Search results for: stochastic uncertainty analysis
28225 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements
Authors: Denis A. Sokolov, Andrey V. Mazurkevich
Abstract:
In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement
Procedia PDF Downloads 5928224 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System
Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta
Abstract:
This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.Keywords: subcontracting, optimal control, deterioration, simulation, production planning
Procedia PDF Downloads 57928223 The Changes in Consumer Behavior and the Decision-making Process After Covid-19 in Greece
Authors: Markou Vasiliki, Serdaris Panagiotis
Abstract:
The consumer behavior and decision-making process of consumers is a process that is affected by the factor of uncertainty. The onslaught of the Covid 19 pandemic has changed the consumer decision-making process in many ways. This change can be seen both in the buying process (how and where they shop) but also in the types of goods and services they are looking for. In addition, due to the mainly economic uncertainty that came from this event, but also the effects on both society and the economy in general, new consumer behaviors were created. Traditional forms of shopping are no longer a primary choice, consumers have turned to digital channels such as e-commerce and social media to fulfill needs. The purpose of this particular article is to examine how much the consumer's decision-making process has been affected after the pandemic and if consumer behavior has changed. An online survey was conducted to examine the change in decision making. Essentially, the demographic factors that influence the decision-making process were examined, as well as the social and economic factors. The research is divided into two parts. The first part included a literature review of the research that has been carried out to identify the factors, and the second part where the empirical investigation was carried out using a questionnaire and was done electronically with the help of Google Forms. The questionnaire was divided into several sections. They included questions about consumer behavior, but mainly about how they make decisions today, whether those decisions have changed due to the pandemic, and whether those changes are permanent. Also, for decision-making, goods were divided into essential products, high-tech products, transactions with the state and others. Αbout 500 consumers aged between 18 and 75 participated in the research. The data was processed with both descriptive statistics and econometric models. The results showed that the consumer behavior and decision-making process has changed. Now consumers widely use the internet for shopping, consumer behaviors and consumer patterns have changed. Social and economic factors play an important role. Income, gender and other factors were found to be statistically significant. In addition, it is worth noting that the percentage who made purchases during the pandemic through the internet for the first time was remarkable and related to age. Essentially, the arrival of the pandemic caused uncertainty for individuals, mainly financial, and this affected the decision-making process. In addition, shopping through the internet is now the first choice, especially among young people, and it seems that it is about to become established.Keywords: consumer behavior, decision making, COVID-19, Greece, behavior change
Procedia PDF Downloads 4628222 Review of Concepts and Tools Applied to Assess Risks Associated with Food Imports
Authors: A. Falenski, A. Kaesbohrer, M. Filter
Abstract:
Introduction: Risk assessments can be performed in various ways and in different degrees of complexity. In order to assess risks associated with imported foods additional information needs to be taken into account compared to a risk assessment on regional products. The present review is an overview on currently available best practise approaches and data sources used for food import risk assessments (IRAs). Methods: A literature review has been performed. PubMed was searched for articles about food IRAs published in the years 2004 to 2014 (English and German texts only, search string “(English [la] OR German [la]) (2004:2014 [dp]) import [ti] risk”). Titles and abstracts were screened for import risks in the context of IRAs. The finally selected publications were analysed according to a predefined questionnaire extracting the following information: risk assessment guidelines followed, modelling methods used, data and software applied, existence of an analysis of uncertainty and variability. IRAs cited in these publications were also included in the analysis. Results: The PubMed search resulted in 49 publications, 17 of which contained information about import risks and risk assessments. Within these 19 cross references were identified to be of interest for the present study. These included original articles, reviews and guidelines. At least one of the guidelines of the World Organisation for Animal Health (OIE) and the Codex Alimentarius Commission were referenced in any of the IRAs, either