Search results for: flood forecast
446 Current Deflecting Wall: A Promising Structure for Minimising Siltation in Semi-Enclosed Docks
Authors: A. A. Purohit, A. Basu, K. A. Chavan, M. D. Kudale
Abstract:
Many estuarine harbours in the world are facing the problem of siltation in docks, channel entrances, etc. The harbours in India are not an exception and require maintenance dredging to achieve navigable depths for keeping them operable. Hence, dredging is inevitable and is a costly affair. The heavy siltation in docks in well mixed tide dominated estuaries is mainly due to settlement of cohesive sediments in suspension. As such there is a need to have a permanent solution for minimising the siltation in such docks to alter the hydrodynamic flow field responsible for siltation by constructing structures outside the dock. One of such docks on the west coast of India, wherein siltation of about 2.5-3 m/annum prevails, was considered to understand the hydrodynamic flow field responsible for siltation. The dock is situated in such a region where macro type of semi-diurnal tide (range of about 5m) prevails. In order to change the flow field responsible for siltation inside the dock, suitability of Current Deflecting Wall (CDW) outside the dock was studied, which will minimise the sediment exchange rate and siltation in the dock. The well calibrated physical tidal model was used to understand the flow field during various phases of tide for the existing dock in Mumbai harbour. At the harbour entrance where the tidal flux exchanges in/out of the dock, measurements on water level and current were made to estimate the sediment transport capacity. The distorted scaled model (1:400 (H) & 1:80 (V)) of Mumbai area was used to study the tidal flow phenomenon, wherein tides are generated by automatic tide generator. Hydraulic model studies carried out under the existing condition (without CDW) reveal that, during initial hours of flood tide, flow hugs the docks breakwater and part of flow which enters the dock forms number of eddies of varying sizes inside the basin, while remaining part of flow bypasses the entrance of dock. During ebb, flow direction reverses, and part of the flow re-enters the dock from outside and creates eddies at its entrance. These eddies do not allow water/sediment-mass to come out and result in settlement of sediments in dock both due to eddies and more retention of sediment. At latter hours, current strength outside the dock entrance reduces and allows the water-mass of dock to come out. In order to improve flow field inside the dockyard, two CDWs of length 300 m and 40 m were proposed outside the dock breakwater and inline to Pier-wall at dock entrance. Model studies reveal that, during flood, major flow gets deflected away from the entrance and no eddies are formed inside the dock, while during ebb flow does not re-enter the dock, and sediment flux immediately starts emptying it during initial hours of ebb. This reduces not only the entry of sediment in dock by about 40% but also the deposition by about 42% due to less retention. Thus, CDW is a promising solution to significantly reduce siltation in dock.Keywords: current deflecting wall, eddies, hydraulic model, macro tide, siltation
Procedia PDF Downloads 298445 Earnings-Related Information, Cognitive Bias, and the Disposition Effect
Authors: Chih-Hsiang Chang, Pei-Shan Kao
Abstract:
This paper discusses the reaction of investors in the Taiwan stock market to the most probable unknown earnings-related information and the most probable known earnings-related information. As compared with the previous literature regarding the effect of an official announcement of earnings forecast revision, this paper further analyzes investors’ cognitive bias toward the unknown and known earnings-related information, and the role of media during the investors' reactions to the foresaid information shocks. The empirical results show that both the unknown and known earnings-related information provides useful information content for a stock market. In addition, cognitive bias and disposition effect are the behavioral pitfalls that commonly occur in the process of the investors' reactions to the earnings-related information. Finally, media coverage has a remarkable influence upon the investors' trading decisions.Keywords: cognitive bias, role of media, disposition effect, earnings-related information, behavioral pitfall
Procedia PDF Downloads 224444 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series
Procedia PDF Downloads 395443 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 134442 The Role of Supply Chain Agility in Improving Manufacturing Resilience
Authors: Maryam Ziaee
Abstract:
This research proposes a new approach and provides an opportunity for manufacturing companies to produce large amounts of products that meet their prospective customers’ tastes, needs, and expectations and simultaneously enable manufacturers to increase their profit. Mass customization is the production of products or services to meet each individual customer’s desires to the greatest possible extent in high quantities and at reasonable prices. This process takes place at different levels such as the customization of goods’ design, assembly, sale, and delivery status, and classifies in several categories. The main focus of this study is on one class of mass customization, called optional customization, in which companies try to provide their customers with as many options as possible to customize their products. These options could range from the design phase to the manufacturing phase, or even methods of delivery. Mass customization values customers’ tastes, but it is only one side of clients’ satisfaction; on the other side is companies’ fast responsiveness delivery. It brings the concept of agility, which is the ability of a company to respond rapidly to changes in volatile markets in terms of volume and variety. Indeed, mass customization is not effectively feasible without integrating the concept of agility. To gain the customers’ satisfaction, the companies need to be quick in responding to their customers’ demands, thus highlighting the significance of agility. This research offers a different method that successfully integrates mass customization and fast production in manufacturing industries. This research is built upon the hypothesis that the success key to being agile in mass customization is to forecast demand, cooperate with suppliers, and control inventory. Therefore, the significance of the supply chain (SC) is more pertinent when it comes to this stage. Since SC behavior is dynamic and its behavior changes constantly, companies have to apply one of the predicting techniques to identify the changes associated with SC behavior to be able to respond properly to any unwelcome events. System dynamics utilized in this