Search results for: plant classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5609

Search results for: plant classification

5159 Plant as an Alternative for Anti Depressant Drugs St John's Wort

Authors: Mahdi Akhbardeh

Abstract:

St John's wort plant can help to treat depression disease through decreasing this disease symptom, due to having some similar features of Prozac (Fluoxetine Hcl) pill. People suffering from slight depression who have fear of using antidepressants side effects can use St John's wort drops under doctor observation. This method of treatment is proposed specially to those women who are spending menopause or depression resulted from this period. St John's wort plant have proposed traditional and plant medicine as newest researches in treating mood disorders compared to Prozac (Fluoxetine Hcl) drug in treating depression disease which is being administrated in clinic research center of Washington. Objective: the aim of this study is to find an alternative treatment method in people suffering from depression which are treated with Prozac (Fluoxetine Hcl). Almost 70 percent of treatment failures with Prozac (Fluoxetine Hcl) drug in patients suffering from slight to normal depression is due to intensive side effects including: decrease in blood pressure, reduce in sexual desire and 30 percent of it is due to this drug affectless in treatment procedure which leads to leaving treatment. Results of Hypercuim plant function are exactly similar to antidepressants. Increase in serotonin amount in brain synopsis terminal end causes increase in existence time of this material in this part. In fact these two drugs have similar function. Though side effects of Hypercuim plant(St John's wort) including headache and slight nausea tolerable. Results: St John's wort plant can be used lonely in slight to normal depressions in which patients are avoiding Prozac (Fluoxetine Hcl) drug due to it's side effects. In intensive depressions through which general patients don’t indicate positive response to drug, it is probably expected relative or even complete treatment through combining antidepressants drugs with this plant. This treatment method has been investigated and confirmed in clinical tests and researches.

Keywords: depression, St John's wort, Prozac, antidepressant

Procedia PDF Downloads 487
5158 Reducing The Frequency of Flooding Accompanied by Low pH Wastewater In 100/200 Unit of Phosphate Fertilizer 1 Plant by Implementing The 3R Program (Reduce, Reuse and Recycle)

Authors: Pradipta Risang Ratna Sambawa, Driya Herseta, Mahendra Fajri Nugraha

Abstract:

In 2020, PT Petrokimia Gresik implemented a program to increase the ROP (Run Of Pile) production rate at the Phosphate Fertilizer 1 plant, causing an increase in scrubbing water consumption in the 100/200 area unit. This increase in water consumption causes a higher discharge of wastewater, which can further cause local flooding, especially during the rainy season. The 100/200 area of the Phosphate Fertilizer 1 plant is close to the warehouse and is often a passing area for trucks transporting raw materials. This causes the pH in the wastewater to become acidic (the worst point is up to pH 1). The problem of flooding and exposure to acidic wastewater in the 100/200 area of Phosphate Fertilizer Plant 1 was then resolved by PT Petrokimia Gresik through wastewater optimization steps called the 3R program (Reduce, Reuse, and Recycle). The 3R (Reduce, reuse, and recycle) program consists of an air consumption reduction program by considering the liquid/gas ratio in scrubbing unit of 100/200 Phosphate Fertilizer 1 plant, creating a wastewater interconnection line so that wastewater from unit 100/200 can be used as scrubbing water in the Phonska 1, Phonska 2, Phonska 3 and unit 300 Phosphate Fertilizer 1 plant and increasing scrubbing effectiveness through scrubbing effectiveness simulations. Through a series of wastewater optimization programs, PT Petrokimia Gresik has succeeded in reducing NaOH consumption for neutralization up to 2,880 kg/day or equivalent in saving up to 314,359.76 dollars/year and reducing process water consumption up to 600 m3/day or equivalent in saving up to 63,739.62 dollars/year.

