Search results for: forecast combination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3509

Search results for: forecast combination

3059 The Environmental Impact of Geothermal Energy and Opportunities for Its Utilization in Hungary

Authors: András Medve, Katalin Szabad, István Patkó

Abstract:

According to the International Energy Association the previous principles of the energy sector should be reassessed, in which renewable energy sources have a significant role. We might witness the exchange of roles of countries from importer to exporter, which look for the main resources of market needs. According to the World Energy Outlook 2013, the duration of high oil prices is exceptionally long in the history of the energy market. Forecasts also point at the expected great differences between the regional prices of gas and electric energy. The energy need of the world will grow by its third. two thirds of which will appear in China, India, and South-East Asia, while only 4 per cent of which will be related to OECD countries. Current trends also forecast the growth of the price of energy sources and the emission of glasshouse gases. As a reflection of these forecasts alternative energy sources will gain value, of which geothermic energy is one of the cheapest and most economical. Hungary possesses outstanding resources of geothermic energy. The aim of the study is to research the environmental effects of geothermic energy and the opportunities of its exploitation in Hungary, related to „Horizon 2020” project.

Keywords: sustainable energy, renewable energy, development of geothermic energy in Hungary

Procedia PDF Downloads 603
3058 Use of Nanosensors in Detection and Treatment of HIV

Authors: Sayed Obeidullah Abrar

Abstract:

Nanosensor is the combination of two terms nanoparticles and sensors. These are chemical or physical sensor constructed using nanoscale components, usually microscopic or submicroscopic in size. These sensors are very sensitive and can detect single virus particle or even very low concentrations of substances that could be potentially harmful. Nanosensors have a large scope of research especially in the field of medical sciences, military applications, pharmaceuticals etc.

Keywords: HIV/AIDS, nanosensors, DNA, RNA

Procedia PDF Downloads 299
3057 Induced Systemic Resistance in Tomato Plants against Fusarium Wilt Disease Using Biotic Inducers

Authors: Mostafa A. Amer, I. A. El-Samra, I. I. Abou-ElSeoud, S. M. El-Abd, N. K. Shawertamimi

Abstract:

Tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. Lycopercisi (FOL) is considered one of the most destructive diseases in Egypt. Effect of some biotic inducers such as Bacillus megaterium var. phosphaticum, Glomus intraradices and Glomus macrocarpum at seven different mixed treatments, was tested for their ability to induce resistance in tomato plants against the disease. According to pathogenicity tests, all the tested isolates of FOL showed wilt symptoms on both of the tested cultivars; however, they considerably varied in percentages of disease incidence (DI) and disease severity (DS). Castle Rock was more susceptible than Peto 86, which was relatively resistant. Pretreatment of both cultivars, under greenhouse conditions, with the tested biotic inducers alone or in combination with each other's, significantly increased the induction of chitinase, β-1,3-glucanase, peroxidase, and polyphenoloxidase and reduced disease incidence and severity, compared with untreated noninoculated (C1) and untreated inoculated (C2) controls. Application of a combination of BMP, with GI and GM was the most effective in increasing the induction rated of the tested enzymes, compared with the other treatments. Induction of enzymes in most of the tested bioinducers treatments gradually increased, attaining maximum values after 48 or/and 72 hrs after challenging with FOL, then gradually declined. GI was the least effective bioinducer.

Keywords: F. oxysporum f. sp. lycopersici, defense enzymes, induced systemic resistance, ISR, B. megaterium var. phosphaticum, G. macrocarpum, G. intraradices

Procedia PDF Downloads 405
3056 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations

Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal

Abstract:

As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.

Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting

Procedia PDF Downloads 106
3055 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution

Authors: Qiang Zhang, Xiaojian Hu

Abstract:

In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.

