Search results for: protein surfactant interaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6211

Search results for: protein surfactant interaction

5761 New Recombinant Netrin-a Protein of Lucilia Sericata Larvae by Bac to Bac Expression Vector System in Sf9 Insect Cell

Authors: Hamzeh Alipour, Masoumeh Bagheri, Abbasali Raz, Javad Dadgar Pakdel, Kourosh Azizi, Aboozar Soltani, Mohammad Djaefar Moemenbellah-Fard

Abstract:

Background: Maggot debridement therapy is an appropriate, effective, and controlled method using sterilized larvae of Luciliasericata (L.sericata) to treat wounds. Netrin-A is an enzyme in the Laminins family which secreted from salivary gland of L.sericata with a central role in neural regeneration and angiogenesis. This study aimed to production of new recombinant Netrin-A protein of Luciliasericata larvae by baculovirus expression vector system (BEVS) in SF9. Material and methods: In the first step, gene structure was subjected to the in silico studies, which were include determination of Antibacterial activity, Prion formation risk, homology modeling, Molecular docking analysis, and Optimization of recombinant protein. In the second step, the Netrin-A gene was cloned and amplified in pTG19 vector. After digestion with BamH1 and EcoR1 restriction enzymes, it was cloned in pFastBac HTA vector. It was then transformed into DH10Bac competent cells, and the recombinant Bacmid was subsequently transfected into insect Sf9 cells. The expressed recombinant Netrin-A was thus purified in the Ni-NTA agarose. This protein evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay method. Results: The Bacmid vector structure with Netrin-A was successfully constructed and then expressed as Netrin-A protein in the Sf9 cell lane. The molecular weight of this protein was 52 kDa with 404 amino acids. In the in silico studies, fortunately, we predicted that recombinant LSNetrin-A have Antibacterial activity and without any prion formation risk.This molecule hasa high binding affinity to the Neogenin and a lower affinity to the DCC-specific receptors. Signal peptide located between amino acids 24 and 25. The concentration of Netrin-A recombinant protein was calculated to be 48.8 μg/ml. it was confirmed that the characterized gene in our previous study codes L. sericata Netrin-A enzyme. Conclusions: Successful generation of the recombinant Netrin-A, a secreted protein in L.sericata salivary glands, and because Luciliasericata larvae are used in larval therapy. Therefore, the findings of the present study could be useful to researchers in future studies on wound healing.

Keywords: blowfly, BEVS, gene, immature insect, recombinant protein, Sf9

Procedia PDF Downloads 87
5760 Analysis of Nitrogenase Fe Protein Activity in Transplastomic Tobacco

Authors: Jose A. Aznar-Moreno, Xi Jiang, Stefan Burén, Luis M. Rubio

Abstract:

Integration of prokaryotic nitrogen fixation (nif) genes into the plastid genome for expression of functional nitrogenase components could render plants capable of assimilating atmospheric N2 making their crops less dependent of nitrogen fertilizers. The nitrogenase Fe protein component (NifH) has been used as proxy for expression and targeting of Nif proteins within plant and yeast cells. Here we use tobacco plants with the Azotobacter vinelandii nifH and nifM genes integrated into the plastid genome. NifH and its maturase NifM were constitutively produced in leaves, but not roots, during light and dark periods. Nif protein expression in transplastomic plants was stable throughout development. Chloroplast NifH was soluble, but it only showed in vitro activity when isolated from leaves collected at the end of the dark period. Exposing the plant extracts to elevated temperatures precipitated NifM and apo-NifH protein devoid of [Fe4S4] clusters, dramatically increasing the specific activity of remaining NifH protein. Our data indicate that the chloroplast endogenous [Fe-S] cluster biosynthesis was insufficient for complete NifH maturation, albeit a negative effect on NifH maturation due to excess NifM in the chloroplast cannot be excluded. NifH and NifM constitutive expression in transplastomic plants did not affect any of the following traits: seed size, germination time, germination ratio, seedling growth, emergence of the cotyledon and first leaves, chlorophyll content and plant height throughout development.

Keywords: NifH, chloroplast, nitrogen fixation, crop improvement, transplastomic plants, fertilizer, biotechnology

Procedia PDF Downloads 153
5759 Role of Biomaterial Surface Nanotopography on Protein Unfolding and Immune Response

Authors: Rahul Madathiparambil Visalakshan, Alex Cavallaro, John Hayball, Krasimir Vasilev

Abstract:

The role of biomaterial surface nanotopograhy on fibrinogen adsorption and unfolding, and the subsequent immune response were studied. Inconsistent topography and varying chemical functionalities along with a lack of reproducibility pose a challenge in determining the specific effects of nanotopography or chemistry on proteins and cells. It is important to have a well-defined nanotopography with a homogeneous chemistry to study the real effect of nanotopography on biological systems. Therefore, we developed a technique that can produce well-defined and highly reproducible topography to identify the role of specific roughness, size, height and density with the presence of homogeneous chemical functionality. Using plasma polymerisation of oxazoline monomers and immobilized gold nanoparticles we created surfaces with an equal number density of nanoparticles of different sizes. This surface was used to study the role of surface nanotopography and the interplay of surface chemistry on proteins and immune cells. The effect of nanotopography on fibrinogen adsorption was investigated using Quartz Cristal Microbalance with Dissipation and micro BCA. The mass of fibrinogen adsorbed on the surface increased with increasing size of nano-topography. Protein structural changes up on adsorption to the nano rough surface was studied using circular dichroism spectroscopy. Fibrinogen unfolding varied depending on the specific nanotopography of the surfaces. It was revealed that the in vitro immune response to the nanotopography surfaces changed due to this protein unfolding.

