Search results for: poverty prediction
2584 Prediction of Scour Profile Caused by Submerged Three-Dimensional Wall Jets
Authors: Abdullah Al Faruque, Ram Balachandar
Abstract:
Series of laboratory tests were carried out to study the extent of scour caused by a three-dimensional wall jets exiting from a square cross-section nozzle and into a non-cohesive sand beds. Previous observations have indicated that the effect of the tailwater depth was significant for densimetric Froude number greater than ten. However, the present results indicate that the cut off value could be lower depending on the value of grain size-to-nozzle width ratio. Numbers of equations are drawn out for a better scaling of numerous scour parameters. Also suggested the empirical prediction of scour to predict the scour centre line profile and plan view of scour profile at any particular time.Keywords: densimetric froude number, jets, nozzle, sand, scour, tailwater, time
Procedia PDF Downloads 4342583 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.Keywords: data mining, data analysis, prediction, optimization, building operational performance
Procedia PDF Downloads 8512582 Challenges of Technical and Engineering Students in the Application of Scientific Cancer Knowledge to Preserve the Future Generation in Sub-Saharan Africa
Authors: K. Shaloom Mbambu, M. Pascal Tshimbalanga, K. Ruth Mutala, K. Roger Kabuya, N. Dieudonné Kabeya, Y. L. Kabeya Mukeba
Abstract:
In this article, the authors examine the even more worrying situation of girls in sub-Saharan Africa. Two-girls on five are private of Global Education, which represents a real loss to the development of communities and countries. Cultural traditions, poverty, violence, early and forced marriages, early pregnancies, and many other gender inequalities were the causes of this cancer development. Namely, "it is no more efficient development tool that is educating girls." The non-schooling of girls and their lack of supervision by liberal professions have serious consequences for the life of each of them. To improve the conditions of their inferior status, girls to men introduce poverty and health risks. Raising awareness among parents and communities on the importance of girls' education, improving children's access to school, girl-boy equality with their rights, creating income, and generating activities for girls, girls, and girls learning of liberal trades to make them self-sufficient. Organizations such as the United Nations Organization can save the children. ASEAD and the AEDA group are predicting the impact of this cancer on the development of a nation's future generation must be preserved.Keywords: young girl, Sub-Saharan Africa, higher and vocational education, development, society, environment
Procedia PDF Downloads 2522581 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults
Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed
Abstract:
Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.Keywords: dissolved gas-in-oil analysis, fuzzy logic, power transformer, prediction
Procedia PDF Downloads 1422580 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets
Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.
Abstract:
The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction
Procedia PDF Downloads 1142579 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar
Authors: Yasir E. Mohieldeen
Abstract:
Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination
Procedia PDF Downloads 1052578 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes
Authors: Dariush Jafari, S. Mostafa Nowee
Abstract:
In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.Keywords: thermodynamic modeling, ANN, solubility, ternary electrolyte system
Procedia PDF Downloads 3842577 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 982576 Novel GPU Approach in Predicting the Directional Trend of the S&P500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-of-sample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.Keywords: financial algorithm, GPU, S&P 500, stock market prediction
Procedia PDF Downloads 3492575 A Study on Social and Economic Conditions of Street Vendors Using Field Survey Data
Authors: Ruchika Yadav
Abstract:
Street vendors are the integral component of urban economies of the world. They are the distributors of affordable goods and services and provide convenient and accessible retail options to the customers and form a vital part of the social and economic life of a city. A street vendor as an occupation existed for hundreds of years and considered to be as a cornerstone of many cities. In this paper, our objective is to analyze the socio-economic profile of street vendors, identification of their problems and to suggest remedial measures for the betterment based on the observation and suggestions of the street vendors. To conduct this study, primary data has been collected with the help of field survey and direct questionnaire to the respondents in Aligarh City which contains all the information relevant to social and economic conditions. The overall analysis of this study reveals street vendors are the backward sections of the society possess medium to the low-level standard of living due to illiteracy; their working environment and social security issues are not addressed properly. They are unaware of many of the governmental schemes launched for poverty alleviation and their poor accessibility in basic amenities leads to the backward socio-economic status in the society. The results found in this study can be very useful and helping tool for the policymakers to know the socio-economic conditions of the street vendors in detail.Keywords: abject poverty, socio-economic conditions, street vendors, vulnerability