Keywords: real-time, multi-vehicle tracking, feature selection, color attribution

Procedia PDF Downloads 163
3054 Clinical Response of Nuberol Forte® (Paracetamol 650 MG+Orphenadrine 50 MG) For Pain Management with Musculoskeletal Conditions in Routine Pakistani Practice (NFORTE-EFFECT)

Authors: Shahid Noor, Kazim Najjad, Muhammad Nasir, Irshad Bhutto, Abdul Samad Memon, Khurram Anwar, Tehseen Riaz, Mian Muhammad Hanif, Nauman A. Mallik, Saeed Ahmed, Israr Ahmed, Ali Yasir

Abstract:

Background: Musculoskeletal pain is the most common complaint presented to the health practitioner. It is well known that untreated or under-treated pain can have a significant negative impact on an individual’s quality of life (QoL). Objectives: This study was conducted across 10 sites in six (6) major cities of Pakistan to evaluate the tolerability, safety, and the clinical response of Nuberol Forte® (Paracetamol 650 mg + Orphenadrine 50 mg) to musculoskeletal pain in routine Pakistani practice and its impact on improving the patient’s QoL. Design & Methods: This NFORT-EFFECT observational, prospective multicenter study was conducted in compliance with Good Clinical Practice guidelines and local regulatory requirements. The study sponsor was "The Searle Company Limited, Pakistan. To maintain the GCP compliances, the sponsor assigned the CRO for the site and data management. Ethical approval was obtained from an independent ethics committee. The IEC reviewed the progress of the study. Written informed consent was obtained from the study participants, and their confidentiality was maintained throughout the study. A total of 399 patients with known prescreened musculoskeletal conditions and pain who attended the study sites were recruited, as per the inclusion/exclusion criteria (clinicaltrials.gov ID# NCT04765787). The recruited patients were then prescribed Paracetamol (650 mg) and Orphenadrine (50 mg) combination (Nuberol Forte®) for 7 to 14 days as per the investigator's discretion based on the pain intensity. After the initial screening (visit 1), a follow-up visit was conducted after 1-2 weeks of the treatment (visit 2). Study Endpoints: The primary objective was to assess the pain management response of Nuberol Forte treatment and the overall safety of the drug. The Visual Analogue Scale (VAS) scale was used to measure pain severity. Secondary to pain, the patients' health-related quality of life (HRQoL) was also assessed using the Muscle, Joint Measure (MJM) scale. The safety was monitored on the first dose by the patients. These assessments were done on each study visit. Results: Out of 399 enrolled patients, 49.4% were males, and 50.6% were females with a mean age of 47.24 ± 14.20 years. Most patients were presented with Knee Osteoarthritis (OA), i.e., 148(38%), followed by backache 70(18.2%). A significant reduction in the mean pain score was observed after the treatment with the combination of Paracetamol and Orphenadrine (p<0.05). Furthermore, an overall improvement in the patient’s QoL was also observed. During the study, only ten patients reported mild adverse events (AEs). Conclusion: The combination of Paracetamol and Orphenadrine (Nuberol Forte®) exhibited effective pain management among patients with musculoskeletal conditions and also improved their QoL.

Keywords: musculoskeletal pain, orphenadrine/paracetamol combination, pain management, quality of life, Pakistani population

Procedia PDF Downloads 169
3053 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources

Authors: PR

Abstract:

Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.

Keywords: artificial intelligence, renewable energy sources, spiral model, optimize

Procedia PDF Downloads 8
3052 Design of a Vehicle Door Structure Based on Finite Element Method

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.

Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method

Procedia PDF Downloads 429
3051 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 316
3050 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: ganoderma, oil palm, regression model, yield loss, economic loss

Procedia PDF Downloads 389
3049 The System of Uniform Criteria for the Characterization and Evaluation of Elements of Economic Structure: The Territory, Infrastructure, Processes, Technological Chains, the End Products

Authors: Aleksandr A. Gajour, Vladimir G. Merzlikin, Vladimir I. Veselov

Abstract:

This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with the spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the polar regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under limited and unlimited amount of heat-energy resources are analyzed.

Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes

Procedia PDF Downloads 402
3048 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique

Authors: P. Kanakasabapathy, S. Radhika

Abstract:

In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self-scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self-scheduling to ensure profit for the plant.