for import of animals or for imports concerning foods, respectively. Interestingly, also a combination of both was used to assess the risk associated with the import of live animals serving as the source of food. Methods ranged from full quantitative IRAs using probabilistic models and dose-response models to qualitative IRA in which decision trees or severity tables were set up using parameter estimations based on expert opinions. Calculations were done using @Risk, R or Excel. Most heterogeneous was the type of data used, ranging from general information on imported goods (food, live animals) to pathogen prevalence in the country of origin. These data were either publicly available in databases or lists (e.g., OIE WAHID and Handystatus II, FAOSTAT, Eurostat, TRACES), accessible on a national level (e.g., herd information) or only open to a small group of people (flight passenger import data at national airport customs office). In the IRAs, an uncertainty analysis has been mentioned in some cases, but calculations have been performed only in a few cases. Conclusion: The current state-of-the-art in the assessment of risks of imported foods is characterized by a great heterogeneity in relation to general methodology and data used. Often information is gathered on a case-by-case basis and reformatted by hand in order to perform the IRA. This analysis therefore illustrates the need for a flexible, modular framework supporting the connection of existing data sources with data analysis and modelling tools. Such an infrastructure could pave the way to IRA workflows applicable ad-hoc, e.g. in case of a crisis situation.Keywords: import risk assessment, review, tools, food import
Procedia PDF Downloads 30228221 Improved Image Retrieval for Efficient Localization in Urban Areas Using Location Uncertainty Data
Authors: Mahdi Salarian, Xi Xu, Rashid Ansari
Abstract:
Accurate localization of mobile devices based on camera-acquired visual media information usually requires a search over a very large GPS-referenced image database. This paper proposes an efficient method for limiting the search space for image retrieval engine by extracting and leveraging additional media information about Estimated Positional Error (EP E) to address complexity and accuracy issues in the search, especially to be used for compensating GPS location inaccuracy in dense urban areas. The improved performance is achieved by up to a hundred-fold reduction in the search area used in available reference methods while providing improved accuracy. To test our procedure we created a database by acquiring Google Street View (GSV) images for down town of Chicago. Other available databases are not suitable for our approach due to lack of EP E for the query images. We tested the procedure using more than 200 query images along with EP E acquired mostly in the densest areas of Chicago with different phones and in different conditions such as low illumination and from under rail tracks. The effectiveness of our approach and the effect of size and sector angle of the search area are discussed and experimental results demonstrate how our proposed method can improve performance just by utilizing a data that is available for mobile systems such as smart phones.Keywords: localization, retrieval, GPS uncertainty, bag of word
Procedia PDF Downloads 28328220 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation
Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei
Abstract:
Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty
Procedia PDF Downloads 14428219 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis
Procedia PDF Downloads 12828218 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China
Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan
Abstract:
The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32
Procedia PDF Downloads 17928217 Reliability Analysis of Variable Stiffness Composite Laminate Structures
Authors: A. Sohouli, A. Suleman
Abstract:
This study focuses on reliability analysis of variable stiffness composite laminate structures to investigate the potential structural improvement compared to conventional (straight fibers) composite laminate structures. A computational framework was developed which it consists of a deterministic design step and reliability analysis. The optimization part is Discrete Material Optimization (DMO) and the reliability of the structure is computed by Monte Carlo Simulation (MCS) after using Stochastic Response Surface Method (SRSM). The design driver in deterministic optimization is the maximum stiffness, while optimization method concerns certain manufacturing constraints to attain industrial relevance. These manufacturing constraints are the change of orientation between adjacent patches cannot be too large and the maximum number of successive plies of a particular fiber orientation should not be too high. Variable stiffness composites may be manufactured by Automated Fiber Machines (AFP) which provides consistent quality with good production rates. However, laps and gaps are the most important challenges to steer fibers that effect on the performance of the structures. In this study, the