Keywords: fertilizer, phosphate fertilizer, wastewater, wastewater treatment, water management

Procedia PDF Downloads 25
5157 Pesticidal Potential of Selected Aqueous Plant Extracts for the Control of Webber Caterpillar (Hymenis Recurvalis Fab.) Infestation on Amaranthus in Kashere,Gombe State, Nigeria

Authors: Degri M. M, Samaila A. E., Simon L., Joly G. A.

Abstract:

The amaranth leaf webber caterpillar (Hymenia recurvalis Fab.) was found to cause serious leaf damage by perforation and reduce amaranth growth and yield. It is a major limiting factor in amaranth production. Field experiments were conducted during 2022 and 2023 with the aim of assessing insecticidal potential of five selected plant leaf extracts, namely Moringa oleifera, Azadiractha indica A. Juss , Balanites aegyptiaca Del., Momordica balsamina and Hyptis suaveolens using Lambda.cyhalothrin 2.5 EC, a synthetic insecticide as a check. The experiment was conducted in a randomized complete block design (RCBD) replicated three times. Results showed that A.indica and H.suaveolous were more effective in reducing H .recurvalis population, leaf perforation, leaf damaged and improved amaranth plant growth and yield. This was closely followed by B. aegyptiaca and M. balsamina while M. oleifera had the lowest effect on the use of pest population and damage. Lambda.cyhalothrin, a synthetic insecticide, was found to be superior to the five plant extracts. The result showed that A. indica and H. suaveolens improved the growth and yield of amaranth during the study period. The study, therefore, recommended the two plant extracts for the control of leaf webber caterpillar (H. recurvalis) to limited resource farmers and as a good alternative to Lambda.cyhalothrin 2.5EC in the study area.

Keywords: Amaranth, leaf Webber plant extracts, Lambda cyhalothrin, rainfed

Procedia PDF Downloads 18
5156 Autonomous Vehicle Detection and Classification in High Resolution Satellite Imagery

Authors: Ali J. Ghandour, Houssam A. Krayem, Abedelkarim A. Jezzini

Abstract:

High-resolution satellite images and remote sensing can provide global information in a fast way compared to traditional methods of data collection. Under such high resolution, a road is not a thin line anymore. Objects such as cars and trees are easily identifiable. Automatic vehicles enumeration can be considered one of the most important applications in traffic management. In this paper, autonomous vehicle detection and classification approach in highway environment is proposed. This approach consists mainly of three stages: (i) first, a set of preprocessing operations are applied including soil, vegetation, water suppression. (ii) Then, road networks detection and delineation is implemented using built-up area index, followed by several morphological operations. This step plays an important role in increasing the overall detection accuracy since vehicles candidates are objects contained within the road networks only. (iii) Multi-level Otsu segmentation is implemented in the last stage, resulting in vehicle detection and classification, where detected vehicles are classified into cars and trucks. Accuracy assessment analysis is conducted over different study areas to show the great efficiency of the proposed method, especially in highway environment.

Keywords: remote sensing, object identification, vehicle and road extraction, vehicle and road features-based classification

Procedia PDF Downloads 231
5155 Dynamic Distribution Calibration for Improved Few-Shot Image Classification

Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran

Abstract:

Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.

Keywords: deep learning, computer vision, image classification, few-shot learning, threshold

Procedia PDF Downloads 66
5154 Phytochemical and Proximate Composition Analysis of Aspillia kotschyi

Authors: A. U. Adamu, E. D Paul, C. E. Gimba, I. G. Ndukwe

Abstract:

The phytochemical and proximate composition of Aspillia kotschyi belonging to Compositae family which is commonly used as medicinal plant in Nigeria was determined on both the Methanolic and Petroleum sprit extract of the plant. The Methanolic extract of the plant revealed the presence of carbohydrates, cardiac glyscosides, flavonoids, triterpene, and alkaloids. The Petroleum sprit extract showed the presence of only carbohydrates and alkaloid. Proximate composition analysis shows moisture content of 5.7%, total ash of 4.03%, crude protein 10.94%, fibre 9.06%, fat value 0.83%, and nitrogen free extract of 70.19%. The results of this study suggest some merit in the popular use of Aspillia kotschi in herbal medicine.