Keywords: ancillary services, BPSO, power system economics, self-scheduling, sliding window technique

Procedia PDF Downloads 401
3047 The Intersection of Autistic and Trans* Identity: Qualitative Engaged Study in Eastern Europian Activist Groups

Authors: Hana Drštičková

Abstract:

The paper describes the findings of a qualitative, engaged research focused on the intersection between transgender and autistic identity in a politically engaged setting of activist (trans, queer, crip, disability justice or any combination thereof) groups. It explores the relationship that autistic and trans people have towards activism and how do they feel their identity(ies) impact the kind of political action they take. Geographically, the research terrain is located mainly in Czechia; however, there are important overlaps with other Eastern European countries. The basis of the research’s approach is built on the interconnected principles of the feminist theory of intersectionality, queer/trans studies, disability studies and the concept of the Neurodiversity Paradigm. This paper argues that the social phenomenon of autism and transness is formed differently in Czechia/Eastern Europe and, therefore, deserves additional attention. Nevertheless, it points out that, even though the socio-political context is different, the fact that these identities have a radical political potential to disrupt normative structures in society remains the same. The measure of oppression these structures generate, and the near absence of any public discourse beyond the pathological paradigm in the chosen terrain contributes to the emergence of mainly queer and trans-activist, and to a lesser extent crip, disability justice or mad activist groups, that attract trans and autistic membership. The subsections of the research focus on the topics of the mutual influence of both identities in flux within individual participants, the perceived (dis)connection of networks of oppression or, conversely, support and identification with the community or communities, and the question of how the trans* and autistic members feel their presence affects the activity, internal dynamics, thematic scope and general values of the activist groups they participate in. The research methodology includes participant observation and active participation in groups where the researcher acts as a partial insider, semi-structured in-depth interviews and a critical participatory methodology. Also included is the reflection of not only the combination of researcher and insider roles but also the combination of research and activist intent.

Keywords: activism, autism, queer, neurodiversity, neuroqueer, transgender

Procedia PDF Downloads 76
3046 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning

Authors: Melody Yin

Abstract:

Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.

Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time

Procedia PDF Downloads 168
3045 A Time Delay Neural Network for Prediction of Human Behavior

Authors: A. Hakimiyan, H. Namazi

Abstract:

Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.

Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time

Procedia PDF Downloads 663
3044 Water Demand Modelling Using Artificial Neural Network in Ramallah

Authors: F. Massri, M. Shkarneh, B. Almassri

Abstract:

Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.

Keywords: water management, demand forecasting, consumption, ANN, Ramallah

Procedia PDF Downloads 219
3043 Time Series Analysis on the Production of Fruit Juice: A Case Study of National Horticultural Research Institute (Nihort) Ibadan, Oyo State

Authors: Abiodun Ayodele Sanyaolu

Abstract:

The research was carried out to investigate the time series analysis on quarterly production of fruit juice at the National Horticultural Research Institute Ibadan from 2010 to 2018. Documentary method of data collection was used, and the method of least square and moving average were used in the analysis. From the calculation and the graph, it was glaring that there was increase, decrease, and uniform movements in both the graph of the original data and the tabulated quarter values of the original data. Time series analysis was used to detect the trend in the highest number of fruit juice and it appears to be good over a period of time and the methods used to forecast are additive and multiplicative models. Since it was observed that the production of fruit juice is usually high in January of every year, it is strongly advised that National Horticultural Research Institute should make more provision for fruit juice storage outside this period of the year.

Keywords: fruit juice, least square, multiplicative models, time series

Procedia PDF Downloads 142
3042 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 231
3041 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport

Procedia PDF Downloads 442
3040 Assessment of Pre-Processing Influence on Near-Infrared Spectra for Predicting the Mechanical Properties of Wood

Authors: Aasheesh Raturi, Vimal Kothiyal, P. D. Semalty

Abstract:

We studied mechanical properties of Eucalyptus tereticornis using FT-NIR spectroscopy. Firstly, spectra were pre-processed to eliminate useless information. Then, prediction model was constructed by partial least squares regression. To study the influence of pre-processing on prediction of mechanical properties for NIR analysis of wood samples, we applied various pretreatment methods like straight line subtraction, constant offset elimination, vector-normalization, min-max normalization, multiple scattering. Correction, first derivative, second derivatives and their combination with other treatment such as First derivative + straight line subtraction, First derivative+ vector normalization and First derivative+ multiplicative scattering correction. The data processing methods in combination of preprocessing with different NIR regions, RMSECV, RMSEP and optimum factors/rank were obtained by optimization process of model development. More than 350 combinations were obtained during optimization process. More than one pre-processing method gave good calibration/cross-validation and prediction/test models, but only the best calibration/cross-validation and prediction/test models are reported here. The results show that one can safely use NIR region between 4000 to 7500 cm-1 with straight line subtraction, constant offset elimination, first derivative and second derivative preprocessing method which were found to be most appropriate for models development.

Keywords: FT-NIR, mechanical properties, pre-processing, PLS

Procedia PDF Downloads 362
3039 Foreign Tourists’ Attitude toward Service Marketing Mix and Intention to Revisit in Boutique Hotel

Authors: Nattapong Techarattanased

Abstract:

This survey research aimed to study the influence of attitude in services, product, and marketing mix affected intention to revisit in boutique hotel of foreign travelers in Bangkok, Thailand. The total 400 sets of closed-ended questionnaires were utilized for conducting data from foreign tourists who come to boutique hotel and can communicate in English. The descriptive statistics and multiple regression analysis were used to analyze data. The research found that tourists’ attitude towards the service of check in and check out process, food and beverage, guest room and other facilities affected in opportunity of revisiting, recommending to others and possibility of revisiting in the future at 0.05 statistically significant levels. Tourists’ attitude towards service and marketing mix in term of people, physical evidence, price, process and channel of distribution could forecast intention to revisit in term of recommending to others and intention to revisit in the future at 0.05 statistically significant levels.

Keywords: boutique hotel, foreign tourists, intention to revisit, service marketing mix

Procedia PDF Downloads 247
3038 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. However, it is difficult to find analytical solution of these complex non-linear equations. Hence, verification of the numerical model should be carried out against field data and numerical predictions. This paper presents the verification of developed finite element model applying for unsteady flow in the open channels. The results of a proposed model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29 km at both sites (15 km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400 km downstream from Sukkur barrage, which demonstrates accurate model predictions with observed daily discharges. Hence, this model may be utilized for predicting and issuing flood warnings about flood hazardous in advance.

Keywords: finite element method, Preissmann scheme, HEC-RAS, flood forecasting, Indus river

Procedia PDF Downloads 504
3037 Effectiveness of the Lacey Assessment of Preterm Infants to Predict Neuromotor Outcomes of Premature Babies at 12 Months Corrected Age

Authors: Thanooja Naushad, Meena Natarajan, Tushar Vasant Kulkarni

Abstract:

Background: The Lacey Assessment of Preterm Infants (LAPI) is used in clinical practice to identify premature babies at risk of neuromotor impairments, especially cerebral palsy. This study attempted to find the validity of the Lacey assessment of preterm infants to predict neuromotor outcomes of premature babies at 12 months corrected age and to compare its predictive ability with the brain ultrasound. Methods: This prospective cohort study included 89 preterm infants (45 females and 44 males) born below 35 weeks gestation who were admitted to the neonatal intensive care unit of a government hospital in Dubai. Initial assessment was done using the Lacey assessment after the babies reached 33 weeks postmenstrual age. Follow up assessment on neuromotor outcomes was done at 12 months (± 1 week) corrected age using two standardized outcome measures, i.e., infant neurological international battery and Alberta infant motor scale. Brain ultrasound data were collected retrospectively. Data were statistically analyzed, and the diagnostic accuracy of the Lacey assessment of preterm infants (LAPI) was calculated -when used alone and in combination with the brain ultrasound. Results: On comparison with brain ultrasound, the Lacey assessment showed superior specificity (96% vs. 77%), higher positive predictive value (57% vs. 22%), and higher positive likelihood ratio (18 vs. 3) to predict neuromotor outcomes at one year of age. The sensitivity of Lacey assessment was lower than brain ultrasound (66% vs. 83%), whereas specificity was similar (97% vs. 98%). A combination of Lacey assessment and brain ultrasound results showed higher sensitivity (80%), positive (66%), and negative (98%) predictive values, positive likelihood ratio (24), and test accuracy (95%) than Lacey assessment alone in predicting neurological outcomes. The negative predictive value of the Lacey assessment was similar to that of its combination with brain ultrasound (96%). Conclusion: Results of this study suggest that the Lacey assessment of preterm infants can be used as a supplementary assessment tool for premature babies in the neonatal intensive care unit. Due to its high specificity, Lacey assessment can be used to identify those babies at low risk of abnormal neuromotor outcomes at a later age. When used along with the findings of the brain ultrasound, Lacey assessment has better sensitivity to identify preterm babies at particular risk. These findings have applications in identifying premature babies who may benefit from early intervention services.