Procedia PDF Downloads 1382574 An Integrated Approach of Islamic Social Financing for Achieving Sustainable Development Goals (SDGS) Through Crowdfunding: A Model for Sharing Economy for Community Development in Bangladesh
Authors: Md. Abu Yousuf
Abstract:
Islamic social financing (ISF) refers to the fair distribution of wealth and financial dealings and prevents economic exploitation at all levels. ISF instruments include Islamic institutions Zakat (obligatory charity), Sadaqah (voluntary charity) and Waqf (endowment) based on philanthropy such and Qard-al Hasan (beautiful loan), micro takaful (insurance) and social investments through Sukuk (bonds) based on cooperation. ISF contributes to socio-economic development, end poverty, protects environmental sustainability, promotes education, equality, social justice and above all, establishes social well-being since the birth of Islam. ISF tools are instrumental towards achieving sustainable development goals (SDGs) set by United Nations (UN). The present study will explore the scope of ISF for community development in Bangladesh and examine the challenges in implementing ISF tools and will provide the most practical model of ISF. The study will adopt a mixed-method (MM) design in the process of data collection and analysis. The researcher will consider all issues related to ethics, reliability, validity and feasibility while conducting the study.Keywords: Islamic social financing, sustainable development goals, poverty eradication, zakat, waqf, sadaqah, Islamic microfinance
Procedia PDF Downloads 1842573 Social Entrepreneurship and Inclusive Growth
Authors: Sudheer Gupta
Abstract:
Approximately 4 billion citizens of the world live on the equivalent of less than $8 a day. This segment constitutes a $5 trillion global market that remains under-served. Multinational corporations have historically tended to focus their innovation efforts on the upper segments of the economic pyramid. The academic literature has also been dominated by theories and frameworks of innovation that are valid when applied to the developed markets and consumer segments, but fail to adequately account for the challenges and realities of new product and service creation for the poor. Theories of entrepreneurship developed in the context of developed markets similarly ignore the challenges and realities of operating in developing economies that can be characterized by missing institutions, missing markets, information and infrastructural challenges, and resource constraints. Social entrepreneurs working in such contexts develop solutions differently. In this talk, we summarize lessons learnt from a long-term research project that involves data collection from a broad range of social entrepreneurs in developing countries working towards solutions to alleviate poverty, and grounded theory-building efforts. We aim to develop a better understanding of consumers, producers, and other stakeholder involvement, thus laying the foundation to build a robust theory of innovation and entrepreneurship for the poor.Keywords: poverty alleviation, social enterprise, social innovation, development
Procedia PDF Downloads 3982572 Impact of Foreign Aid on Economic Development
Authors: Saeed Anwar
Abstract:
Foreign aid has long been a prominent tool in the pursuit of economic development in recipient countries. This research paper aims to analyze the impact of foreign aid on economic development and explore the effectiveness of aid in promoting sustainable growth, poverty reduction, and improvements in human development indicators. Drawing upon a comprehensive review of existing literature, both theoretical frameworks and empirical evidence are synthesized to provide insights into the complex relationship between foreign aid and economic development. The paper examines various channels through which foreign aid influences economic development, including infrastructure development, education and healthcare investments, technology transfer, and institutional capacity building. It explores the potential positive effects of aid in stimulating economic growth, reducing poverty, and enhancing human capital formation. Additionally, it investigates the potential challenges and limitations associated with aid, such as aid dependency, governance issues, and the potential crowding out of domestic resources. Furthermore, the study assesses the heterogeneity of aid effectiveness across different types of aid modalities, recipient country characteristics, and