Keywords: Aspillia kotschyi, herbal medicine, phytochemical, proximate composition

Procedia PDF Downloads 366
5153 Facial Pose Classification Using Hilbert Space Filling Curve and Multidimensional Scaling

Authors: Mekamı Hayet, Bounoua Nacer, Benabderrahmane Sidahmed, Taleb Ahmed

Abstract:

Pose estimation is an important task in computer vision. Though the majority of the existing solutions provide good accuracy results, they are often overly complex and computationally expensive. In this perspective, we propose the use of dimensionality reduction techniques to address the problem of facial pose estimation. Firstly, a face image is converted into one-dimensional time series using Hilbert space filling curve, then the approach converts these time series data to a symbolic representation. Furthermore, a distance matrix is calculated between symbolic series of an input learning dataset of images, to generate classifiers of frontal vs. profile face pose. The proposed method is evaluated with three public datasets. Experimental results have shown that our approach is able to achieve a correct classification rate exceeding 97% with K-NN algorithm.

Keywords: machine learning, pattern recognition, facial pose classification, time series

Procedia PDF Downloads 350
5152 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline

Authors: Kenan Morani, Esra Kaya Ayana

Abstract:

This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.

Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation

Procedia PDF Downloads 131
5151 Exploring Multi-Feature Based Action Recognition Using Multi-Dimensional Dynamic Time Warping

Authors: Guoliang Lu, Changhou Lu, Xueyong Li

Abstract:

In action recognition, previous studies have demonstrated the effectiveness of using multiple features to improve the recognition performance. We focus on two practical issues: i) most studies use a direct way of concatenating/accumulating multi features to evaluate the similarity between two actions. This way could be too strong since each kind of feature can include different dimensions, quantities, etc; ii) in many studies, the employed classification methods lack of a flexible and effective mechanism to add new feature(s) into classification. In this paper, we explore an unified scheme based on recently-proposed multi-dimensional dynamic time warping (MD-DTW). Experiments demonstrated the scheme's effectiveness of combining multi-feature and the flexibility of adding new feature(s) to increase the recognition performance. In addition, the explored scheme also provides us an open architecture for using new advanced classification methods in the future to enhance action recognition.

Keywords: action recognition, multi features, dynamic time warping, feature combination

Procedia PDF Downloads 437
5150 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field

Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang

Abstract:

Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.

Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes

Procedia PDF Downloads 290
5149 Spatial Distribution of Virus-Transmitting Aphids of Plants in Al Bahah Province, Saudi Arabia

Authors: Sabir Hussain, Muhammad Naeem, Yousif Aldryhim, Susan E. Halbert, Qingjun Wu

Abstract:

Plant viruses annually cause severe economic losses in crop production and globally, different aphid species are responsible for the transmission of such viruses. Additionally, aphids are also serious pests of trees, and agricultural crops. Al Bahah Province, Kingdom of Saudi Arabia (KSA) has a high native and introduced plant species with a temperate climate that provides ample habitats for aphids. In this study, we surveyed virus-transmitting aphids from the Province to highlight their spatial distributions and hot spot areas for their target control strategies. During our fifteen month's survey in Al Bahah Province, three hundred and seventy samples of aphids were collected using both beating sheets and yellow water pan traps. Consequently, fifty-four aphid species representing 30 genera belonging to four families were recorded from Al Bahah Province. Alarmingly, 35 aphid species from our records are virus transmitting species. The most common virus transmitting aphid species based on number of collecting samples, were Macrosiphum euphorbiae (Thomas, 1878), Brachycaudus rumexicolens (Patch, 1917), Uroleucon sonchi (Linnaeus, 1767), Brachycaudus helichrysi (Kaltenbach, 1843), and Myzus persicae (Sulzer, 1776). The numbers of samples for the forementioned species were 66, 24, 23, 22, and 20, respectively. The widest range of plant hosts were found for M. euphorbiae (39 plant species), B. helichrysi (12 plant species), M. persicae (12 plant species), B. rumexicolens (10 plant species), and U. sonchi (9 plant species). The hottest spot areas were found in Al-Baha, Al Mekhwah and Biljarashi cities of the province on the basis of their abundance. This study indicated that Al Bahah Province has relatively rich aphid diversity due to the relatively high plant diversity in a favorable climatic condition. ArcGIS tools can be helpful for biologists to implement the target control strategies against these pests in the integrated pest management, and ultimately to save money and time.