Keywords: brain ultrasound, lacey assessment of preterm infants, neuromotor outcomes, preterm

Procedia PDF Downloads 138
3036 Integrating GIS and Analytical Hierarchy Process-Multicriteria Decision Analysis for Identification of Suitable Areas for Artificial Recharge with Reclaimed Water

Authors: Mahmoudi Marwa, Bahim Nadhem, Aydi Abdelwaheb, Issaoui Wissal, S. Najet

Abstract:

This work represents a coupling between the geographic information system (GIS) and the multicriteria analysis aiming at the selection of an artificial recharge site by the treated wastewater for the Ariana governorate. On regional characteristics, bibliography and available data on artificial recharge, 13 constraints and 5 factors were hierarchically structured for the adequacy of an artificial recharge. The factors are subdivided into two main groups: environmental factors and economic factors. The adopted methodology allows a preliminary assessment of a recharge site, the weighted linear combination (WLC) and the analytical hierarchy process (AHP) in a GIS. The standardization of the criteria is carried out by the application of the different membership functions. The form and control points of the latter are defined by the consultation of the experts. The weighting of the selected criteria is allocated according to relative importance using the AHP methodology. The weighted linear combination (WLC) integrates the different criteria and factors to delineate the most suitable areas for artificial recharge site selection by treated wastewater. The results of this study showed three potential candidate sites that appear when environmental factors are more important than economic factors. These sites are ranked in descending order using the ELECTRE III method. Nevertheless, decision making for the selection of an artificial recharge site will depend on the decision makers in force.

Keywords: artificial recharge site, treated wastewater, analytical hierarchy process, ELECTRE III

Procedia PDF Downloads 166
3035 Crafting of Paper Cutting Techniques for Embellishment of Fashion Textiles

Authors: A. Vaidya-Soocheta, K. M. Wong-Hon-Lang

Abstract:

Craft and fashion have always been interlinked. The combination of both often gives stunning results. The present study introduces ‘Paper Cutting Craft Techniques’ like the Japanese –Kirigami, Mexican –PapelPicado, German –Scherenschnitte, Polish –Wycinankito in textiles to develop innovative and novel design structures as embellishments and ornamentation. The project studies various ways of using these paper cutting techniques to obtain interesting features and delicate design patterns on fabrics. While paper has its advantages and related uses, it is fragile rigid and thus not appropriate for clothing. Fabric is sturdy, flexible, dimensionally stable and washable. In the present study, the cut out techniques develop creative design motifs and patterns to give an inventive and unique appeal to the fabrics. The beauty and fascination of lace in garments have always given them a nostalgic charm. Laces with their intricate and delicate complexity in combination with other materials add a feminine touch to a garment and give it a romantic, mysterious appeal. Various textured and decorative effects through fabric manipulation are experimented along with the use of paper cutting craft skills as an innovative substitute for developing lace or “Broderie Anglaise” effects on textiles. A number of assorted fabric types with varied textures were selected for the study. Techniques to avoid fraying and unraveling of the design cut fabrics were introduced. Fabrics were further manipulated by use of interesting prints with embossed effects on cut outs. Fabric layering in combination with assorted techniques such as cutting of folded fabric, printing, appliqué, embroidery, crochet, braiding, weaving added a novel exclusivity to the fabrics. The fabrics developed by these innovative methods were then tailored into garments. The study thus tested the feasibility and practicability of using these fabrics by designing a collection of evening wear garments based on the theme ‘Nostalgia’. The prototypes developed were complemented by designing fashion accessories with the crafted fabrics. Prototypes of accessories add interesting features to the study. The adaptation and application of this novel technique of paper cutting craft on textiles can be an innovative start for a new trend in textile and fashion industry. The study anticipates that this technique will open new avenues in the world of fashion to incorporate its use commercially.

