Search results for: teaching-learning based optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30015

Search results for: teaching-learning based optimization

29565 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 224
29564 Application of Additive Manufacturing for Production of Optimum Topologies

Authors: Mahdi Mottahedi, Peter Zahn, Armin Lechler, Alexander Verl

Abstract:

Optimal topology of components leads to the maximum stiffness with the minimum material use. For the generation of these topologies, normally algorithms are employed, which tackle manufacturing limitations, at the cost of the optimal result. The global optimum result with penalty factor one, however, cannot be fabricated with conventional methods. In this article, an additive manufacturing method is introduced, in order to enable the production of global topology optimization results. For a benchmark, topology optimization with higher and lower penalty factors are performed. Different algorithms are employed in order to interpret the results of topology optimization with lower factors in many microstructure layers. These layers are then joined to form the final geometry. The algorithms’ benefits are then compared experimentally and numerically for the best interpretation. The findings demonstrate that by implementation of the selected algorithm, the stiffness of the components produced with this method is higher than what could have been produced by conventional techniques.

Keywords: topology optimization, additive manufacturing, 3D-printer, laminated object manufacturing

Procedia PDF Downloads 339
29563 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System

Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky

Abstract:

Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.

Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion

Procedia PDF Downloads 233
29562 Particle Filter State Estimation Algorithm Based on Improved Artificial Bee Colony Algorithm

Authors: Guangyuan Zhao, Nan Huang, Xuesong Han, Xu Huang

Abstract:

In order to solve the problem of sample dilution in the traditional particle filter algorithm and achieve accurate state estimation in a nonlinear system, a particle filter method based on an improved artificial bee colony (ABC) algorithm was proposed. The algorithm simulated the process of bee foraging and optimization and made the high likelihood region of the backward probability of particles moving to improve the rationality of particle distribution. The opposition-based learning (OBL) strategy is introduced to optimize the initial population of the artificial bee colony algorithm. The convergence factor is introduced into the neighborhood search strategy to limit the search range and improve the convergence speed. Finally, the crossover and mutation operations of the genetic algorithm are introduced into the search mechanism of the following bee, which makes the algorithm jump out of the local extreme value quickly and continue to search the global extreme value to improve its optimization ability. The simulation results show that the improved method can improve the estimation accuracy of particle filters, ensure the diversity of particles, and improve the rationality of particle distribution.

Keywords: particle filter, impoverishment, state estimation, artificial bee colony algorithm

Procedia PDF Downloads 152
29561 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm

Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri

Abstract:

Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.

Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering

Procedia PDF Downloads 103
29560 Optimization Model for Identification of Assembly Alternatives of Large-Scale, Make-to-Order Products

Authors: Henrik Prinzhorn, Peter Nyhuis, Johannes Wagner, Peter Burggräf, Torben Schmitz, Christina Reuter

Abstract:

Assembling large-scale products, such as airplanes, locomotives, or wind turbines, involves frequent process interruptions induced by e.g. delayed material deliveries or missing availability of resources. This leads to a negative impact on the logistical performance of a producer of xxl-products. In industrial practice, in case of interruptions, the identification, evaluation and eventually the selection of an alternative order of assembly activities (‘assembly alternative’) leads to an enormous challenge, especially if an optimized logistical decision should be reached. Therefore, in this paper, an innovative, optimization model for the identification of assembly alternatives that addresses the given problem is presented. It describes make-to-order, large-scale product assembly processes as a resource constrained project scheduling (RCPS) problem which follows given restrictions in practice. For the evaluation of the assembly alternative, a cost-based definition of the logistical objectives (delivery reliability, inventory, make-span and workload) is presented.

Keywords: assembly scheduling, large-scale products, make-to-order, optimization, rescheduling

Procedia PDF Downloads 459
29559 Analysis of Energy Planning and Optimization with Microgrid System in Dawei Region

Authors: Hninn Thiri Naing

Abstract:

In Myanmar, there are many regions that are far away from the national grid. For these areas, isolated regional micro-grids are one of the solutions. The study area in this paper is also operating in such way. The main difficulty in such regions is the high cost of electrical energy. This paper will be approached to cost-effective or cost-optimization by energy planning with renewable energy resources and natural gas. Micro-grid will be set up for performance in the Dawei region since it is economic zone in lower Myanmar and so far from national grids. The required metrological and geographical data collections are done. Currently, the status is electric unit rate is higher than the other. For microgrid planning and optimization, Homer Pro-software is employed in this research.