Keywords: Al Bahah province, aphid-virus interaction, biodiversity, global information system

Procedia PDF Downloads 184
5148 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties

Authors: G. Martino, F. Silva, E. Marchal

Abstract:

The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.

Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization

Procedia PDF Downloads 123
5147 Study on Meristem Culture of Purwoceng (Pimpinella pruatjan Molk.) and Its Stigmasterol Detected by Thin Layer Chromatography

Authors: Totik Sri Mariani, Sukrasno Isna, Tet Fatt Chia

Abstract:

Purwoceng (Pimpinella pruatjan Molk) is a legend plant used for increasing stamina by Kings in Java Island, Indonesia. Purpose of this study was to perform meristem culture and detected its stigmasterol by thin layer chromatography (TLC). Our result show that meristem culture could be propagated and grew into plantlet. After extracting intact acclimatized plant derived from meristem culture by hexane, we could detected stigmasterol by TLC. For suggestion, our extraction and TLC method could be used for detecting stigmasterol in others plant.

Keywords: purwoceng (pimpinella pruatjan), meristem culture, extraction, thin layer chromatography

Procedia PDF Downloads 430
5146 Productivity and Profitability of Field Pea as Influenced by Different Levels of Fertility and Bio-Fertilizers under Irrigated Condition

Authors: Akhilesh Mishra, Geeta Rai, Arvind Srivastava, Nalini Tiwari

Abstract:

A field experiment was conducted during two consecutive Rabi seasons of 2007 and 2008 to study the economics of different bio-fertilizer’s inoculations in fieldpea (cv. Jai) at Chandra Shekhar Azad University of Agriculture and Technology, Kanpur (India). Results indicated that the seed inoculation with Rhizobium + PSB + PGPR improved all the growth; yield attributes and yields of field pea. Fresh and dry weight plant-1, nodules number and dry weight plant-1 were found significantly maximum. Number of grains pod-1, number and weight of pods plant-1 at maturity attributed significantly in increasing the grain yield as well as net return. On pooled basis, maximum net income (Rs.22169 ha-1) was obtained with the use of Rhizobium + PSB + PGPR which was improved by a margin of Rs.1502 (6.77%), 2972 (13.40%), 2672 (12.05%), 5212 (23.51%), 6176 (27.85%), 4666 (21.04%) and 8842/ha (39.88%) over the inoculation of PSB + PGPR, Rhizobium + PGPR, Rhizobium + PSB, PGPR, PSB, Rhizobium and control, respectively. Thus, it can be recommended that to earn the maximum net profit from dwarf field pea, seed should be inoculated with Rhizobium + PSB + PGPR.

Keywords: rhizobium, phosphorus solubilizing bacteria, plant growth promoting rhizobacteria, field pea

Procedia PDF Downloads 409
5145 Climate Impact on Spider Mite (Tetranychus Sp. Koch) Infesting Som Plant Leaves (Machilus Bombycina King) and Their Sustainable Management

Authors: Sunil Kumar Ghosh

Abstract:

Som plant (Machilus bombycina King) is an important plant in agroforestry system. It is cultivated in north -east part of India. It is cultivated in agricultural land by the marginal farmers for multi-storeyed cultivation with intercropping. Localized cottage industries are involved with this plant like sericulture industry (muga silk worm cultivation). Clothes are produced from this sericulture industry. Leaves of som plants are major food of muga silk worm ( Antherea assama ). Nutritional value of leaves plays an important role in the larval growth and silk productivity. The plant also has timber value. The plant is susceptible to mite pest (Tetranychus sp.) causes heavy damage to tender leaves. Lower population was recorded during 7th to 38th standard week, during 3rd week of February to 4th week of September and higher population was during 46th to 51st standard week, during 3rd week of November to 3rd week of December and peak population (6.06/3 leaves) was recorded on 46th standard week that is on 3rd week of November. Correlation studies revealed that mite population had a significant negative correlation with temperature and non-significant positive correlation with relative humidity. This indicates that activity of mites population increase with the rise of relative humidity and decrease with the rise of temperature. Tobacco leaf extracts was found most effective against mite providing 40.51% suppression, closely followed by extracts of Spilanthes (39.06% suppression). Extracts of Garlic and extracts of Polygonum plant gave moderate results, recording about 38.10% and 37.78% mite suppression respectively. The polygonum (Polygonum hydropiper) plant (floral parts), pongamia (Pongamia pinnata) leaves, garlic (Allium sativum), spilanthes (Spilanthes paniculata) (floral parts) were extracted in methanol. Synthetic insecticides contaminate plant leaves with the toxic chemicals. Plant extracts are of biological origin having low or no hazardous effect on health and environment and so can be incorporated in organic cultivation.

Keywords: Abiotic factors, incidence, botanical extracts, organic cultivation, silk industry

Procedia PDF Downloads 139
5144 Preliminary Investigations on the Development and Production of Topical Skin Ointments

Authors: C. C. Igwe, C. E. Ogbuadike

Abstract:

Bryophyllum pinnatum is a tropical plant used by the indigenous people of South-East Nigeria as a medicinal plant for the treatment of skin ulcer and is being explored for the production of topical herbal skin ointments. This preliminary study involves the extraction and characterization of bioactive compounds from this plant for anti-skin ulcer, antimicrobial, and antioxidant activity, as well as formulating topical herbal medications for skin ulcer. Thus extraction, percentage yield, moisture content analysis, solvent-solvent fractionation and GC-MS has been carried out on processed leaves sample of B. pinnatum. GC-MS analysis revealed the presence of seven compounds, namely: 1-Octene, 3, 7-dimethyl, 1-Tridecene, E-14-Hexadecenal, 3-Eicosene (E)-, 11-Tricosene, 1-Tridecyn-4-ol and Butanamide. Standardized herbal products have been produced from B. pinnatum extracts. The products are being evaluated for safety and efficacy tests to ascertain their toxicity (if any), anti-ulcer, antibiotic and antioxidant properties. Further work is on-going to characterize the bioactive principles present in the plant extracts.

Keywords: anti-microbial, bioactive compounds, bryophyllum pinnatum, skin ulcer

Procedia PDF Downloads 76
5143 The Impact of Dispatching with Rolling Horizon Control in Sizing Thermal Storage for Solar Tower Plant Participating in Wholesale Spot Electricity Market

Authors: Navid Mohammadzadeh, Huy Truong-Ba, Michael Cholette

Abstract:

The solar tower (ST) plant is a promising technology to exploit large-scale solar irradiation. With thermal energy storage, ST plant has the potential to shift generation to high electricity price periods. However, the size of storage limits the dispatchability of the plant, particularly when it should compete with uncertainty in forecasts of solar irradiation and electricity prices. The purpose of this study is to explore the size of storage when Rolling Horizon Control (RHC) is employed for dispatch scheduling. To this end, RHC is benchmarked against perfect knowledge (PK) forecast and two day-ahead dispatching policies. With optimisation of dispatch planning using PK policy, the optimal achievable profit for a specific size of the storage is determined. A sensitivity analysis using Monte-Carlo simulation is conducted, and the size of storage for RHC and day-ahead policies is determined with the objective of reaching the profit obtained from the PK policy. A case study is conducted for a hypothetical ST plant with thermal storage located in South Australia and intends to dispatch under two market scenarios: 1) fixed price and 2) wholesale spot price. The impact of each individual source of uncertainty on storage size is examined for January and August. The exploration of results shows that dispatching with RH controller reaches optimal achievable profit with ~15% smaller storage compared to that in day-ahead policies. The results of this study may be applied to the CSP plant design procedure.

