to the greatest lengths to unleash the test takers' proficiency potential. The author focuses on the work that goes into designing the 'Persuasive Essay' task, outlining best practices for the selection of topics and sources, the interplay that needs to be present among the sources and the thinking behind the articulation of prompts for the 'Persuasive Essay' task. Using released 'Persuasive Essay' items from the AP World Language and Culture Exams and accompanying data on test taker performance, the author shows how different passages, and features of passages, have succeeded (and sometimes not succeeded) in eliciting writing proficiency among test takers over time. Data from approximately 215.000 test takers per year from 2014 to 2017 and approximately 35.000 test takers per year from 2012 to 2013 form the basis of this analysis. The conclusion of the study is that test taker performance improves significantly when the sources that test takers are presented with express directly opposing viewpoints. Test taker performance also improves when the interrogative prompt that the test takers respond to is phrased as a yes/no question. Finally, an analysis of linguistic difficulty and complexity levels of the printed sources reveals that test taker performance does not decrease when the complexity level of the article of the 'Persuasive Essay' increases. This last text complexity analysis is performed with the help of the 'ETS TextEvaluator' tool and the 'Complexity Scale for Information Texts (Scale)', two tools, which, in combination, provide a rubric and a fully-automated technology for evaluating nonfiction and informational texts in English translation.

Keywords: advanced placement world language and culture exams, designing presentational writing assessments, large-scale standardized assessments of written language proficiency, source-based language testing

Procedia PDF Downloads 144
2287 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 158
2286 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 117
2285 Impact of a Novel Technique of S-Shaped Tracheostoma in Pediatric Tracheostomy in Intensive Care Unit on Success and Procedure Related Complications

Authors: Devendra Gupta, Sushilk K. Agarwal, Amit Kesari, P. K. Singh

Abstract:

Objectives: Pediatric patients often may experience persistent respiratory failure that requires tracheostomy placement in Pediatric ICU. We have designed a technique of tracheostomy in pediatric patients with S-shaped incision on the tracheal wall with higher success rate and lower complication rate. Technique: Following general anesthesia and positioning of the patient, the trachea was exposed in midline by a vertical skin incision. In order to make S-shaped tracheostoma, second tracheal ring was identified. The conventional vertical incision was made in second tracheal ring and then extended at both its ends laterally in the inter-cartilaginous space parallel to the tracheal cartilage in the opposite direction to make the incision S-shaped. The trachea was dilated with tracheal dilator and appropriate size of tracheostomy tube was then placed into the trachea. Results: S-shaped tracheostomy was performed in 20 children with mean age of 6.25 years (age range is 2-7) requiring tracheostomy placement. The tracheostomy tubes were successfully placed in all the patients in single attempt. There was no incidence of significant intra-operative bleeding, subcutaneous emphysema, vocal cord palsy or pneumothorax. Two patients developed pneumonia and expired within a year. However, there was no incidence of tracheo-esophageal fistula, suprastomal collapse or difficulty in decannulation on one year of follow up related to our technique. One patient developed late trachietis managed conservatively. Conclusion: S-shaped tracheoplasty was associated with high success rate, reduced risk of the early and late complications in pediatric patients requiring tracheostomy.

Keywords: peatrics, tracheostomy, ICU, tracheostoma

Procedia PDF Downloads 264
2284 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 150
2283 Feedback from a Service Evaluation of a Modified Intrauterine Device Insertor: A First Step to a Changement of the Standard of Iud Insertion Procedure

Authors: Desjardin, Michaels, Martinez, Ulmann

Abstract:

Copper IUD is one of the most efficient and cost-effective contraception. However, pain at insertion hampers the use of this method. This is especially unfortunate in nulliparous women, often younger, who are excellent candidates for this contraception, including Emergency Contraception. Standard insertion procedure of a copper IUD usually involves measurement of uterine cavity with an hysterometer and the use of a tenaculum in order to facilitate device insertion. Both procedures lead to patient pain which often constitutes a limitation of the method. To overcome these issues, we have developed a modified insertor combined with a copper IUD. The singular design of the inserter includes a flexible inflatable membrane technology allowing an easy access to the uterine cavity even in case of abnormal uterine positions or narrow cervical canal. Moreover, this inserter makes possible a direct IUD insertion with no hysterometry and no need for tenaculum. To assess device effectiveness and patient-reported pain, a study was conducted at two clinics in Fance with 31 individuals who wanted to use a copper IUD as contraceptive method. IUD insertions have been performed by four healthcare providers. Operators completed questionnaire and evaluated effectiveness of the procedure (including IUD correct fundal placement and other usability questions) as their satisfaction. Patient also completed questionnaire and pain during procedure was measured on a 10-cm Visual Analogue Scale (VAS). Analysis of the questionnaires indicates that correct IUD placement took place in more than 93% of women, which is a standard efficacy rate. It also demonstrates that IUD insertion resulted in no, light or moderate pain predominantly in nulliparous women. No insertion resulted in severe pain (none above 6cm on a 10-cm VAS). This translated by a high level of satisfaction from both patients and practitioners. In addition, this modified inserter allowed a simplification of the insertion procedure: correct fundal placement was ensured with no need for hysterometry (100%) prior to insertion nor for cervical tenaculum to pull on the cervix (90%). Avoidance of both procedures contributed to the decrease in pain during insertion. Taken together, the results of the study demonstrate that this device constitutes a significant advance in the use of copper IUDs for any woman. It allows a simplification of the insertion procedure: there is no need for pre-insertion hysterometry and no need for traction on the cervix with tenaculum. Increased comfort during insertion should allow a wider use of the method for nulliparous women and for emergency contraception. In addition, pain is often underestimated by practitioners, but fear of pain is obviously one of the blocking factors as indicated by the analysis of the questionnaire. This evaluation brings interesting information on the use of this modified inserter for standard copper IUD and promising perspectives to set up a changement in the standard of IUD insertion procedure.

Keywords: contraceptio, IUD, innovation, pain

Procedia PDF Downloads 84
2282 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 147
2281 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 143
2280 Low Resistivity Pay Identification in Carbonate Reservoirs of Yadavaran Oilfield

Authors: Mohammad Mardi

Abstract:

Generally, the resistivity is high in oil layer and low in water layer. Yet there are intervals of oil-bearing zones showing low resistivity, high porosity, and low resistance. In the typical example, well A (depth: 4341.5-4372.0m), both Spectral Gamma Ray (SGR) and Corrected Gamma Ray (CGR) are relatively low; porosity varies from 12-22%. Above 4360 meters, the reservoir shows the conventional positive difference between deep and shallow resistivity with high resistance; below 4360m, the reservoir shows a negative difference with low resistance, especially at depths of 4362.4 meters and 4371 meters, deep resistivity is only 2Ω.m, and the CAST-V imaging map shows that there are low resistance substances contained in the pores or matrix in the reservoirs of this interval. The rock slice analysis data shows that the pyrite volume is 2-3% in the interval 4369.08m-4371.55m. A comprehensive analysis on the volume of shale (Vsh), porosity, invasion features of resistivity, mud logging, and mineral volume indicates that the possible causes for the negative difference between deep and shallow resistivities with relatively low resistance are erosional pores, caves, micritic texture and the presence of pyrite. Full-bore Drill Stem Test (DST) verified 4991.09 bbl/d in this interval. To identify and thoroughly characterize low resistivity intervals coring, Nuclear Magnetic Resonance (NMR) logging and further geological evaluation are needed.

Keywords: low resistivity pay, carbonates petrophysics, microporosity, porosity

Procedia PDF Downloads 165
2279 Effect of Marketing Strategy on the Performance of Small and Medium Enterprises in Nigeria

Authors: Kadiri Kayode Ibrahim, Kadiri Omowunmi

Abstract:

The research study was concerned with an evaluation of the effect of marketing strategy on the performance of SMEs in Abuja. This was achieved, specifically, through the examination of the effect of disaggregated components of Marketing Strategy (Product, Price, Promotion, Placement and Process) on Sales Volume (as a proxy for performance). The study design was causal in nature, with the use of quantitative methods involving a cross-sectional survey carried out with the administration of a structured questionnaire. A multistage sample of 398 respondents was utilized to provide the primary data used in the study. Subsequently, path analysis was employed in processing the obtained data and testing formulated hypotheses. Findings from the study indicated that all modeled components of marketing strategy were positive and statistically significant determinants of performance among businesses in the zone. It was, therefore, recommended that SMEs invest in continuous product innovation and development that are in line with the needs and preferences of the target market, as well as adopt a dynamic pricing strategy that considers both cost factors and market conditions. It is, therefore, crucial that businesses in the zone adopt marker communication measures that would stimulate brand awareness and increase engagement, including the use of social media platforms and content marketing. Additionally, owner-managers should ensure that their products are readily available to their target customers through an emphasis on availability and accessibility measures. Furthermore, a commitment to consistent optimization of internal operations is crucial for improved productivity, reduced costs, and enhanced customer satisfaction, which in turn will positively impact their overall performance.