Keywords: biomaterial inflammation, protein and cell responses, protein unfolding, surface nanotopography

Procedia PDF Downloads 167
5758 Effects of Different Food Matrices on Viscosity and Protein Degradation during in vitro Digestion

Authors: Gulay Oncu Ince, Sibel Karakaya

Abstract:

Food is a worldwide concern. Among the factors that have influences on human health, food, nutrition and life style have been regarded as the most important factors since they can be intervened. While some parts of the world has been faced with food shortages and hence, chronic metabolic diseases, the other part of the world have been emerged from over consumption of food. Both situations can result in shorter life expectancy and represent a major global health problem. Hunger, satiety and appetite sensation form a balance ensures the operation of feeding behavior between food intake and energy consumption. Satiety is one of the approaches that is effective in ensuring weight control and avoid eating more in the postprandial period. By manipulating the microstructure of food macro and micronutrient bioavailability may be increased or reduced. For the food industry appearance, texture, taste structural properties as well as the gastrointestinal tract behavior of the food after the consumption is becoming increasingly important. Also, this behavior has been the subject of several researches in recent years by the scientific community. Numerous studies have been published about changing the food matrix in order to increase expected impacts. In this study, yogurts were enriched with caseinomacropeptide (CMP), whey protein (WP), CMP and sodium alginate (SA), and WP + SA in order to produce goat yogurts having different food matrices. SDS Page profiles of the samples after in vitro digestion and viscosities of the stomach digesta at different share rates were determined. Energy values were 62.11kcal/100 g, 70.27 kcal/100 g, 70.61 kcal/100 g, 71.20 kcal/100 g and 71.67 kcal/100 g for control, CMP added WP added, WP + SA added, and CMP + SA added yogurts respectively. The results of viscosity analysis showed that control yogurt had the lowest viscosity value and this was followed by CMP added, WP added, CMP + SA added and WP + SA added yogurts, respectively. Protein contents of the stomach and duedonal digests of the samples after subjected to two different in vitro digestion methods were changed between 5.34-5.91 mg protein / g sample and 16.93-19.75 mg protein /g of sample, respectively. Viscosity measurements of the stomach digests showed that CMP + SA added yogurt displayed the highest viscosity value in both in vitro digestion methods. There were differences between the protein profiles of the stomach and duedonal digests obtained by two different in vitro digestion methods (p<0.05).

Keywords: caseinomacropeptide, protein profile, whey protein, yogurt

Procedia PDF Downloads 485
5757 The Combination of Porcine Plasma Protein and Maltodextrin as Wall Materials on Microencapsulated Turmeric Oil Powder Quality

Authors: Namfon Samsalee, Rungsinee Sothornvit

Abstract:

Turmeric is a natural plant herb and generally extracted as essential oil and widely used in food, cosmetic, pharmaceutical products including insect repellent. However, turmeric oil is a volatile essential oil which is easy to be lost during storage or exposure to light. Therefore, biopolymers such as protein and polysaccharide can be used as wall materials to encapsulate the essential oil which will solve this drawback. Approximately 60% plasma from porcine blood contains 6-7% of protein content mainly albumin and globulin which can be a good source of animal protein at the low-cost biopolymer from by-product. Microencapsulation is a useful technique to entrap volatile compounds in the biopolymer matrix and protect them to degrade. The objective of this research was to investigate the different ratios of two biopolymers (PPP and maltodextrin; MD) as wall materials at 100:0, 75:25, 50:50, 25:75 and 0:100 at a fixed ratio of wall material: core material (turmeric oil) at 3:1 (oil in water) on the qualities of microencapsulated powder using freeze drying. It was found that the combination of PPP and MD showed higher solubility of microencapsules compared to the use of PPP alone (P < 0.05). Moreover, the different ratios of wall materials also affected on color (L*, a* and b*) of microencapsulated powder. Morphology of microencapsulated powder using a scanning electron microscope showed holes on the surface reflecting on free oil content and encapsulation efficiency of microencapsules. At least 50% of MD was needed to increase encapsulation efficiency of microencapsulates rather than using only PPP as the wall material (P < 0.05). Microencapsulated turmeric oil powder can be useful as food additives to improve food texture, as a biopolymer material for edible film and coating to maintain quality of food products.

Keywords: microencapsulation, turmeric oil, porcine plasma protein, maltodextrin

Procedia PDF Downloads 180
5756 Combination Rule for Homonuclear Dipole Dispersion Coefficients

Authors: Giorgio Visentin, Inna S. Kalinina, Alexei A. Buchachenko

Abstract:

In the ambit of intermolecular interactions, a combination rule is defined as a relation linking a potential parameter for the interaction of two unlike species with the same parameters for interaction pairs of like species. Some of their most exemplificative applications cover the construction of molecular dynamics force fields and dispersion-corrected density functionals. Here, an extended combination rule is proposed, relating the dipole-dipole dispersion coefficients for the interaction of like target species to the same coefficients for the interaction of the target and a set of partner species. The rule can be devised in two different ways, either by uniform discretization of the Casimir-Polder integral on a Gauss-Legendre quadrature or by relating the dynamic polarizabilities of the target and the partner species. Both methods return the same system of linear equations, which requires the knowledge of the dispersion coefficients for interaction between the partner species to be solved. The test examples show a high accuracy for dispersion coefficients (better than 1% in the pristine test for the interaction of Yb atom with rare gases and alkaline-earth metal atoms). In contrast, the rule does not ensure correct monotonic behavior of the dynamic polarizability of the target species. Acknowledgment: The work is supported by Russian Science Foundation grant # 17-13-01466.

Keywords: combination rule, dipole-dipole dispersion coefficient, Casimir-Polder integral, Gauss-Legendre quadrature

Procedia PDF Downloads 175
5755 Formulation and Nutrition Analysis of Low-Sugar Snack Bars

Authors: S. Kongtun-Janphuk, S. Niwitpong Jr., J. Saengsai

Abstract:

Low-sugar snack bars were formulated with 3 main formulas depending on the main ingredient, which were peanut-green bean-sesame, apple, and prune. The most acceptable formula of each group was obtained by sensory evaluation using a nine-point hedonic scale. The moisture content, total ash, protein, fat and fiber were analyzed by the standard methods of AOAC. The peanut-mung bean-sesame snack bar showed the highest protein content (88.32%) and total fat (0.48%) with the lowest of fiber content (0.01%) while the prune formula showed the lowest protein content (71.91%) and total fat (0.21%) with the highest of fiber content (0.03%). This result indicated that the prune formula could be used as diet food to assist in weight loss program.