Keywords: energy planning, renewable energy, homer pro, cost of energy

Procedia PDF Downloads 129
29558 Optimization of Fourth Order Discrete-Approximation Inclusions

Authors: Elimhan N. Mahmudov

Abstract:

The paper concerns the necessary and sufficient conditions of optimality for Cauchy problem of fourth order discrete (PD) and discrete-approximate (PDA) inclusions. The main problem is formulation of the fourth order adjoint discrete and discrete-approximate inclusions and transversality conditions, which are peculiar to problems including fourth order derivatives and approximate derivatives. Thus the necessary and sufficient conditions of optimality are obtained incorporating the Euler-Lagrange and Hamiltonian forms of inclusions. Derivation of optimality conditions are based on the apparatus of locally adjoint mapping (LAM). Moreover in the application of these results we consider the fourth order linear discrete and discrete-approximate inclusions.

Keywords: difference, optimization, fourth, approximation, transversality

Procedia PDF Downloads 374
29557 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation

Authors: Minho Kwak, Suhwan Yun, Choonsoo Park

Abstract:

Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.

Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape

Procedia PDF Downloads 347
29556 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm

Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch

Abstract:

With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.

Keywords: biofilm, Box-Behnken design, disinfectant, essential oil

Procedia PDF Downloads 220
29555 User-Based Cannibalization Mitigation in an Online Marketplace

Authors: Vivian Guo, Yan Qu

Abstract:

Online marketplaces are not only digital places where consumers buy and sell merchandise, and they are also destinations for brands to connect with real consumers at the moment when customers are in the shopping mindset. For many marketplaces, brands have been important partners through advertising. There can be, however, a risk of advertising impacting a consumer’s shopping journey if it hurts the use experience or takes the user away from the site. Both could lead to the loss of transaction revenue for the marketplace. In this paper, we present user-based methods for cannibalization control by selectively turning off ads to users who are likely to be cannibalized by ads subject to business objectives. We present ways of measuring cannibalization of advertising in the context of an online marketplace and propose novel ways of measuring cannibalization through purchase propensity and uplift modeling. A/B testing has shown that our methods can significantly improve user purchase and engagement metrics while operating within business objectives. To our knowledge, this is the first paper that addresses cannibalization mitigation at the user-level in the context of advertising.

Keywords: cannibalization, machine learning, online marketplace, revenue optimization, yield optimization

Procedia PDF Downloads 160
29554 An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study

Authors: Hamidoddin Yousife

Abstract:

Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed.

Keywords: drlling, cost, optimization, parameters

Procedia PDF Downloads 168
29553 A New Optimization Algorithm for Operation of a Microgrid

Authors: Sirus Mohammadi, Rohala Moghimi

Abstract:

The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).

Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)

Procedia PDF Downloads 341
29552 Parameter Identification Analysis in the Design of Rock Fill Dams

Authors: G. Shahzadi, A. Soulaimani

Abstract:

This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.

Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS

Procedia PDF Downloads 146
29551 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion

Procedia PDF Downloads 211
29550 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study

Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu

Abstract:

Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.

Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm

Procedia PDF Downloads 137
29549 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 90
29548 Optimization of Shear Frame Structures Applying Various Forms of Wavelet Transforms

Authors: Seyed Sadegh Naseralavi, Sohrab Nemati, Ehsan Khojastehfar, Sadegh Balaghi

Abstract:

In the present research, various formulations of wavelet transform are applied on acceleration time history of earthquake. The mentioned transforms decompose the strong ground motion into low and high frequency parts. Since the high frequency portion of strong ground motion has a minor effect on dynamic response of structures, the structure is excited by low frequency part. Consequently, the seismic response of structure is predicted consuming one half of computational time, comparing with conventional time history analysis. Towards reducing the computational effort needed in seismic optimization of structure, seismic optimization of a shear frame structure is conducted by applying various forms of mentioned transformation through genetic algorithm.

Keywords: time history analysis, wavelet transform, optimization, earthquake

Procedia PDF Downloads 234
29547 Uncertainty and Optimization Analysis Using PETREL RE

Authors: Ankur Sachan

Abstract:

The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir.

Keywords: uncertainty, reservoir model, parameters, optimization analysis

Procedia PDF Downloads 654
29546 Integrated Simulation and Optimization for Carbon Capture and Storage System

Authors: Taekyoon Park, Seokgoo Lee, Sungho Kim, Ung Lee, Jong Min Lee, Chonghun Han

Abstract:

CO2 capture and storage/sequestration (CCS) is a key technology for addressing the global warming issue. This paper proposes an integrated model for the whole chain of CCS, from a power plant to a reservoir. The integrated model is further utilized to determine optimal operating conditions and study responses to various changes in input variables.