Keywords: solar tower plant, spot market, thermal storage system, optimized dispatch planning, sensitivity analysis, Monte Carlo simulation

Procedia PDF Downloads 125
5142 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time

Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma

Abstract:

Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.

Keywords: multiclass classification, convolution neural network, OpenCV

Procedia PDF Downloads 176
5141 A Systematic Literature Review on Security and Privacy Design Patterns

Authors: Ebtehal Aljedaani, Maha Aljohani

Abstract:

Privacy and security patterns are both important for developing software that protects users' data and privacy. Privacy patterns are designed to address common privacy problems, such as unauthorized data collection and disclosure. Security patterns are designed to protect software from attack and ensure reliability and trustworthiness. Using privacy and security patterns, software engineers can implement security and privacy by design principles, which means that security and privacy are considered throughout the software development process. These patterns are available to translate "security & privacy-by-design" into practical advice for software engineering. Previous research on privacy and security patterns has typically focused on one category of patterns at a time. This paper aims to bridge this gap by merging the two categories and identifying their similarities and differences. To do this, the authors conducted a systematic literature review of 25 research papers on privacy and security patterns. The papers were analysed based on the category of the pattern, the classification of the pattern, and the security requirements that the pattern addresses. This paper presents the results of a comprehensive review of privacy and security design patterns. The review is intended to help future IT designers understand the relationship between the two types of patterns and how to use them to design secure and privacy-preserving software. The paper provides a clear classification of privacy and security design patterns, along with examples of each type. The authors found that there is only one widely accepted classification of privacy design patterns, while there are several competing classifications of security design patterns. Three types of security design patterns were found to be the most commonly used.

Keywords: design patterns, security, privacy, classification of patterns, security patterns, privacy patterns

Procedia PDF Downloads 132
5140 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT

Authors: R. R. Ramsheeja, R. Sreeraj

Abstract:

For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.

Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification

Procedia PDF Downloads 509
5139 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers

Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala

Abstract:

The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.

Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification

Procedia PDF Downloads 163
5138 Woody Plant Encroachment Effects on the Physical Properties of Vertic Soils in Bela-Bela, Limpopo Province

Authors: Rebone E. Mashapa, Phesheya E. Dlamini, Sandile S. Mthimkhulu

Abstract:

Woody plant encroachment, a land cover transformation that reduces grassland productivity may influence soil physical properties. The objective of the study was to determine the effect of woody plant encroachment on physical properties of vertic soils in a savanna grassland. In this study, we quantified and compared soil bulk density, aggregate stability and porosity in the top and subsoil of an open and woody encroached savanna grassland. The results revealed that soil bulk density increases, while porosity and mean weight diameter decreases with depth in both open and woody encroached grassland soil. Compared to open grassland, soil bulk density was 11% and 10% greater in the topsoil and subsoil, while porosity was 6% and 9% lower in the topsoil and subsoil of woody encroached grassland. Mean weight diameter, an indicator of soil aggregation increased by 38% only in the subsoil of encroached grasslands due to increasing clay content with depth. These results suggest that woody plant encroachment leads to compaction of vertic soils, which in turn reduces pore size distribution.

Keywords: soil depth, soil physical properties, vertic soils, woody plant encroachment

Procedia PDF Downloads 147
5137 A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification

Authors: Doyin Afolabi, Phillip Adewole, Oladipupo Sennaike

Abstract:

Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets.

Keywords: data mining, decision tree, classification, imbalance dataset

Procedia PDF Downloads 136
5136 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning

Authors: Eiman Kattan

Abstract:

This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.