Keywords: low-sugar snack bar, diet food, nutrition analysis, food formulation

Procedia PDF Downloads 391
5754 Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials

Authors: Ava Faridi, Pouya Faridi, Aleksandr Kakinen, Ibrahim Javed, Thomas P. Davis, Pu Chun Ke

Abstract:

Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells.

Keywords: graphene quantum dots, IAPP, silica nanoribbons, protein expression, toxicity

Procedia PDF Downloads 137
5753 Comparison of the Effectiveness of Neisseria gonorrhea Crude Protein Injections with Intravenous, Intracutaneous, and Subcutaneous

Authors: Annisa Amalina, Lintang Sekar Sari, Khairunnisa Salsabila, Astya Gema Ramadhan, M. Fatkhi, Andani Eka Putra

Abstract:

Gonorrhea is one of the sexually transmitted diseases by genito-genital, oro-genital and anogenital. Gonorrhea disease will cause complications if not treated properly. The diagnostic tool that has been used nowadays is microscopic. Thus a rapid diagnostic tool for gonorrhea is required, using polyclonal antibodies. The purpose of this study was to determine the effectiveness of injections of intravenous, subcutaneous and intracutaneous crude protein gonorrhea. The research method used in this research is experimental explorative. This research was conducted in Molecular Microbiology Laboratory of Faculty of Medicine, Andalas University for 3 months from April to June 2017. This study used 3 groups of rabbit with intravenous, subcutaneous, and intracutaneous injections. Each group was treated on days 1, 7, 21, and 28 with crude protein injection. After that, the examination of antibody levels held by using ELISA, followed by the antibody comparative tests contained in all three groups. The results examined by One Way ANOVA test on SPSS 21 and showed that there is no significant difference between intravenous, subcutaneous, and intracutaneous use p=0.69 (p < 0.05). However, there is an increased level (0.047 to 1.171) in antibodies from day 1 to day 14. In addition, subcutaneous use is preferred because it has minimal side effects compared to intravenous and intracutaneous use.

Keywords: crude protein, Neisseria gonorrhea, polyclonal antibodies, subcutaneous

Procedia PDF Downloads 153
5752 Virtual Screening of Potential Inhibitors against Efflux Pumps of Mycobacterium tuberculosis

Authors: Gagan Dhawan

Abstract:

Mycobacterium tuberculosis was described as ‘captain of death’ with an inherent property of multiple drug resistance majorly caused by the competent mechanism of efflux pumps. In this study, various open source tools combining chemo-informatics with bioinformatics were used for efficient in-silico drug designing. The efflux pump, Rv1218c, belonging to the ABC transporter superfamily, which is predicted to be a tetronasin-transporter in M. tuberculosis was targeted. Recent studies have shown that Rv1218c forms a complex with two more efflux pumps (Rv1219c and Rv1217c) to provide multidrug resistance to the bacterium. The 3D structure of the protein was modeled (as the structure was unavailable in the previously collected databases on this gene). The TMHMM analysis of this protein in TubercuList has shown that this protein is present in the outer membrane of the bacterium. Virtual screening of compounds from various publically available chemical libraries was performed on the M. tuberculosis protein using various open source tools. These ligands were further assessed where various physicochemical properties were evaluated and analyzed. On comparison of different physicochemical properties, toxicity and docking, the ligand 2-(hydroxymethyl)-6-[4, 5, 6-trihydroxy-2-(hydroxymethyl) tetrahydropyran-3-yl] oxy-tetrahydropyran-3, 4, 5-triol was found to be best suited for further studies.

Keywords: drug resistance, efflux pump, molecular docking, virtual screening

Procedia PDF Downloads 365
5751 Morroniside Intervention Mechanism of Renal Lesions, a Combination Model of AGEs Exacerbation of STZ-Induced Diabetes Mellitus

Authors: Hui-Qin Xu, Xing Lv, Yu-Han Tao

Abstract:

The depth study aimed on the mechanism of morroniside in protecting diabetic nephropathy. The diabetic mice models with blood glucose above 15mmol/L were divided into model, aminoguanidine, metformin, captopril, morroniside low-dose, and morroniside high-dose groups. And normal group was set simultaneously. All groups were fed with high AGEs food except normal group. Each group was intragastric administration of the corresponding medicine except model and normal groups. After 12 weeks, all the indictors were measured. It showed that the morroniside could reduce blood glucose significantly, urinary protein, serum urea nitrogen, creatine, pathological changes, AGEs levels, renal cortex RAGE mRNA and RAGE protein expression levels; increase food consumption, water intake, urine volume, insulin secretion. As a conclusion, morroniside from cornus officinalis can protect renal in diabetic mice, its mechanism may be related to the proliferation of islet cells, rectify glycometabolism, reduce serum and kidney AGEs content, and descend renal RAGEmRNA and RAGE protein expression levels.

Keywords: cornus officinalis, diabetic nephropathy, morroniside, RAGE protein

Procedia PDF Downloads 446
5750 Study of the Chronic Effects of CRACK on Some Biochemical Parameters Including Triglycerides, Cholesterol, HDL, LDL, VLDL, Amylase, Lipase, Albumin, Protein in Rat

Authors: Alireza Jafarzadeh, Bahram Amu-Oqhli Tabrizi, Hadi Khayat Nouri, Arash Khaki

Abstract:

30 head of adult Vistar rats were chosen to evaluate the chronic narcotic effects of crack on some biochemical parameters. The rats weighted approximately 200 to 250 g. They were divided into 5 groups of 6 and were housed in identical condition in terms of food and ambience. Rats were maintained at 12 hours light and 12 hours darkness. Rats were injected 7.8 mg/kg BW crack intraperitoneally. The groups one to four received daily medication for one to four weeks respectively. The control groups were injected identical dose of saline. The blood was taken from control and test groups then serum was separated from. Serum biochemical parameters of amylase, lipase, triglycerides, cholesterol, HDL, LDL, VLDL, protein and albumin were measured by diagnostic kits. Serum protein and albumin levels did not show statistically significant changes. Serum lipase and amylase showed significant changes both of which were increased. The serum levels of cholesterol, LDL and HDL demonstrated no significant changes. Triglycerides values showed a significant increase in serum. Serum VLDL in groups 3 and 4 exhibited significant changes compare to other groups.