Keywords: product, price, promotion, placement

Procedia PDF Downloads 42
2278 Sweet to Bitter Perception Parageusia: Case of Posterior Inferior Cerebellar Artery Territory Diaschisis

Authors: I. S. Gandhi, D. N. Patel, M. Johnson, A. R. Hirsch

Abstract:

Although distortion of taste perception following a cerebrovascular event may seem to be a frivolous consequence of a classic stroke presentation, altered taste perception places patients at an increased risk for malnutrition, weight loss, and depression, all of which negatively impact the quality of life. Impaired taste perception can result from a wide variety of cerebrovascular lesions to various locations, including pons, insular cortices, and ventral posteromedial nucleus of the thalamus. Wallenberg syndrome, also known as a lateral medullary syndrome, has been described to impact taste; however, specific sweet to bitter taste dysgeusia from a territory infarction is an infrequent event; as such, a case is presented. One year prior to presentation, this 64-year-old right-handed woman, suffered a right posterior inferior cerebellar artery aneurysm rupture with resultant infarction, culminating in a ventriculoperitoneal shunt placement. One and half months after this event, she noticed the gradual onset of lack of ability to taste sweet, to eventually all sweet food tasting bitter. Since the onset of her chemosensory problems, the patient has lost 60-pounds. Upon gustatory testing, the patient's taste threshold showed ageusia to sucrose and hydrochloric acid, while normogeusia to sodium chloride, urea, and phenylthiocarbamide. The gustatory cortex is made in part by the right insular cortex as well as the right anterior operculum, which are primarily involved in the sensory taste modalities. In this model, sweet is localized in the posterior-most along with the rostral aspect of the right insular cortex, notably adjacent to the region responsible for bitter taste. The sweet to bitter dysgeusia in our patient suggests the presence of a lesion in this localization. Although the primary lesion in this patient was located in the right medulla of the brainstem, neurodegeneration in the rostal and posterior-most aspect, of the right insular cortex may have occurred due to diaschisis. Diaschisis has been described as neurophysiological changes that occur in remote regions to a focal brain lesion. Although hydrocephalus and vasospasm due to aneurysmal rupture may explain the distal foci of impairment, the gradual onset of dysgeusia is more indicative of diaschisis. The perception of sweet, now tasting bitter, suggests that in the absence of sweet taste reception, the intrinsic bitter taste of food is now being stimulated rather than sweet. In the evaluation and treatment of taste parageusia secondary to cerebrovascular injury, prophylactic neuroprotective measures may be worthwhile. Further investigation is warranted.

Keywords: diaschisis, dysgeusia, stroke, taste

Procedia PDF Downloads 180
2277 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 88
2276 Emblica officinalis Fruit Extract Ameliorates Cisplatin-Induced Nephrotoxicity in Experimental Rats

Authors: Prerna Kalra, Surender Singh

Abstract:

Cisplatin is the most common chemotherapeutic agent used in different solid tumors, but its main limiting factor is dose-dependent nephrotoxicity by generating reactive oxygen species, by stimulating inflammatory and apoptotic pathways. Additional adjuvant therapies to decrease the toxicity of this chemotherapeutic drug are essential. This study was designed to evaluate the protective role of Emblica officinalis Geartn (Indian gooseberry) against cisplatin induced nephrotoxicity. Emblica officinalis was orally administered to Wistar rats (n=6) for 10 days in 50, 100 and 200mg/kg body weight. On day 7, 8mg/kg of cisplatin was administered intra-peritoneally to rats in all groups. Serum creatinine, blood urea nitrogen and antioxidant levels were measured on day10. The renal damage was evaluated by histopathological and transmission electron microscopy. We found that 200mg/kg dose of Emblica officinalis significantly inhibited the elevation of biochemical parameters i.e. serum creatinine, blood urea nitrogen, oxidant stress marker (malondialdehyde) and increased the reduced levels of antioxidant marker (endogenous glutathione and superoxide dismutase). Cisplatin treated rats have shown acute tubular necrosis and infiltration of inflammatory cells in rat kidney which was reversed after treating the animals with Emblica officinalis in the treatment group. In ultrastructural changes cisplatin treated group showed the damaged mitochondria (M) with dissolved cristae and large number of lysosomes (L) and vacuole (V) formation in tubular epithelial cells. EOE administered group showed visible cristae formation and sign of autophagy vacuoles at a dose of 200mg/kg. Further in-silico studies revealed that ellagic acid is responsible for its nephroprotective effect. The above findings conclude that the Emblica officinalis may be used as an adjuvant therapy in cisplatin induced nephrotoxicity.

Keywords: antioxidant, cisplatin, Emblica officinalis, in silico, nephrotoxicity

Procedia PDF Downloads 291
2275 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 136
2274 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process

Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.

Abstract:

In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.

Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness

Procedia PDF Downloads 420
2273 Robust Barcode Detection with Synthetic-to-Real Data Augmentation

Authors: Xiaoyan Dai, Hsieh Yisan

Abstract:

Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.

Keywords: barcode detection, data augmentation, deep learning, image-based processing

Procedia PDF Downloads 168
2272 Impact of Stress and Protein Malnutrition on the Potential Role of Epigallocatechin-3-Gallate in Providing Protection from Nephrotoxicity and Hepatotoxicity Induced by Aluminum in Rats

Authors: Azza A. Ali, Mona G. Khalil, Hemat A. Elariny, Shereen S. El Shaer

Abstract:

Background: Aluminium (Al) is very abundant metal in the earth’s crust. It is a constituent of cooking utensils, medicines, cosmetics, some foods and food additives. Salts of Al are widely used in the treatment of drinking water for purification purposes. Excessive and prolonged exposure to Al causes oxidative stress and impairment of many physiological functions. Its accumulation in liver and kidney causes hepatotoxicity and nephrotoxicity. Social isolation (SI) or Protein malnutrition (PM) also increases oxidative stress and may enhance the toxicity of Al as well as the degeneration in liver and kidney. Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea and has strong antioxidant as well as anti-inflammatory activities and can protect against oxidative stress-induced degenerations. Objective: To study the influence of stress or PM on Al-induced nephrotoxicity and hepatotoxicity in rats, as well as on the potential role of EGCG in providing protection. Methods: Rats received daily AlCl3 (70 mg/kg, IP) for three weeks (Al-toxicity groups) except one normal control group received saline. Al-toxicity groups were divided into four treated and four untreated groups; treated rats received EGCG (10 mg/kg, IP) together with AlCl3. One group of both treated and untreated rats served as control for each of them, and the others were subjected to either stress (mild using isolation or high using electric shock) or to PM (10% casein diet). Specimens of liver and kidney were used for assessment of levels of inflammatory mediators as TNF-α, IL6β, nuclear factor kappa B (NF-κB), oxidative stress (MDA, SOD, TAC, NO), Caspase-3 and for DNA fragmentation as well as for histopathological examinations. Biochemical changes were also measured in the serum as total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea as well as the level of Alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate deshydrogenase (LDH). Results: Nephrotoxicity and hepatotoxicity induced by Al were enhanced in rats exposed to stress and to PM. The influence of stress was more pronounced than PM. Al-toxicity was indicated by the increase in liver and kidney MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3, DNA fragmentation and in ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea levels, together with the decrease in total proteins, SOD, TAC. EGCG provided protection against hazards of Al as indicated by the decrease in MDA, NO, TNF-α, IL-6β, NF-κB, caspase-3 and DNA fragmentation as well as in levels of ALT, AST, ALP, LDH and total lipids, cholesterol, triglycerides, glucose, proteins, bilirubin, creatinine and urea in liver and kidney, together with the increase in total proteins, SOD, TAC and confirmed by histopathological examinations. It provided more pronounced protection in high stressful conditions than in mild one than in PM. Conclusion: Stress have a bad impact on Al-induced nephrotoxicity and hepatotoxicity more than PM. Thus it can clarify and maximize the role of EGCG in providing protection. Consequently, administration of EGCG is advised with excessive Al-exposure to avoid nephrotoxicity and hepatotoxicity especially in populations more subjected to stress or PM.