optimal curved fiber paths at each layer of composites are designed in the first step by DMO, and then the reliability analysis is applied to investigate the sensitivity of the structure with different standard deviations compared to the straight fiber angle composites. The random variables are material properties and loads on the structures. The results show that the variable stiffness composite laminate structures are much more reliable, even for high standard deviation of material properties, than the conventional composite laminate structures. The reason is that the variable stiffness composite laminates allow tailoring stiffness and provide the possibility of adjusting stress and strain distribution favorably in the structures.Keywords: material optimization, Monte Carlo simulation, reliability analysis, response surface method, variable stiffness composite structures
Procedia PDF Downloads 51928216 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.Keywords: hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection
Procedia PDF Downloads 30628215 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9128214 A Comparative Analysis of a Custom Optimization Experiment with Confidence Intervals in Anylogic and Optquest
Authors: Felipe Haro, Soheila Antar
Abstract:
This paper introduces a custom optimization experiment developed in AnyLogic, based on genetic algorithms, designed to ensure reliable optimization results by incorporating Montecarlo simulations and achieving a specified confidence level. To validate the custom experiment, we compared its performance with AnyLogic's built-in OptQuest optimization method across three distinct problems. Statistical analyses, including Welch's t-test, were conducted to assess the differences in performance. The results demonstrate that while the custom experiment shows advantages in certain scenarios, both methods perform comparably in others, confirming the custom approach as a reliable and effective tool for optimization under uncertainty.Keywords: optimization, confidence intervals, Montecarlo simulation, optQuest, AnyLogic
Procedia PDF Downloads 1728213 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies
Authors: Roberta Martino, Viviana Ventre
Abstract:
Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty
Procedia PDF Downloads 12928212 A Proposed Mechanism for Skewing Symmetric Distributions
Authors: M. T. Alodat
Abstract:
In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions.Keywords: normal distribution, moments, Fisher information, symmetric distributions
Procedia PDF Downloads 65828211 Enhancing Project Management Performance in Prefabricated Building Construction under Uncertainty: A Comprehensive Approach
Authors: Niyongabo Elyse
Abstract:
Prefabricated building construction is a pioneering approach that combines design, production, and assembly to attain energy efficiency, environmental sustainability, and economic feasibility. Despite continuous development in the industry in China, the low technical maturity of standardized design, factory production, and construction assembly introduces uncertainties affecting prefabricated component production and on-site assembly processes. This research focuses on enhancing project management performance under uncertainty to help enterprises navigate these challenges and optimize project resources. The study introduces a perspective on how uncertain factors influence the implementation of prefabricated building construction projects. It proposes a theoretical model considering project process management ability, adaptability to uncertain environments, and collaboration ability of project participants. The impact of uncertain factors is demonstrated through case studies and quantitative analysis, revealing constraints on implementation time, cost, quality, and safety. To address uncertainties in prefabricated component production scheduling, a fuzzy model is presented, expressing processing times in interval values. The model utilizes a cooperative co-evolution evolution algorithm (CCEA) to optimize scheduling, demonstrated through a real case study showcasing reduced project duration and minimized effects of processing time disturbances. Additionally, the research addresses on-site assembly construction scheduling, considering the relationship between task processing times and assigned resources. A multi-objective model with fuzzy activity durations is proposed, employing a hybrid cooperative co-evolution evolution algorithm (HCCEA) to optimize project scheduling. Results from real case studies indicate improved project performance in terms of duration, cost, and resilience to processing time delays and resource changes. The study also introduces a multistage dynamic process control model, utilizing IoT technology for real-time monitoring during component production and construction assembly. This approach dynamically adjusts schedules when constraints arise, leading to enhanced project management performance, as demonstrated in a real prefabricated housing project. Key contributions include a fuzzy prefabricated components production scheduling model, a multi-objective multi-mode resource-constrained construction project scheduling model with fuzzy activity durations, a multi-stage dynamic process control model, and a cooperative co-evolution evolution algorithm. The integrated mathematical model addresses the complexity of prefabricated building construction project management, providing a theoretical foundation for practical decision-making in the field.Keywords: prefabricated construction, project management performance, uncertainty, fuzzy scheduling