Keywords: albumin, amylase, cholesterol, crack, HDL, LDL, lipase, protein, rat, triglycerides, VLDL

Procedia PDF Downloads 689
5749 Genetic Polymorphism of Milk Protein Gene and Association with Milk Production Traits in Local Latvian Brown Breed Cows

Authors: Daina Jonkus, Solvita Petrovska, Dace Smiltina, Lasma Cielava

Abstract:

The beta-lactoglobulin and kappa-casein are milk proteins which are important for milk composition. Cows with beta-lactoglobulin and kappa-casein gene BB genotypes have highest milk crude protein and fat content. The aim of the study was to determinate the frequencies of milk protein gene polymorphisms in local Latvian Brown (LB) cows breed and analyze the influence of beta-lactoglobulin and kappa-casein genotypes to milk productivity traits. 102 cows’ genotypes of milk protein genes were detected using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) and electrophoresis on 3% agarose gel. For beta-lactoglobulin were observed 2 types of alleles A and B and for kappa-casein 3 types: A, B and E. Highest frequency in beta-lactoglobulin gene was observed for B allele – 0.926. Molecular analysis of beta-lactoglobulin gene shows 86.3% of individuals are homozygous by B allele and animals are with genotypes BB and 12.7% of individuals are heterozygous with genotypes AB. The highest milk yield 4711.7 kg was for 1st lactation cows with AB genotypes, whereas the highest milk protein content (3.35%) and fat content (4.46 %) was for BB genotypes. Analysis of the kappa-casein locus showed a prevalence of the A allele – 0.750. The genetic variant of B was characterized by a low frequency – 0.240. Moreover, the frequency of E occurred in the LB cows’ population with very low frequency – 0.010. 54.9 % of cows are homozygous with genotypes AA, and only 4.9 % are homozygous with genotypes BB. 32.8 % of individuals are heterozygous with genotypes AB, and 2.0 % are with AE. The highest milk productivity was for 1st lactation cows with AB genotypes: milk yield 4620.3 kg, milk protein content 3.39% and fat content 4.53 %. According to the results, in local Latvian brown there are only 2.9% of cows are with BB-BB genotypes, which is related to milk coagulation ability and affected cheese production yield. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.

Keywords: beta-lactoglobulin, cows, genotype frequencies, kappa-casein

Procedia PDF Downloads 267
5748 Preferred Left-Handed Conformation of Glycyls at Pathogenic Sites

Authors: Purva Mishra, Rajesh Potlia, Kuljeet Singh Sandhu

Abstract:

The role of glycyl residues in the protein structure has lingered within the research community for the last several decades. Glycyl residue is the only amino acid that is achiral due to the lack of a side chain and can, therefore, exhibit Ramachandran conformations that are disallowed for L-amino acids. The structural and functional significance of glycyl residues with L-disallowed conformation, however, remains obscure. Through statistical analysis of various datasets, we found that the glycyls with L-disallowed conformations are over-represented at disease-associated sites and tend to be evolutionarily conserved. The mutations of L-disallowed glycyls tend to destabilize the native conformation, reduce protein solubility, and promote inter-molecular aggregations. We uncovered a structural motif referred to as “β-crescent” formed around the L-disallowed glycyl, which prevents β-sheet aggregation by disrupting the alternating pattern of β-pleats. The L-disallowed conformation of glycyls also holds predictive power to infer the pathogenic missense variants. Altogether, our observations highlight that the L-disallowed conformation of glycyls is selected to facilitate native folding and prevent inter-molecular aggregations. The findings may also have implications for designing more stable proteins and prioritizing the genetic lesions implicated in diseases.

Keywords: Ramachandran plot, β-sheet, protein stability, protein aggregation

Procedia PDF Downloads 61
5747 The Combined Influences of Salinity, Light and Nitrogen Limitation on the Growth and Biochemical Composition of Nannochloropsis sp. and Tetraselmis sp., Isolated from Penang National Park Coastal Waters, Malaysia

Authors: Mohamed M. Alsull

Abstract:

In the present study, two microalgae species “Nannochloropsis sp. and Tetraselmis sp.” isolated from Penang National Park coastal waters, Malaysia; were cultivated under combined various laboratory conditions “salinity, light, nitrogen limitation and starvation”. Growth rate, dry weight, chlorophyll a content, total lipid and protein contents, were estimated at mid exponential growth phase. Both Nannochloropsis sp. and Tetraselmis sp. showed remarkable decrease in growth rate, chlorophyll a content and protein content companied with increase in lipid content under nitrogen limitation and starvation conditions. Maintaining Nannochloropsis sp. under salinity 15‰ caused only significant decrease in total protein content; while Tetraselmis sp. grown at the same salinity caused decrease in the growth rate, chlorophyll a, dry weight and total protein content only when nitrogen was available.

Keywords: biochemical composition, light, microalgae, nitrogen limitation, salinity

Procedia PDF Downloads 421
5746 LaeA/1-Velvet Interplay in Aspergillus and Trichoderma: Regulation of Secondary Metabolites and Cellulases

Authors: Razieh Karimi Aghcheh, Christian Kubicek, Joseph Strauss, Gerhard Braus

Abstract:

Filamentous fungi are of considerable economic and social significance for human health, nutrition and in white biotechnology. These organisms are dominant producers of a range of primary metabolites such as citric acid, microbial lipids (biodiesel) and higher unsaturated fatty acids (HUFAs). In particular, they produce also important but structurally complex secondary metabolites with enormous therapeutic applications in pharmaceutical industry, for example: cephalosporin, penicillin, taxol, zeranol and ergot alkaloids. Several fungal secondary metabolites, which are significantly relevant to human health do not only include antibiotics, but also e.g. lovastatin, a well-known antihypercholesterolemic agent produced by Aspergillus. terreus, or aflatoxin, a carcinogen produced by A. flavus. In addition to their roles for human health and agriculture, some fungi are industrially and commercially important: Species of the ascomycete genus Hypocrea spp. (teleomorph of Trichoderma) have been demonstrated as efficient producer of highly active cellulolytic enzymes. This trait makes them effective in disrupting and depolymerization of lignocellulosic materials and thus applicable tools in number of biotechnological areas as diverse as clothes-washing detergent, animal feed, and pulp and fuel productions. Fungal LaeA/LAE1 (Loss of aflR Expression A) homologs their gene products act at the interphase between secondary metabolisms, cellulase production and development. Lack of the corresponding genes results in significant physiological changes including loss of secondary metabolite and lignocellulose degrading enzymes production. At the molecular level, the encoded proteins are presumably methyltransferases or demethylases which act directly or indirectly at heterochromatin and interact with velvet domain proteins. Velvet proteins bind to DNA and affect expression of secondary metabolites (SMs) genes and cellulases. The dynamic interplay between LaeA/LAE1, velvet proteins and additional interaction partners is the key for an understanding of the coordination of metabolic and morphological functions of fungi and is required for a biotechnological control of the formation of desired bioactive products. Aspergilli and Trichoderma represent different biotechnologically significant species with significant differences in the LaeA/LAE1-Velvet protein machinery and their target proteins. We, therefore, performed a comparative study of the interaction partners of this machinery and the dynamics of the various protein-protein interactions using our robust proteomic and mass spectrometry techniques. This enhances our knowledge about the fungal coordination of secondary metabolism, cellulase production and development and thereby will certainly improve recombinant fungal strain construction for the production of industrial secondary metabolite or lignocellulose hydrolytic enzymes.

Keywords: cellulases, LaeA/1, proteomics, secondary metabolites

Procedia PDF Downloads 268
5745 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers

Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz

Abstract:

In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.

Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber

Procedia PDF Downloads 291
5744 Effect of Whey Based Film Coatings on Various Properties of Kashar Cheese

Authors: Hawbash Jalil

Abstract:

In this study, the effects of whey protein based films on various properties of kashar cheese were examined. In the study, edible film solutions based on whey protein isolate, whey protein isolate + transglutaminase enzyme and whey protein isolate + chitosan were produced and Kashar cheese samples were coated with these films by dipping method and stored at +4 ºC for 60 days. Chemical, microbiological and textural analyzes were carried out on samples at 0, 30 and 60 days of storage. As a result of the study, the highest dry matter and total nitrogen values were obtained from uncoated control samples This is an indication that the coatings limit water vapor permeability. The highest acidity and pH values obtained from the samples as storage results were 3.33% and 5.86%, respectively, in the control group samples. Both acidity and pH rise in these groups, is a consequence of the buffering of pH changes of hydrolsis products which are as a result of proteolysis occurring in the sample. Nitrogen changes and lipolysis values, which are indicative of the degree of hydrolysis of proteins and triglycerides in kashar cheese, were generally higher in the control group This result is due to limiting the micro organism reproduction by limiting the gas passage of the coatings. Hardness and chewiness values of the textural properties of the samples were significantly reduced in uncoated control samples compared to the coated samples due to maturation. The chitosan film coatings used in the study limited the development of mold yeast until the 30th day but after that did not yield successful results in this respect.

Keywords: chitosan, edible film, transglutaminase, whey protein

Procedia PDF Downloads 179
5743 Evaluation of Coagulation State in Patients with End Stage Renal Disease (ESRD) by Thromboelastogram (TEG)

Authors: Mohammad Javad Esmaeili

Abstract:

Background: Coagulopathy is one of the complications with end stage renal disease with high prevalence in the world. Thromboelastogram is adynamic test for evaluation of coagulopathy and we have compared our patient's coagulation profiles with the results of TEG. Material and methods: In this study 50 patients with ESRD who were on regular hemodialysis for at least 6 months was selected with simple sampling and their coagulation profile was done with blood sampling and also TEG was done for every patient. Data were analyzed with SPSS and P<0.05 consider significant. Results: Protein s, Protein c and Antithrombin III deficiency was detected in 32%, 16% and 20% of patients and activated protein c resistance was abnormal in 2% of patients. In TEG, R time in 49% and K in 22/5% of patients was lower than normal and a-angle in 26% and maximum amplitude in 36% of patients was upper than normal (Hypercoagulable state). PS with R and ATIII with K have correlation. Conclusion: R time and K in TEG can be a suitable screening test in patients with suspicious to PS and ATIII deficiency.

Keywords: thromboelastography, chronic kidney disease, Coagulating disorder, hemodialysis

Procedia PDF Downloads 73
5742 In vitro Protein Folding and Stability Using Thermostable Exoshells

Authors: Siddharth Deshpande, Nihar Masurkar, Vallerinteavide Mavelli Girish, Malan Desai, Chester Drum

Abstract:

Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins.

Keywords: thermostable shell, in vitro folding, stability, functional yield

Procedia PDF Downloads 239
5741 Effect of Resveratrol and Ascorbic Acid on the Stability of Alfa-Tocopherol in Whey Protein Isolate Stabilized O/W Emulsions

Authors: Lei Wang, Yingzhou Ni, Amr M. Bakry, Hao Cheng, Li Liang

Abstract:

Food proteins have been widely used as carrier materials because of their multiple functional properties. In this study, alfa-tocopherol was encapsulated in the oil phase of an oil-in-water emulsion stabilized with whey protein isolate (WPI). The influence of WPI concentration and resveratrol or ascorbic acid on the decomposition of alfa-tocopherol in the emulsion during storage is discussed. Decomposition decreased as WPI concentrations increased. Decomposition was delayed at ascorbic acid/WPI molar ratios lower than 5 but was promoted at higher ratios. Resveratrol partitioned into the oil-water interface by binding to WPI and its cis-isomer is believed to have contributed most of the protective effect of this polyphenol. These results suggest the possibility of using the emulsifying and ligand-binging properties of WPI to produce carriers for simultaneous encapsulation of alfa-tocopherol and resveratrol in a single emulsion system.