Keywords: aluminum, stress, protein malnutrition, nephrotoxicity, hepatotoxicity, epigallocatechin-3-gallate, rats

Procedia PDF Downloads 307
2271 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models

Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri

Abstract:

Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.

Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation

Procedia PDF Downloads 74
2270 Effect of Polymer Coated Urea on Nutrient Efficiency and Nitrate Leaching Using Maize and Annual Ryegrass

Authors: Amrei Voelkner, Nils Peters, Thomas Mannheim

Abstract:

The worldwide exponential growth of the population and the simultaneous increasing food production requires the strategic realization of sustainable and improved cultivation systems to ensure the fertility of arable land and to guarantee the food supply for the whole world. To fulfill this target, large quantities of fertilizers have to be applied to the field, but the long-term environmental impacts remain uncertain. Thus, a combined system would be necessary to increase the nutrient availability for plants while reducing nutrient losses (e.g. NO3- by leaching) to the environment. To enhance the nutrient efficiency, polymer coated fertilizer with a controlled release behavior have been developed. This kind of fertilizer ensures a delayed release of nutrients to synchronize the nutrient supply with the demand of different crops. In the last decades, research focused primarily on semi-permeable polyurethane coatings, which remain in the soil for a long period after the complete solvation of the fertilizer core. Within the implementation of the new European Regulation Directive the replacement of non-degradable synthetic polymers by degradable coatings is necessary. It was, therefore, the objective of this study to develop a total biodegradable polymer (to CO2 and H2O) coating according to ISO 17556 and to compare the retarding effect of the biodegradable coatings with commercially available non-degradable products. To investigate the effect of ten selected coated urea fertilizer on the yield of annual ryegrass and maize, the fresh and dry mass, the percentage of total nitrogen and main nutrients were analyzed in greenhouse experiments in sixfold replications using near-infrared spectroscopy. For the experiments, a homogenized and air-dried loamy sand (Cambic Luvisol) was equipped with a basic fertilization of P, K, Mg and S. To investigate the effect of nitrogen level increase, three levels (80%, 100%, 120%) were established, whereas the impact of CRF granules was determined using a N-level of 100%. Additionally, leaching of NO3- from pots planted with annual ryegrass was examined to evaluate the retention capacity of urea by the polymer coating. For this, leachate from Kick-Brauckmann-Pots was collected daily and analyzed for total nitrogen, NO3- and NH4+ in twofold repetition once a week using near-infrared spectroscopy. We summarize from the results that the coated fertilizer have a clear impact on the yield of annual ryegrass and maize. Compared to the control, an increase of fresh and dry mass could be recognized. Partially, the non-degradable coatings showed a retarding effect for a longer period, which was however reflected by a lower fresh and dry mass. It was ascertained that the percentage of leached-out nitrate could be reduced markedly. As a conclusion, it could be pointed out that the impact of coated fertilizer of all polymer types might contribute to a reduction of negative environmental impacts in addition to their fertilizing effect.

Keywords: biodegradable polymers, coating, enhanced efficiency fertilizers, nitrate leaching

Procedia PDF Downloads 270
2269 Deployment of Attack Helicopters in Conventional Warfare: The Gulf War

Authors: Mehmet Karabekir

Abstract:

Attack helicopters (AHs) are usually deployed in conventional warfare to destroy armored and mechanized forces of enemy. In addition, AHs are able to perform various tasks in the deep, and close operations – intelligence, surveillance, reconnaissance, air assault operations, and search and rescue operations. Apache helicopters were properly employed in the Gulf Wars and contributed the success of campaign by destroying a large number of armored and mechanized vehicles of Iraq Army. The purpose of this article is to discuss the deployment of AHs in conventional warfare in the light of Gulf Wars. First, the employment of AHs in deep and close operations will be addressed regarding the doctrine. Second, the US armed forces AH-64 doctrinal and tactical usage will be argued in the 1st and 2nd Gulf Wars.

Keywords: attack helicopter, conventional warfare, gulf wars

Procedia PDF Downloads 473
2268 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
2267 Deepfake Detection for Compressed Media

Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande

Abstract:

The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.

Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation

Procedia PDF Downloads 8
2266 Optimizing Bridge Deck Construction: A Deep Neural Network Approach for Limiting Exterior Grider Rotation

Authors: Li Hui, Riyadh Hindi

Abstract:

In the United States, bridge construction often employs overhang brackets to support the deck overhang, the weight of fresh concrete, and loads from construction equipment. This approach, however, can lead to significant torsional moments on the exterior girders, potentially causing excessive girder rotation. Such rotations can result in various safety and maintenance issues, including thinning of the deck, reduced concrete cover, and cracking during service. Traditionally, these issues are addressed by installing temporary lateral bracing systems and conducting comprehensive torsional analysis through detailed finite element analysis for the construction of bridge deck overhang. However, this process is often intricate and time-intensive, with the spacing between temporary lateral bracing systems usually relying on the field engineers’ expertise. In this study, a deep neural network model is introduced to limit exterior girder rotation during bridge deck construction. The model predicts the optimal spacing between temporary bracing systems. To train this model, over 10,000 finite element models were generated in SAP2000, incorporating varying parameters such as girder dimensions, span length, and types and spacing of lateral bracing systems. The findings demonstrate that the deep neural network provides an effective and efficient alternative for limiting the exterior girder rotation for bridge deck construction. By reducing dependence on extensive finite element analyses, this approach stands out as a significant advancement in improving safety and maintenance effectiveness in the construction of bridge decks.

Keywords: bridge deck construction, exterior girder rotation, deep learning, finite element analysis

Procedia PDF Downloads 62
2265 Phytoplankton Community Structure in the Moroccan Coast of the Mediterranean Sea: Case Study of Saiidia, Three Forks Cape

Authors: H. Idmoussi, L. Somoue, O. Ettahiri, A. Makaoui, S. Charib, A. Agouzouk, A. Ben Mhamed, K. Hilmi, A. Errhif

Abstract:

The study on the composition, abundance, and distribution of phytoplankton was conducted along the Moroccan coast of the Mediterranean Sea (Saiidia - Three Forks Cape) in April 2018. Samples were collected at thirteen stations using Niskin bottles within two layers (surface and deep layers). The identification and enumeration of phytoplankton were carried out according to the Utermöhl method (1958). A total number of 54 phytoplankton species were identified over the entire survey area. Thirty-six species could be found both in the surface and the deep layers while eleven species were observed only in the surface layer and seven in the deep layer. The phytoplankton throughout the study area was dominated by diatoms represented mainly by Nitzschia sp., Pseudonitzschia sp., Chaetoceros sp., Cylindrotheca closterium, Leptocylindrus minimus, Leptocylindrus danicus, Dactyliosolen fragilissimus. Dinoflagellates were dominated by Gymnodinium sp., Scrippsiella sp., Gyrodinium spirale, Noctulica sp, Prorocentrum micans. Euglenophyceae, Silicoflagellates and Raphidophyceae were present in low numbers. Most of the phytoplankton were concentrated in the surface layer, particularly towards the Three Forks Cape (25200 cells·l⁻¹). Shannon species diversity (ranging from 2 and 4 Bits) and evenness index (broadly > 0.7) suggested that phytoplankton community is generally diversified and structured in the studied area.

Keywords: abundance, diversity, Mediterranean Sea, phytoplankton

Procedia PDF Downloads 158
2264 A Disappearing Radiolucency of the Mandible Caused by Inadvertent Trauma Following IMF Screw Placement

Authors: Anna Ghosh, Dominic Shields, Ceri McIntosh, Stephen Crank

Abstract:

A 29-year-old male was a referral to the maxillofacial unit following a referral from his general dental practitioner via a routine pathway regarding a large periapical lesion on the LR4 with root resorption. The patient was asymptomatic, the LR4 vital and unrestored, and this was an incidental finding at a routine check-up. The patient's past medical history was unremarkable. Examination revealed no extra or intra-oral pathology and non-mobile teeth. No focal neurology was detected. An orthopantogram demonstrated a well-defined unilocular corticated radiolucency associated with the LR4. The root appeared shortened with the radiolucency between the root and a radio-opacity, possibly representing the displacement of the apical tip of the tooth. It was recommended that the referring general practitioner should proceed with orthograde root canal therapy, after which time exploration, enucleation, and retrograde root filling of the LR4 would be carried out by a maxillofacial unit. The patient was reviewed six months later where, due to the COVID-19 pandemic, the patient had been unable to access general dental services for the root canal treatment. He was still entirely asymptomatic. A one-year review was planned in the hope this would allow time for the orthograde root canal therapy to be completed. At this review, the orthograde root canal therapy had still not been completed. Interestingly, a repeat orthopantogram revealed a significant reduction in size with good bony infill and a significant reduction in the size of the lesion. Due to the ongoing delays with primary care dental therapy, the patient was subsequently internally referred to the restorative dentistry department for care. The patient was seen again by oral and maxillo-facial surgery in mid-2022 where he still reports this tooth as asymptomatic with no focal neurology. The patient's history was fully reviewed, and noted that 15 years previously, the patient underwent open reduction and internal fixation of a left angle of mandible fracture. Temporary IMF involving IMF screws and fixation wires were employed to maintain occlusion during plating and subsequently removed post-operatively. It is proposed that the radiolucency was, as a result of the IMF screw placement, penetrating the LR4 root resulting in resorption of the tooth root and development of a radiolucency. This case highlights the importance of careful screw size and physical site location, and placement of IMF screws, as there can be permeant damage to a patient’s dentition.

Keywords: facial trauma, inter-maxillary fixation, mandibular radiolucency, oral and maxillo-facial surgery

Procedia PDF Downloads 136
2263 Protective Effect of N-Acetyl Cysteine and Alpha Lipoic Acid on Rats Chronically Exposed to Cadmium Chloride

Authors: S. El Ballal, H. El Sabbagh, M. Abd El Gaber, A. Eisa, A. Al Gamal

Abstract:

Cadmium is one of the most harmful heavy metals able to induce severe injury. In this study, sixty four male Sprague Dawley rats weighing (70-80 gm) were used. Rats were divided into 4 groups each group of 16 rats. Group A: served as control and received commercial ration and distilled water Group B: cadmium chloride was administered orally in water at dose of 300 ppm cadmium (560 mg/L as CdCl2). Group C: Animals received cadmium in drinking water in addition to administration of N-acetylcysteine (NAC) orally at a dose of 150 mg/kg body weight, equivalent to 1500 ppm in food. Group D: Animals received cadmium in drinking water in addition to administration of alpha lipoic acid (ALA) orally at a dose of 150 mg/kg body weight, equivalent to 1500 ppm in food. The experiment was continued for 2 months. Collection of blood and tissue samples was performed at 2, 4, 6, 8 weeks. Blood sample were collected for serum biochemical analysis including malondialdehyde (MDA), total antioxidants, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein, albumin, urea and uric acid. Tissue specimens were collected for histopathological examination including liver, kidney, brain and testis. Histopathological examination revealed that cadmium choloride induces pathological alterations which increased in severity with time. The use of NAC and ALA can ameliorate toxic effect of CdCl2. The results showed significant decrease MDA and significant increase total antioxidants in group C and D compared to group B, Liver enzymes include AST and ALT showed significant decrease. Regarding to results of total protein and albumin, they revealed significant increase. Urea and uric acid showed significant decrease. From our study we conclude that NAC and ALA have protective effect against cadmium toxicity.

Keywords: ALA, cadmium, histopathology, NAC

Procedia PDF Downloads 338
2262 Forward Conditional Restricted Boltzmann Machines for the Generation of Music

Authors: Johan Loeckx, Joeri Bultheel

Abstract:

Recently, the application of deep learning to music has gained popularity. Its true potential, however, has been largely unexplored. In this paper, a new idea for representing the dynamic behavior of music is proposed. A ”forward” conditional RBM takes into account not only preceding but also future samples during training. Though this may sound controversial at first sight, it will be shown that it makes sense from a musical and neuro-cognitive perspective. The model is applied to reconstruct music based upon the first notes and to improvise in the musical style of a composer. Different to expectations, reconstruction accuracy with respect to a regular CRBM with the same order, was not significantly improved. More research is needed to test the performance on unseen data.

Keywords: deep learning, restricted boltzmann machine, music generation, conditional restricted boltzmann machine (CRBM)

Procedia PDF Downloads 522