Procedia PDF Downloads 5028210 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain
Authors: Bita Payami-Shabestari, Dariush Eslami
Abstract:
The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory
Procedia PDF Downloads 12928209 Two-stage Robust Optimization for Collaborative Distribution Network Design Under Uncertainty
Authors: Reza Alikhani
Abstract:
This research focuses on the establishment of horizontal cooperation among companies to enhance their operational efficiency and competitiveness. The study proposes an approach to horizontal collaboration, called coalition configuration, which involves partnering companies sharing distribution centers in a network design problem. The paper investigates which coalition should be formed in each distribution center to minimize the total cost of the network. Moreover, potential uncertainties, such as operational and disruption risks, are considered during the collaborative design phase. To address this problem, a two-stage robust optimization model for collaborative distribution network design under surging demand and facility disruptions is presented, along with a column-and-constraint generation algorithm to obtain exact solutions tailored to the proposed formulation. Extensive numerical experiments are conducted to analyze solutions obtained by the model in various scenarios, including decisions ranging from fully centralized to fully decentralized settings, collaborative versus non-collaborative approaches, and different amounts of uncertainty budgets. The results show that the coalition formation mechanism proposes some solutions that are competitive with the savings of the grand coalition. The research also highlights that collaboration increases network flexibility and resilience while reducing costs associated with demand and capacity uncertainties.Keywords: logistics, warehouse sharing, robust facility location, collaboration for resilience
Procedia PDF Downloads 6928208 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions
Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal
Abstract:
We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport
Procedia PDF Downloads 44228207 Persistent Homology of Convection Cycles in Network Flows
Authors: Minh Quang Le, Dane Taylor
Abstract:
Convection is a well-studied topic in fluid dynamics, yet it is less understood in the context of networks flows. Here, we incorporate techniques from topological data analysis (namely, persistent homology) to automate the detection and characterization of convective/cyclic/chiral flows over networks, particularly those that arise for irreversible Markov chains (MCs). As two applications, we study convection cycles arising under the PageRank algorithm, and we investigate chiral edges flows for a stochastic model of a bi-monomer's configuration dynamics. Our experiments highlight how system parameters---e.g., the teleportation rate for PageRank and the transition rates of external and internal state changes for a monomer---can act as homology regularizers of convection, which we summarize with persistence barcodes and homological bifurcation diagrams. Our approach establishes a new connection between the study of convection cycles and homology, the branch of mathematics that formally studies cycles, which has diverse potential applications throughout the sciences and engineering.Keywords: homology, persistent homolgy, markov chains, convection cycles, filtration
Procedia PDF Downloads 13628206 Using Interval Type-2 Fuzzy Controller for Diabetes Mellitus
Authors: Nafiseh Mollaei, Reihaneh Kardehi Moghaddam
Abstract:
In case of Diabetes Mellitus the controlling of insulin is very difficult. This illness is an incurable disease affecting millions of people worldwide. Glucose is a sugar which provides energy to the cells. Insulin is a hormone which supports the absorption of glucose. Fuzzy control strategy is attractive for glucose control because it mimics the first and second phase responses that the pancreas beta cells use to control glucose. We propose two control algorithms a type-1 fuzzy controller and an interval type-2 fuzzy method for the insulin infusion. The closed loop system has been simulated for different patients with different parameters, in present of the food intake disturbance and it has been shown that the blood glucose concentrations at a normoglycemic level of 110 mg/dl in the reasonable amount of time. This paper deals with type 1 diabetes as a nonlinear model, which has been simulated in MATLAB-SIMULINK environment. The novel model, termed the Augmented Minimal Model is used in the simulations. There are some uncertainties in this model due to factors such as blood glucose, daily meals or sudden stress. In addition to eliminate the effects of uncertainty, different control methods may be utilized. In this article, fuzzy controller performance were assessed in terms of its ability to track a normoglycemic set point (110 mg/dl) in response to a [0-10] g meal disturbance. Finally, the development reported in this paper is supposed to simplify the insulin delivery, so increasing the quality of life of the patient.Keywords: interval type-2, fuzzy controller, minimal augmented model, uncertainty