Keywords: stability, alfa-tocopherol, resveratrol, whey protein isolate

Procedia PDF Downloads 519
5740 Altered Proteostasis Contributes to Skeletal Muscle Atrophy during Chronic Hypobaric Hypoxia: An Insight into Signaling Mechanisms

Authors: Akanksha Agrawal, Richa Rathor, Geetha Suryakumar

Abstract:

Muscle represents about ¾ of the body mass, and a healthy muscular system is required for human performance. A healthy muscular system is dynamically balanced via the catabolic and anabolic process. High altitude associated hypoxia altered this redox balance via producing reactive oxygen and nitrogen species that ultimately modulates protein structure and function, hence, disrupts proteostasis or protein homeostasis. The mechanism by which proteostasis is clinched includes regulated protein translation, protein folding, and protein degradation machinery. Perturbation in any of these mechanisms could increase proteome imbalance in the cellular processes. Altered proteostasis in skeletal muscle is likely to be responsible for contributing muscular atrophy in response to hypoxia. Therefore, we planned to elucidate the mechanism involving altered proteostasis leading to skeletal muscle atrophy under chronic hypobaric hypoxia. Material and Methods-Male Sprague Dawley rats weighing about 200-220 were divided into five groups - Control (Normoxic animals), 1d, 3d, 7d and 14d hypobaric hypoxia exposed animals. The animals were exposed to simulated hypoxia equivalent to 282 torr pressure (equivalent to an altitude of 7620m, 8% oxygen) at 25°C. On completion of chronic hypobaric hypoxia (CHH) exposure, rats were sacrificed, muscle was excised and biochemical, histopathological and protein synthesis signaling were studied. Results-A number of changes were observed with the CHH exposure time period. ROS was increased significantly on 07 and 14 days which were attributed to protein oxidation via damaging muscle protein structure by oxidation of amino acids moiety. The oxidative damage to the protein further enhanced the various protein degradation pathways. Calcium activated cysteine proteases and other intracellular proteases participate in protein turnover in muscles. Therefore, we analysed calpain and 20S proteosome activity which were noticeably increased at CHH exposure as compared to control group representing enhanced muscle protein catabolism. Since inflammatory markers (myokines) affect protein synthesis and triggers degradation machinery. So, we determined inflammatory pathway regulated under hypoxic environment. Other striking finding of the study was upregulation of Akt/PKB translational machinery that was increased on CHH exposure. Akt, p-Akt, p70 S6kinase, and GSK- 3β expression were upregulated till 7d of CHH exposure. Apoptosis related markers, caspase-3, caspase-9 and annexin V was also increased on CHH exposure. Conclusion: The present study provides evidence of disrupted proteostasis under chronic hypobaric hypoxia. A profound loss of muscle mass is accompanied by the muscle damage leading to apoptosis and cell death under CHH. These cellular stress response pathways may play a pivotal role in hypobaric hypoxia induced skeletal muscle atrophy. Further research in these signaling pathways will lead to development of therapeutic interventions for amelioration of hypoxia induced muscle atrophy.

Keywords: Akt/PKB translational machinery, chronic hypobaric hypoxia, muscle atrophy, protein degradation

Procedia PDF Downloads 266
5739 Dispersions of Carbon Black in Microemulsions

Authors: Mohamed Youssry, Dominique Guyomard, Bernard Lestriez

Abstract:

In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries).

Keywords: electrode slurries, microemulsion, microstructure transition, rheo-electrical properties

Procedia PDF Downloads 258
5738 SIPTOX: Spider Toxin Database Information Repository System of Protein Toxins from Spiders by Using MySQL Method

Authors: Iftikhar Tayubi, Tabrej Khan, Rayan Alsulmi, Abdulrahman Labban

Abstract:

Spider produces a special kind of substance. This special kind of substance is called a toxin. The toxin is composed of many types of protein, which differs from species to species. Spider toxin consists of several proteins and non-proteins that include various categories of toxins like myotoxin, neurotoxin, cardiotoxin, dendrotoxin, haemorrhagins, and fibrinolytic enzyme. Protein Sequence information with references of toxins was derived from literature and public databases. From the previous findings, the Spider toxin would be the best choice to treat different types of tumors and cancer. There are many therapeutic regimes, which causes more side effects than treatment hence a different approach must be adopted for the treatment of cancer. The combinations of drugs are being encouraged, and dramatic outcomes are reported. Spider toxin is one of the natural cytotoxic compounds. Hence, it is being used to treat different types of tumors; especially its positive effect on breast cancer is being reported during the last few decades. The efficacy of this database is that it can provide a user-friendly interface for users to retrieve the information about Spiders, toxin and toxin protein of different Spiders species. SPIDTOXD provides a single source information about spider toxins, which will be useful for pharmacologists, neuroscientists, toxicologists, medicinal chemists. The well-ordered and accessible web interface allows users to explore the detail information of Spider and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Spider, toxin and toxin protein of different Spider species. The database interfaces will satisfy the demands of the scientific community by providing in-depth knowledge about Spider and its toxin. We have adopted the methodology by using A MySQL and PHP and for designing, we used the Smart Draw. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, and clinical data, etc. This database will be useful for the scientific community, basic researchers and those interested in potential pharmaceutical Industry.