aid allocation mechanisms. It considers the role of aid conditionality, aid fragmentation, and aid targeting in influencing the effectiveness of aid in promoting economic development. The findings of this research contribute to the ongoing discourse on foreign aid and economic development by providing a comprehensive analysis of the existing literature. The study highlights the importance of context-specific factors, recipient country policies, and aid effectiveness frameworks in determining the impact of foreign aid on economic development outcomes. The insights derived from this research can inform policymakers, donor agencies, and practitioners in designing and implementing effective aid strategies to maximize the positive impact of foreign aid on economic development.Keywords: foreign aid, economic development, sustainable growth, poverty reduction, human development indicators, infrastructure development, education, healthcare, technology transfer, institutional capacity building, aid effectiveness, aid dependency, governance, crowding out, aid conditionality, aid fragmentation, aid targeting, recipient country policies, aid strategies, donor agencies, policymaking
Procedia PDF Downloads 632571 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker
Authors: Jong Won, Park, Sung Hyun, Kim
Abstract:
The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.Keywords: impact energy, impact frequency, hydraulic breaker, life prediction
Procedia PDF Downloads 4392570 A Regression Model for Residual-State Creep Failure
Authors: Deepak Raj Bhat, Ryuichi Yatabe
Abstract:
In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils
Procedia PDF Downloads 4062569 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 2112568 Service Life Prediction of Tunnel Structures Subjected to Water Seepage
Authors: Hassan Baji, Chun-Qing Li, Wei Yang
Abstract:
Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.Keywords: water seepage, tunnels, time-dependent reliability, service life
Procedia PDF Downloads 4812567 Demographic Bomb or Bonus in All Provinces in 100 Years after Indonesian Independence
Authors: Fitri CaturLestari
Abstract:
According to National Population and Family Planning Board (BKKBN), demographic bonus will occur in 2025-2035, when the number of people within the productive age bracket is higher than the number of elderly people and children. This time will be a gold moment for Indonesia to achieve maximum productivity and prosperity. But it will be a demographic bomb if it isn’t balanced by economic and social aspect considerations. Therefore it is important to make a prediction mapping of all provinces in Indonesia whether in demographic bomb or bonus condition after 100 years Indonesian independence. The purpose of this research were to make the demographic mapping based on the economic and social aspects of the provinces in Indonesia and categorizing them into demographic bomb and bonus condition. The research data are gained from Statistics Indonesia (BPS) as the secondary data. The multiregional component method, regression and quadrant analysis were used to predict the number of people, economic growth, Human Development Index (HDI), and gender equality in education and employment. There were different characteristic of provinces in Indonesia from economic aspect and social aspect. The west Indonesia was already better developed than the east one. The prediction result, many provinces in Indonesia will get demographic bonus but the others will get demographic bomb. It is important to prepare particular strategy to particular provinces with all of their characteristic based on the prediction result so the demographic bomb can be minimalized.Keywords: demography, economic growth, gender, HDI
Procedia PDF Downloads 3332566 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 2082565 Budget Discipline and National Prosperity: The Nigerian Experience
Authors: Ben-Caleb Egbide, Iyoha Francis, Egharevba Mathew, Oduntan Emmanuel
Abstract:
The prosperity of any nation is determined not just by the availability of resources, but also by the discipline exercised in the management of those resources. This paper examines the functional association between adherence to budgetary estimates or budget discipline (BDISC) and national prosperity proxied by Real Gross Domestic Product (RGDP) and Relative Poverty Index (RPI)/Human Development Index (HDI). Adopting a longitudinal retrospective research strategy, time series data relating to both the endogenous and exogenous variables were extracted from official government publications for 36 years’ (1980-2015 in the case of RGDP and RPI), and for 26 years (1990-2015 in the case of HDI). Ordinary Least Square (OLS), as well as cointegration regressions, were employed to gauge both the short term and long term impact of BDISC on RPI/HDI and RGDP. The results indicated that BDISC is directly related with RGDP but indirectly related with RPI. The implication is that while adherence to budgetary estimate can enhance economic growth, it has the capacity to slow down the rate of poverty in the long run. The paper, therefore, recommend stricter adherence to budgets as a way out of economic under performance in Nigeria and engender the process of promoting human development and national prosperity.Keywords: budget discipline, human development index, national prosperity, Nigeria