Keywords: CCS, caron dioxide, carbon capture and storage, simulation, optimization

Procedia PDF Downloads 351
29545 A New Evolutionary Algorithm for Multi-Objective Cylindrical Spur Gear Design Optimization

Authors: Hammoudi Abderazek

Abstract:

The present paper introduces a modified adaptive mixed differential evolution (MAMDE) to select the main geometry parameters of specific cylindrical spur gear. The developed algorithm used the self-adaptive mechanism in order to update the values of mutation and crossover factors. The feasibility rules are used in the selection phase to improve the search exploration of MAMDE. Moreover, the elitism is performed to keep the best individual found in each generation. For the constraints handling the normalization method is used to treat each constraint design equally. The finite element analysis is used to confirm the optimization results for the maximum bending resistance. The simulation results reached in this paper indicate clearly that the proposed algorithm is very competitive in precision gear design optimization.

Keywords: evolutionary algorithm, spur gear, tooth profile, meta-heuristics

Procedia PDF Downloads 131
29544 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach

Authors: Arbnor Pajaziti, Hasan Cana

Abstract:

In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.

Keywords: robotic arm, neural network, genetic algorithm, optimization

Procedia PDF Downloads 523
29543 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence

Authors: Brahim Berbaoui

Abstract:

In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.

Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization

Procedia PDF Downloads 616
29542 Optimal Protection Coordination in Distribution Systems with Distributed Generations

Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei

Abstract:

The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.

Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS

Procedia PDF Downloads 139
29541 Analysis of Diabetes Patients Using Pearson, Cost Optimization, Control Chart Methods

Authors: Devatha Kalyan Kumar, R. Poovarasan

Abstract:

In this paper, we have taken certain important factors and health parameters of diabetes patients especially among children by birth (pediatric congenital) where using the above three metrics methods we are going to assess the importance of each attributes in the dataset and thereby determining the most highly responsible and co-related attribute causing diabetics among young patients. We use cost optimization, control chart and Spearmen methodologies for the real-time application of finding the data efficiency in this diabetes dataset. The Spearmen methodology is the correlation methodologies used in software development process to identify the complexity between the various modules of the software. Identifying the complexity is important because if the complexity is higher, then there is a higher chance of occurrence of the risk in the software. With the use of control; chart mean, variance and standard deviation of data are calculated. With the use of Cost optimization model, we find to optimize the variables. Hence we choose the Spearmen, control chart and cost optimization methods to assess the data efficiency in diabetes datasets.

Keywords: correlation, congenital diabetics, linear relationship, monotonic function, ranking samples, pediatric

Procedia PDF Downloads 256
29540 A Firefly Based Optimization Technique for Optimal Planning of Voltage Controlled Distributed Generators

Authors: M. M. Othman, Walid El-Khattam, Y. G. Hegazy, A. Y. Abdelaziz

Abstract:

This paper presents a method for finding the optimal location and capacity of dispatchable DGs connected to the distribution feeders for optimal planning for a specified power loss without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37-nodes feeder. The results that are validated by comparing it with results obtained from other competing methods show the effectiveness, accuracy and speed of the proposed method.

Keywords: distributed generators, firefly technique, optimization, power loss

Procedia PDF Downloads 533
29539 A Simulation Modeling Approach for Optimization of Storage Space Allocation in Container Terminal

Authors: Gamal Abd El-Nasser A. Said, El-Sayed M. El-Horbaty

Abstract:

Container handling problems at container terminals are NP-hard problems. This paper presents an approach using discrete-event simulation modeling to optimize solution for storage space allocation problem, taking into account all various interrelated container terminal handling activities. The proposed approach is applied on a real case study data of container terminal at Alexandria port. The computational results show the effectiveness of the proposed model for optimization of storage space allocation in container terminal where 54% reduction in containers handling time in port is achieved.

Keywords: container terminal, discrete-event simulation, optimization, storage space allocation

Procedia PDF Downloads 326
29538 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model

Authors: Tarek Aboueldahab, Amin Mohamed Nassar

Abstract:

Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.

Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction

Procedia PDF Downloads 450
29537 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Authors: A. Boudjemai, A. Zafrane, R. Hocine

Abstract:

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Keywords: optimization, gravitational search algorithm, genetic algorithm, honeycomb plate

Procedia PDF Downloads 377
29536 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria

Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi

Abstract:

In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network

Procedia PDF Downloads 115