Keywords: siptoxd, php, mysql, toxin

Procedia PDF Downloads 173
5737 Challenge Appraisal Job, Hindrance Appraisal Job, and Negative Work-Life Interaction with the Mediating Role of Distress: A Survey on Sabah Public Secondary School Teachers

Authors: Pan Lee Ching, Chua Bee Seok

Abstract:

The experience of negative work-life interaction often confronted with work related stress includes workload. The appraisal of challenge and hindrance jobs depend on the type of workload to stimulate stress response. Nevertheless, the effects of challenge and hindrance jobs on distress and negative work-life interaction are scarcely explored. Thus, research objective was to examine the relationship among challenge appraisal job (qualitative workload), hindrance appraisal job (quantitative workload), and negative work-life interaction with the mediating role of distress. A survey with random sampling method was performed on current serving public secondary school teachers in Sabah. Collected data showed 447 respondents completed three questionnaires, namely Challenge-hindrance Appraisal Scale, Stress Professional Positive and Negative Questionnaire, and Survey Work-home Interaction-Nijmegan. Partial Least Square-Structural Equation Modeling (PLS-SEM) was used to analyse mediation effect. Results showed distress fully mediates the relationship between challenge appraisal job (qualitative workload) and negative work-life interaction. The indirect effect was significant and negative. While distress partially mediates the relationship between hindrance appraisal job (quantitative workload) and negative work-life interaction. The indirect effect was significant and positive. The study implied that challenge appraisal job could be a positive resource for teacher to facilitate work and life, whereas hindrance appraisal job could disengage the facilitation. Hence, strengthen challenge appraisal job and control hindrance appraisal job could curb distress at work and underpin life interaction among the teachers.

Keywords: challenge-hindrance job, distress, work-life, workload

Procedia PDF Downloads 188
5736 Influence of Nonlinearity of Concrete and Reinforcement Using Micropiles on the Seismic Interaction of Soil-Piles-Bridge

Authors: Mohanad Alfach, Amjad Al Helwani

Abstract:

Post-seismic observations of recent devastating earthquakes have shown that the behavior of the soil-pile-structure shows strong nonlinearity of soil and concrete under intensive seismic loading. Many of pile ruptures recently observed after the strong earthquake due to structural reasons (development of plastic hinges in the piles). The most likely reason for this rupture is the exceeding of maximum bending moment supported by the pile at several points. An analysis of these problems is necessary to take into account the nonlinearity of concrete, the strategy of strengthening the damaged piles and the interaction of these piles with the proposed strengthening by using micropiles. This study aims to investigate the interaction aspects for soil-piles- micropiles-structure using a global approach with a three dimensional finite difference code Flac 3D (Fast lagrangian analysis of continua in 3 dimensions).

Keywords: interaction, piles, micropiles, concrete, seismic, nonlinear, three-dimensional

Procedia PDF Downloads 256
5735 Docking Studie of Biologically Active Molecules: Exploring Medical Applications

Authors: Sihame Amakrane, Zineb Ouahdi, Mohammed Salah, Said Belaaouad

Abstract:

\This research explores the efficacy of novel pyrimidine derivatives on bacterial strains such as Escherichia coli, Staphylococcus aureus, and Myccobacterium tuberculosis, utilizing bending energy calculations. Of the 25 compounds examined, 13 displayed potent activity against all the bacterial strains under study, exhibiting bending energy measurements between -7.4 and -10.7 kcal/mol. The -7.4 kcal/mol value corresponds to the bending energy of the SA12 and SA13 compounds with the 2xct protein (Staphylococcus aureus), whereas the -10.7 kcal/molis linked with the bending energy of SA6 and SA11 compounds with the 6GAV protein (Myccobacterium tuberculosis). Further research will involve a QSAR (Quantitative Structure-Activity Relationship) study aimed at constructing a reliable model to combat the aforementioned bacterial strains and a molecular dynamics study to evaluate the stability of ligand-protein complexes.

Keywords: docking, QSAR, bending energy, e. coli

Procedia PDF Downloads 76
5734 Aquaporin-1 as a Differential Marker in Toxicant-Induced Lung Injury

Authors: Ekta Yadav, Sukanta Bhattacharya, Brijesh Yadav, Ariel Hus, Jagjit Yadav

Abstract:

Background and Significance: Respiratory exposure to toxicants (chemicals or particulates) causes disruption of lung homeostasis leading to lung toxicity/injury manifested as pulmonary inflammation, edema, and/or other effects depending on the type and extent of exposure. This emphasizes the need for investigating toxicant type-specific mechanisms to understand therapeutic targets. Aquaporins, aka water channels, are known to play a role in lung homeostasis. Particularly, the two major lung aquaporins AQP5 and AQP1 expressed in alveolar epithelial and vasculature endothelia respectively allow for movement of the fluid between the alveolar air space and the associated vasculature. In view of this, the current study is focused on understanding the regulation of lung aquaporins and other targets during inhalation exposure to toxic chemicals (Cigarette smoke chemicals) versus toxic particles (Carbon nanoparticles) or co-exposures to understand their relevance as markers of injury and intervention. Methodologies: C57BL/6 mice (5-7 weeks old) were used in this study following an approved protocol by the University of Cincinnati Institutional Animal Care and Use Committee (IACUC). The mice were exposed via oropharyngeal aspiration to multiwall carbon nanotube (MWCNT) particles suspension once (33 ugs/mouse) followed by housing for four weeks or to Cigarette smoke Extract (CSE) using a daily dose of 30µl/mouse for four weeks, or to co-exposure using the combined regime. Control groups received vehicles following the same dosing schedule. Lung toxicity/injury was assessed in terms of homeostasis changes in the lung tissue and lumen. Exposed lungs were analyzed for transcriptional expression of specific targets (AQPs, surfactant protein A, Mucin 5b) in relation to tissue homeostasis. Total RNA from lungs extracted using TRIreagent kit was analyzed using qRT-PCR based on gene-specific primers. Total protein in bronchoalveolar lavage (BAL) fluid was determined by the DC protein estimation kit (BioRad). GraphPad Prism 5.0 (La Jolla, CA, USA) was used for all analyses. Major findings: CNT exposure alone or as co-exposure with CSE increased the total protein content in the BAL fluid (lung lumen rinse), implying compromised membrane integrity and cellular infiltration in the lung alveoli. In contrast, CSE showed no significant effect. AQP1, required for water transport across membranes of endothelial cells in lungs, was significantly upregulated in CNT exposure but downregulated in CSE exposure and showed an intermediate level of expression for the co-exposure group. Both CNT and CSE exposures had significant downregulating effects on Muc5b, and SP-A expression and the co-exposure showed either no significant effect (Muc5b) or significant downregulating effect (SP-A), suggesting an increased propensity for infection in the exposed lungs. Conclusions: The current study based on the lung toxicity mouse model showed that both toxicant types, particles (CNT) versus chemicals (CSE), cause similar downregulation of lung innate defense targets (SP-A, Muc5b) and mostly a summative effect when presented as co-exposure. However, the two toxicant types show differential induction of aquaporin-1 coinciding with the corresponding differential damage to alveolar integrity (vascular permeability). Interestingly, this implies the potential of AQP1 as a differential marker of toxicant type-specific lung injury.