Procedia PDF Downloads 2362564 Increased Availability and Accessibility of Family Planning Services: An Approach Leading to Improved Contraceptive Uptake and Reproductive Behavior of Women Living in Pakistan
Authors: Lutaf Ali, Haris Ahmed, Hina Najmi
Abstract:
Background: Access, better counseling and quality in the provision of family planning services remain big challenges. Sukh Initiative (a project of three different foundations) is a multi-pronged approach, working in one million underserved population residing peri urban slums in Karachi and providing door to door services by lady health workers (LHWs) and community health workers (CHWs) linked with quality family planning and reproductive (FP/RH) services both at public and private health care facilities. Objective: To assess the improvement in family planning and reproductive health behavior among MWRAs by improving access in peri-urban-underserved population of Karachi. Methodology: Using cross sectional study design 3866 married women with reproductive age (MWRAs) were interviewed in peri urban region of Karachi during November 2016 to January 2017. All face to face structured interviews were conducted with women aged 15-49 currently living with their husbands. Based on the project intervention question on reproductive health were developed and questions on contraceptive use were adopted from PDHS- Pakistan 2013. Descriptive and inferential analysis was performed on SPSS version 22. Results: 65% of population sample are literate, 51% women were in young age group- 15–29. On the poverty index, 6% of the population sample living at national poverty line 1.25$ and 52% at 2.50$. During the project years 79% women opted for facility based delivery; private facilities are the priority choice. 61.7% women initiated the contraceptive use in last two years (after the project).Use of family planning was increased irrespective of education level and poverty index- about 55.5% women with no formal education are using any form of contraception and trend of current modern contraceptives across poverty scores strata equally distributed amongst all groups. Age specific modern contraceptive prevalence rate (mCPR)(between 25-34) was found to be 43.8%. About 23% of this contraceptive ascertained from door to door services- short acting, (pills and condoms) are common, 29.5% from public facilities and 47.6% are from public facilities in which long acting and permanent method most received methods. Conclusion: Strategy of expanding access and choice in the form of providing family planning information and supplies at door step and availability of quality family planning services in the peripheries of underserved may improve the behavior of women regarding FP/RH.Keywords: access, family planning, underserved population, socio-demographic facts
Procedia PDF Downloads 2022563 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance
Authors: Shauma L. Tamba
Abstract:
This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.Keywords: morality, competence, ingroup identification, religion, group norm
Procedia PDF Downloads 4082562 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 1472561 The Implementation of Corporate Social Responsibility to Contribute the Isolated District and the Drop behind District to Overcome the Poverty, Study Cases: PT. Kaltim Prima Coal (KPC) Sanggata, East Borneo, Indonesia
Authors: Sri Suryaningsum
Abstract:
The achievement ‘Best Practice Model’ holds by the government on behalf of the success implementation corporate social responsibility program that held on PT. Kaltim Prima Coal which had operation located in the isolated district in Sanggata, it could be the reference for the other companies to improve the social welfare in surrounding area, especially for the companies that have operated in the isolated area in Indonesia. The rule of Kaltim Prima Coal as the catalyst in the development progress to push up the independence of district especially for the district which has located in surrounding mining operation from village level to the regency level, those programs had written in the 7 field program in Corporate Social Responsibility, it was doing by stakeholders. The stakeholders are village government, sub-district government, Regency and citizen. One of the best programs that implement at PT. Kaltim Prima Coal is Regarding Resettlement that was completed based on Asian Development Bank Resettlement Best Practice and International Financial Corporation Resettlement Action Plan. This program contributed on the resettlement residences to develop the isolated and the neglected district.Keywords: CSR, isolated, neglected, poverty, mining industry
Procedia PDF Downloads 2462560 Farmers Perception on the Level of Participation in Agricultural Project: The Case of a Community Garden Project in Imphendhle Municipality of Kwazulu-Natal Province, South Africa