Procedia PDF Downloads 42828205 Net Work Meta Analysis to Identify the Most Effective Dressings to Treat Pressure Injury
Authors: Lukman Thalib, Luis Furuya-Kanamori, Rachel Walker, Brigid Gillespie, Suhail Doi
Abstract:
Background and objectives: There are many topical treatments available for Pressure Injury (PI) treatment, yet there is a lack of evidence with regards to the most effective treatment. The objective of this study was to compare the effect of various topical treatments and identify the best treatment choice(s) for PI healing. Methods: Network meta-analysis of published randomized controlled trials that compared the two or more of the following dressing groups: basic, foam, active, hydroactive, and other wound dressings. The outcome complete healing following treatment and the generalised pair-wise modelling framework was used to generate mixed treatment effects against hydroactive wound dressing, currently the standard of treatment for PIs. All treatments were then ranked by their point estimates. Main Results: 40 studies (1,757 participants) comparing 5 dressing groups were included in the analysis. All dressings groups ranked better than basic (i.e. saline gauze or similar inert dressing). The foam (RR 1.18; 95%CI 0.95-1.48) and active wound dressing (RR 1.16; 95%CI 0.92-1.47) ranked better than hydroactive wound dressing in terms of healing of PIs when the latter was used as the reference group. Conclusion & Recommendations: There was considerable uncertainty around the estimates, yet, the use of hydroactive wound dressings appear to perform better than basic dressings. Foam and active wound dressing groups show promise and need further investigation. High-quality research on clinical effectiveness of the topical treatments are warranted to identify if foam and active wound dressings do provide advantages over hydroactive dressings.Keywords: Net work Meta Analysis, Pressure Injury, Dresssing, Pressure Ulcer
Procedia PDF Downloads 11428204 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation
Authors: R. J. Chang
Abstract:
A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise
Procedia PDF Downloads 48928203 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs
Authors: Malo Pocheau-Lesteven, Olivier Le Maître
Abstract:
Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program
Procedia PDF Downloads 15728202 Adopting the Two-Stage Nested Mixed Analysis of Variance Test to the Eco Indicator 99 to Evaluate Building Technologies under LCA Uncertainties
Authors: Svetlana Pushkar
Abstract:
Eco-indicator 99 (EI99) considers fundamental life cycle assessment (LCA) uncertainties via egalitarian/egalitarian (e/e), hierarchist/hierarchist (h/h), individualist/individualist (i/i), individualist/average (i/a), egalitarian/average (e/a), and hierarchist/average (h/a) methodological options. The objective of this study is to provide a reliable two-stage nested mixed balanced Analysis of Variance (ANOVA) test as a supplemental test to EI99 to address the problematic combination of similarly and not similarly produced materials usually found in building technologies. The robustness of the test was determined from both the “EI99 (all options)” stage (including e/e, i/i, h/h, e/a, i/a, and h/a - all methodological options) and the “EI99 (perspectives)” stage (including e/e, i/i, and h/h methodological options of EI99 - the methodological options with their particular weighting set or e/a, i/a, and h/a methodological options of EI99 - the methodological options with the average weighting set) of evaluating building technologies.Keywords: building technologies, LCA uncertainty, Eco-indicator 99, two-stage nested mixed ANOVA test
Procedia PDF Downloads 30928201 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia
Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany
Abstract:
In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities
Procedia PDF Downloads 7428200 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 29228199 Second Time’s a Charm: The Intervention of the European Patent Office on the Strategic Use of Divisional Applications
Authors: Alissa Lefebre
Abstract:
It might seem intuitive to hope for a fast decision on the patent grant. After all, a granted patent provides you with a monopoly position, which allows you to obstruct others from using your technology. However, this does not take into account the strategic advantages one can obtain from keeping their patent applications pending. First, you have the financial advantage of postponing certain fees, although many applicants would probably agree that this is not the main benefit. As the scope of the patent protection is only decided upon at the grant, the pendency period introduces uncertainty amongst rivals. This uncertainty entails not knowing whether the patent will actually get granted and what the scope of protection will be. Consequently, rivals can only depend upon limited and uncertain information when deciding what technology is worth pursuing. One way to keep patent applications pending, is the use of divisional applications. These applicants can be filed out of a parent application as long as that parent application is still pending. This allows the applicant to pursue (part of) the content of the parent application in another application, as the divisional application cannot exceed the scope of the parent application. In a fast-moving and complex market such as the tele- and digital communications, it might allow applicants to obtain an actual monopoly position as competitors are discouraged to pursue a certain technology. Nevertheless, this practice also has downsides to it. First of all, it has an impact on the workload of the examiners at the patent office. As the number of patent filings have been increasing over the last decades, using strategies that increase this number even more, is not desirable from the patent examiners point of view. Secondly, a pending patent does not provide you with the protection of a granted patent, thus not only create uncertainty for the rivals, but also for the applicant. Consequently, the European patent office (EPO) has come up with a “raising the bar initiative” in which they have decided to tackle the strategic use of divisional applications. Over the past years, two rules have been implemented. The first rule in 2010 introduced a time limit, upon which divisional applications could only be filed within a 24-month limit after the first communication with the patent office. However, after carrying-out a user feedback survey, the EPO abolished the rule again in 2014 and replaced it by a fee mechanism. The fee mechanism is still in place today, which might be an indication of a better result compared to the first rule change. This study tests the impact of these rules on the strategic use of divisional applications in the tele- and digital communication industry and provides empirical evidence on their success. Upon using three different survival models, we find overall evidence that divisional applications prolong the pendency time and that only the second rule is able to tackle the strategic patenting and thus decrease the pendency time.Keywords: divisional applications, regulatory changes, strategic patenting, EPO
Procedia PDF Downloads 12828198 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant
Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu
Abstract:
After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.Keywords: RELAP5, TRACE, SNAP, BWR
Procedia PDF Downloads 42928197 Quantifying Freeway Capacity Reductions by Rainfall Intensities Based on Stochastic Nature of Flow Breakdown
Authors: Hoyoung Lee, Dong-Kyu Kim, Seung-Young Kho, R. Eddie Wilson
Abstract:
This study quantifies a decrement in freeway capacity during rainfall. Traffic and rainfall data were gathered from Highway Agencies and Wunderground weather service. Three inter-urban freeway sections and its nearest weather stations were selected as experimental sites. Capacity analysis found reductions of maximum and mean pre-breakdown flow rates due to rainfall. The Kruskal-Wallis test also provided some evidence to suggest that the variance in the pre-breakdown flow rate is statistically insignificant. Potential application of this study lies in the operation of real time traffic management schemes such as Variable Speed Limits (VSL), Hard Shoulder Running (HSR), and Ramp Metering System (RMS), where speed or flow limits could be set based on a number of factors, including rainfall events and their intensities.
Keywords: capacity randomness, flow breakdown, freeway capacity, rainfall
Procedia PDF Downloads 38128196 Analysis of the Main Concepts and Discussions Involving Sustainable Tourism
Authors: Veruska C. Dutra, Mary L. G. S. Senna
Abstract:
The development of tourism is on the use of landscapes, natural or constructed, which involves a number of factors that contribute to the deterioration of nature. Tourist activity coupled with sustainable development has led to the emergence of many questions about these terms, since they are not well defined in this sense through literature searches. The present study was to analyze the main concepts and discussions involving sustainable tourism, providing reflections that can cause answers about one of the main questions in today's activity sector on whether its sustainability is a myth or reality. The methodology of this study is discussions, theoretical studies and bibliographic research. The results showed that the scholars who address the issue, often leave uncertainty about some discussions that demonstrate that there are still many studies to be conducted in order to prove that the claims so as to form the basis of what will be Tourism sustainable.Keywords: tourism, sustainability, development, discussions
Procedia PDF Downloads 177