Keywords: aquaporin, gene expression, lung injury, toxicant exposure

Procedia PDF Downloads 176
5733 Deciphering Tumor Stroma Interactions in Retinoblastoma

Authors: Rajeswari Raguraman, Sowmya Parameswaran, Krishnakumar Subramanian, Jagat Kanwar, Rupinder Kanwar

Abstract:

Background: Tumor microenvironment has been implicated in several cancers to regulate cell growth, invasion and metastasis culminating in outcome of therapy. Tumor stroma consists of multiple cell types that are in constant cross-talk with the tumor cells to favour a pro-tumorigenic environment. Not much is known about the existence of tumor microenvironment in the pediatric intraocular malignancy, Retinoblastoma (RB). In the present study, we aim to understand the multiple stromal cellular subtypes and tumor stromal interactions expressed in RB tumors. Materials and Methods: Immunohistochemistry for stromal cell markers CD31, CD68, alpha-smooth muscle (α-SMA), vimentin and glial fibrillary acidic protein (GFAP) was performed on formalin fixed paraffin embedded tissues sections of RB (n=12). The differential expression of stromal target molecules; fibroblast activation protein (FAP), tenascin-C (TNC), osteopontin (SPP1), bone marrow stromal antigen 2 (BST2), stromal derived factor 2 and 4 (SDF2 and SDF4) in primary RB tumors (n=20) and normal retina (n=5) was studied by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. The differential expression was correlated with the histopathological features of RB. The interaction between RB cell lines (Weri-Rb-1, NCC-RbC-51) and Bone marrow stromal cells (BMSC) was also studied using direct co-culture and indirect co-culture methods. The functional effect of the co-culture methods on the RB cells was evaluated by invasion and proliferation assays. Global gene expression was studied by using Affymetrix 3’ IVT microarray. Pathway prediction was performed using KEGG and the key molecules were validated using qRT-PCR. Results: The immunohistochemistry revealed the presence of several stromal cell types such as endothelial cells (CD31+;Vim+/-); macrophages (CD68+;Vim+/-); Fibroblasts (Vim+; CD31-;CD68- );myofibroblasts (α-SMA+/ Vim+) and invading retinal astrocytes/ differentiated retinal glia (GFAP+; Vim+). A characteristic distribution of these stromal cell types was observed in the tumor microenvironment, with endothelial cells predominantly seen in blood vessels and macrophages near actively proliferating tumor or necrotic areas. Retinal astrocytes and glia were predominant near the optic nerve regions in invasive tumors with sparse distribution in tumor foci. Fibroblasts were widely distributed with rare evidence of myofibroblasts in the tumor. Both gene and protein expression revealed statistically significant (P<0.05) up-regulation of FAP, TNC and BST2 in primary RB tumors compared to the normal retina. Co-culture of BMSC with RB cells promoted invasion and proliferation of RB cells in direct and indirect contact methods respectively. Direct co-culture of RB cell lines with BMSC resulted in gene expression changes in ECM-receptor interaction, focal adhesion, IL-8 and TGF-β signaling pathways associated with cancer. In contrast, various metabolic pathways such a glucose, fructose and amino acid metabolism were significantly altered under the indirect co-culture condition. Conclusion: The study suggests that the close interaction between RB cells and the stroma might be involved in RB tumor invasion and progression which is likely to be mediated by ECM-receptor interactions and secretory factors. Targeting the tumor stroma would be an attractive option for redesigning treatment strategies for RB.

Keywords: gene expression profiles, retinoblastoma, stromal cells, tumor microenvironment

Procedia PDF Downloads 381
5732 Structural and Functional Comparison of Untagged and Tagged EmrE Protein

Authors: S. Junaid S. Qazi, Denice C. Bay, Raymond Chew, Raymond J. Turner

Abstract:

EmrE, a member of the small multidrug resistance protein family in bacteria is considered to be the archetypical member of its family. It confers host resistance to a wide variety of quaternary cation compounds (QCCs) driven by proton motive force. Generally, purification yield is a challenge in all membrane proteins because of the difficulties in their expression, isolation and solubilization. EmrE is extremely hydrophobic which make the purification yield challenging. We have purified EmrE protein using two different approaches: organic solvent membrane extraction and hexahistidine (his6) tagged Ni-affinity chromatographic methods. We have characterized changes present between ligand affinity of untagged and his6-tagged EmrE proteins in similar membrane mimetic environments using biophysical experimental techniques. Purified proteins were solubilized in a buffer containing n-dodecyl-β-D-maltopyranoside (DDM) and the conformations in the proteins were explored in the presence of four QCCs, methyl viologen (MV), ethidium bromide (EB), cetylpyridinium chloride (CTP) and tetraphenyl phosphonium (TPP). SDS-Tricine PAGE and dynamic light scattering (DLS) analysis revealed that the addition of QCCs did not induce higher multimeric forms of either proteins at all QCC:EmrE molar ratios examined under the solubilization conditions applied. QCC binding curves obtained from the Trp fluorescence quenching spectra, gave the values of dissociation constant (Kd) and maximum specific one-site binding (Bmax). Lower Bmax values to QCCs for his6-tagged EmrE shows that the binding sites remained unoccupied. This lower saturation suggests that the his6-tagged versions provide a conformation that prevents saturated binding. Our data demonstrate that tagging an integral membrane protein can significantly influence the protein.

Keywords: small multidrug resistance (SMR) protein, EmrE, integral membrane protein folding, quaternary ammonium compounds (QAC), quaternary cation compounds (QCC), nickel affinity chromatography, hexahistidine (His6) tag

Procedia PDF Downloads 372