Authors: Jorine T. Ndoro, Marietjie Van Der Merwe
Abstract:
Rural poverty remains a critical challenge in most developing countries and the participation of farmers in agricultural projects has taken a key role in development initiatives. Farmers’ participation in agricultural initiatives is crucial towards poverty alleviation and food security. Farmers’ involvement directly contributes towards sustainable agricultural development and livelihoods. This study focuses on investigating the perceptions of farmers’ participation in a community garden project. The study involved farmers belonging to community garden project in Imphendhle municipality in Mgungundlvu district of KwaZulu-Natal in South Africa. The study followed a qualitative research design using an interpretive research paradigm. The data was collected through conducting in-depth semi-structured interviews and a focus group was conducted with the eight farmers belonging to the community garden project. The findings show that the farmers are not involved in decision makings in the project. The farmers are passive participants. Participation of the farmers was mainly to carry out the activities from the extension officers. The study recommends that farmers be actively involved in projects and programmes introduced in their communities. Farmers’ active participation contributes to the sustainability of the projects through a sense of ownership.Keywords: farmers, participation, agricultural extension, community garden
Procedia PDF Downloads 2542559 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1392558 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 4582557 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic
Authors: Aneta Oblouková, Eva Vítková
Abstract:
The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate
Procedia PDF Downloads 1202556 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs
Authors: Malo Pocheau-Lesteven, Olivier Le Maître
Abstract:
Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program
Procedia PDF Downloads 1562555 A Policy Review on the Transitional Period from MDGs to SDGs: Experience from the Local Economy of Tigrai Regional State of Ethiopia
Authors: Tewele Gerlase Haile
Abstract:
Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. The global development landscape underwent a transformative shift in 2015 as the international community pivoted from the MDGs to the more ambitious and comprehensive SDGs. The NDGs were a set of eight international development goals established by the United Nations in 2000, with the aim of improving the lives of people around the world by 2015. SDGs are a continuation of the MDGs. Unlike on the other development goals, progress on eradication of extreme hunger and poverty (MDG 1) has been slow at a continental level. The implementation of the MDGs was uneven: some countries have already achieved many of them, while the others have not started any of them yet. With its Poverty Reduction Strategic Papers (PRSPs), Ethiopia has been given special attention to the first MDG since 1993. The Ethiopian government was actively engaged in anti-poverty political campaign leaving other agendas as secondary issues. Poverty in Ethiopia progressively reduced over the years; it was 44.2% in 2000, 38.7% in 2007, 29.6 % in 2011, and it is projected to further reduce to 16.7% by the end of 2020. The long-term impact of war on the sustainability and effectiveness of SDG-related initiatives in post-conflict regions, particularly in how local governance and community resilience are affected. This could involve exploring how war interrupts progress, which specific SDGs are most vulnerable, and what strategies might mitigate these impacts. Reviewing a transitional period enables policy makers to align global or national development goals into local development goals with an uninterrupted policy continuity. The existing literature on development economics often neglects the importance of reviewing the transitional period of consecutive global development goals in a local or regional perspective. Reviewing a transitional period enables policy makers to align global or national development goals into local development goals with an uninterrupted policy continuity. Using a Policy Coherence for Development (PCD) approach as analytical tool, this paper is intended to retrospectively review what happened to the local economy of Tigrai Regional State during the transitional period from MDGs (2000-2015) to SDGs (2015-2030). Taking a retrospective facts and observations into account, policy discontinuity is witnessed in Tigrai following the dissolution of the EPRDF that followed with a terrible war that claimed about a million human lives and worth of over a hundred Billion US dollars economic costs. The unhealthy political reform caused not only a terrible war but also breaks the promising SDGs. Unlike other regional states, Tigrai left unprivileged to translate the ambitious SDGs into its local development policies.Keywords: local development, political reform, war, MDGs, SDGs, Ethiopia, tigrai
Procedia PDF Downloads 18