Keywords: conventional neural network, remote sensing, land cover, land use

Procedia PDF Downloads 370
5135 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 54
5134 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 238
5133 Phytochemical Study and Biological Activity of Sage (Salvia officinalis L.)

Authors: Mekhaldi Abdelkader, Bouzned Ahcen, Djibaoui Rachid, Hamoum Hakim

Abstract:

This study presents an attempt to evaluate the antioxidant and antimicrobial activity of methanolic extract and essential oils prepared from the leaves of sage (Salvia officinalis L.). The content of polyphenols in the methanolic extract of the leaves from Salvia officinalis extract was determined by spectrophoto- metrically, calculated as gallic acid and catechin equivalent. Antioxidant activity was evaluated by free radical scavenging activity using 2,2-diphenylpicryl-1-picrylhydrazyl (DPPH) assay. The plant essential oil and methanol extract were also subjected to screenings for the evaluation of their antioxidant activities using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test. While the plant essential oil showed only weak antioxidant activities, its methanol extract was considerably active in DPPH (IC50= 37.29µg/ml) test. Appreciable total phenolic content (31.25mg/g) was also detected for the plant methanol extract as gallic acid equivalent in the Folin–Ciocalteu test. The plant was also screened for its antimicrobial activity and good to moderate inhibitions were recorded for its essential oil and methanol extract against most of the tested microorganisms. The present investigation revealed that this plant has rich source of antioxidant properties. It is for this reason that sage has found increasing application in food formulations.

Keywords: antibacterial activity, antioxidant activity, flavonoid, polyphenol, salvia officinalis

Procedia PDF Downloads 409
5132 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 181
5131 Bioproduction of Phytohormones by Liquid Fermentation Using a Mexican Strain of Botryodiplodia theobromae

Authors: Laredo Alcalá Elan Iñaky, Hernandez Castillo Daniel, Martinez Hernandez José Luis, Arredondo Valdes Roberto, Gonzalez Gallegos Esmeralda, Anguiano Cabello Julia Cecilia

Abstract:

Plant hormones are a group of molecules that control different processes ranging from the growth and development of the plant until their response to biotic and abiotic stresses. In this study, the capacity of production of various phytohormones was evaluated from a strain of Botryodiplodia theobromae by liquid fermentation system using the modified Mierch medium added with a hydrolyzate compound of mead all in a reactor without agitation at 28 °C for 15 days. Quantification of the metabolites was performed using high performance liquid chromatography techniques. The results showed that a microbial broth with at least five different types of plant hormones was obtained: gibberellic acid, zeatin, kinetin, indoleacetic acid and jasmonic acid, the last one was higher than the others metabolites produced. The production of such hormones using a single type of microorganism could be in the future a great alternative to reduce production costs and similarly reduce the use of synthetic chemicals.

Keywords: biosystem, plant hormones, Botryodiplodia theobromae, fermentation

Procedia PDF Downloads 403
5130 Robust Pattern Recognition via Correntropy Generalized Orthogonal Matching Pursuit

Authors: Yulong Wang, Yuan Yan Tang, Cuiming Zou, Lina Yang

Abstract:

This paper presents a novel sparse representation method for robust pattern classification. Generalized orthogonal matching pursuit (GOMP) is a recently proposed efficient sparse representation technique. However, GOMP adopts the mean square error (MSE) criterion and assign the same weights to all measurements, including both severely and slightly corrupted ones. To reduce the limitation, we propose an information-theoretic GOMP (ITGOMP) method by exploiting the correntropy induced metric. The results show that ITGOMP can adaptively assign small weights on severely contaminated measurements and large weights on clean ones, respectively. An ITGOMP based classifier is further developed for robust pattern classification. The experiments on public real datasets demonstrate the efficacy of the proposed approach.

Keywords: correntropy induced metric, matching pursuit, pattern classification, sparse representation

Procedia PDF Downloads 355