Keywords: collection, fabric cutouts, nostalgia, prototypes

Procedia PDF Downloads 357
3034 In vitro P-Glycoprotein Modulation: Combinatorial Approach Using Natural Products

Authors: Jagdish S. Patel, Piyush Chudasama

Abstract:

Context: Over-expression of P-glycoprotein (P-gp) plays critical role in absorption of many drug candidates which results into lower bioavailability of the drug. P-glycoprotein also over expresses in many pathological conditions like diabetes, affecting the drug therapy. Modulation of P-gp expression using inhibitors can help in designing novel formulation enhancing the bioavailability of the drug in question. Objectives: The main focus of the study was to develop advanced glycation end products (AGEs) induced P-gp over expression in Caco-2 cells. Curcumin, piperine and epigallocatechin gallate were used to evaluate their P-gp inhibitory action using combinatorial approach. Materials and methods: Methylglyoxal (MG) induced P-gp over expression was checked in Caco-2 cells using real time PCR. P-gp inhibitory effects of the phytochemicals were measured after induction with MG alone and in combination of any two compounds. Cytotoxicity of each of the phytochemical was evaluated using MTT assay. Results: Induction with MG (100mM) significantly induced the over expression of P-glycoprotein in Caco-2 cells after 24 hr. Curcumin, piperine and epigallocatechin gallate alone significantly reduced the level of P-gp within 6 hr of treatment period monitored by real time PCR. The combination of any two phytochemical also down regulated the expression of P-gp in cells. Combinations of Curcumin and epigallocatechin gallate have shown significant down regulation when compared with other two combinations. Conclusions: Combinatorial approach for down regulating the expression of P-gp, in pathological conditions like diabetes, has demonstrated promising approach for therapeutic purpose.

Keywords: p-glycoprotein, curcumin, piperine, epigallocatechin gallate, p-gp inhibition

Procedia PDF Downloads 334
3033 Gas Transmission Pipeline Integrity Management System Through Corrosion Mitigation and Inspection Strategy: A Case Study of Natural Gas Transmission Pipeline from Wafa Field to Mellitah Gas Plant in Libya

Authors: Osama Sassi, Manal Eltorki, Iftikhar Ahmad

Abstract:

Poor integrity is one of the major causes of leaks and accidents in gas transmission pipelines. To ensure safe operation, it is must to have efficient and effective pipeline integrity management (PIM) system. The corrosion management is one of the important aspects of successful pipeline integrity management program together design, material selection, operations, risk evaluation and communication aspects to maintain pipelines in a fit-for-service condition. The objective of a corrosion management plan is to design corrosion mitigation, monitoring, and inspection strategy, and for maintenance in a timely manner. This paper presents the experience of corrosion management of a gas transmission pipeline from Wafa field to Mellitah gas plant in Libya. The pipeline is 525.5 km long and having 32 inches diameter. It is a buried pipeline. External corrosion on pipeline is controlled with a combination of coatings and cathodic protection while internal corrosion is controlled with a combination of chemical inhibitors, periodic cleaning and process control. The monitoring and inspection techniques provide a way to measure the effectiveness of corrosion control systems and provide an early warning when changing conditions may be causing a corrosion problem. This paper describes corrosion management system used in Mellitah Oil & Gas BV for its gas transmission pipeline based on standard practices of corrosion mitigation and inspection.

Keywords: corrosion mitigation on gas transmission pipelines, pipeline integrity management, corrosion management of gas pipelines, prevention and inspection of corrosion

Procedia PDF Downloads 77
3032 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 66
3031 A Nonlinear Dynamical System with Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.

Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model

Procedia PDF Downloads 254
3030 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 151