research is a simulation approach to provide a mathematical model among different variables to understand, control, and forecast SC behavior. The final stage is delayed differentiation, the production strategy considered in this research. In this approach, the main platform of products is produced and stocked and when the company receives an order from a customer, a specific customized feature is assigned to this platform and the customized products will be created. The main research question is to what extent applying system dynamics for the prediction of SC behavior improves the agility of mass customization. This research is built upon a qualitative approach to bring about richer, deeper, and more revealing results. The data is collected through interviews and is analyzed through NVivo software. This proposed model offers numerous benefits such as reduction in the number of product inventories and their storage costs, improvement in the resilience of companies’ responses to their clients’ needs and tastes, the increase of profits, and the optimization of productivity with the minimum level of lost sales.Keywords: agility, manufacturing, resilience, supply chain
Procedia PDF Downloads 89441 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 156440 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 252439 Contribution of Urban Wetlands to Livelihood in Tanzania
Authors: Halima Kilungu, Munishi P. K. T., Happiness Jackson Nko
Abstract:
Wetlands contribute significantly to the national economy. Nevertheless, urban wetlands in Tanzania have been taken for granted; many have been converted into waste disposal areas and settlements despite their substantial role in climate-change flood attenuation and livelihood. This is due to the lacking informing assessments from a socio-economic perspective. This study assesses the contribution of urban wetlands to the livelihood of marginalised communities in Dar es Salaam City, Tanzania. Specifically, the study assesses the an extent and nature of change in wetlands in Dar es Salaam City for the past 30 years using the land-use land-cover change approach and the contribution of wetlands to livelihood using questionnaires. The results show that the loss of wetlands in Dar es Salaam is high to extent that will likely jeopardise their future contributions to livelihood. The results inform decision-makers on the importance of wise use of Urban Wetlands and conservation to improving livelihood for urban dwellers.Keywords: wetlands, tanzania, dar es salaam, climate-change, and wetlands, livelihood
Procedia PDF Downloads 170438 Forecasting Model to Predict Dengue Incidence in Malaysia
Authors: W. H. Wan Zakiyatussariroh, A. A. Nasuhar, W. Y. Wan Fairos, Z. A. Nazatul Shahreen
Abstract:
Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation.Keywords: time series modeling, Box-Jenkins, SARIMA, forecasting
Procedia PDF Downloads 484437 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models
Authors: Manisha Mukherjee, Diptarka Saha
Abstract:
Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function
Procedia PDF Downloads 165436 Evaluation of Particle Settling in Flow Chamber
Authors: Abdulrahman Alenezi, B. Stefan
Abstract:
Abstract— The investigation of fluids containing particles or filaments includes a category of complex fluids and is vital in both theory and application. The forecast of particle behaviors plays a significant role in the existing technology as well as future technology. This paper focuses on the prediction of the particle behavior through the investigation of the particle disentrainment from a pipe on a horizontal air stream. This allows for examining the influence of the particle physical properties on its behavior when falling on horizontal air stream. This investigation was conducted on a device located at the University of Greenwich's Medway Campus. Two materials were selected to carry out this study: Salt and Glass Beads particles. The shape of the Slat particles is cubic where the shape of the Glass Beads is almost spherical. The outcome from the experimental work were presented in terms of distance travelled by the particles according to their diameters as After that, the particles sizes were measured using Laser Diffraction device and used to determine the drag coefficient and the settling velocity.Keywords: flow experiment, drag coefficient, Particle Settling, Flow Chamber
Procedia PDF Downloads 136435 GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia
Authors: Suzana Ramli, Wardah Tahir
Abstract:
Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper.Keywords: surface runoff, geographic information system, curve number method, environment
Procedia PDF Downloads 281434 A Network Approach to Analyzing Financial Markets
Authors: Yusuf Seedat
Abstract:
The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network.Keywords: network analysis, social networks, financial markets, stocks, nodes, edges, complex networks
Procedia PDF Downloads 191433 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling
Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada
Abstract:
In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.Keywords: climate changes, dry soil, phytopathogenicity, predictive model, fuzzy logic
Procedia PDF Downloads 320432 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies
Authors: Monica Lia
Abstract:
This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes
Procedia PDF Downloads 430431 Studying the Function of Green Belt around the Metropolises
Authors: Soroush Mokallaei
Abstract:
Since ancient times, urbanization engineers have always thought of creating green spaces along with urbanization. Athens and Rome have attempted to construct public gardens around streets and palaces. Since then developing green space has become a part of urban civilization. In medieval ages, all Western cities had palaces and houses with internal gardens. In different sources green belt is defined as a green band of trees and bushes around the cities which has multiple functions. It is said that green belts are not only around the mountains, cities, and rivers but also around houses, subways, and highways. Constructing green belt around cities has different advantages such as: protecting cities against pollution, purifying air, screening dust, being a place for recreation, buffer zone of city internal lands, confronting the phenomenon of heat island, increasing agricultural products, helping to prevent illegal city development, confronting deforestation, preventing flood and increasing subterranean water resources.Keywords: environment, garden cities, green belt, metropolises
Procedia PDF Downloads 328430 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model
Authors: Elham Sharifineyestani, Mohammad Farshchin
Abstract:
Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management
Procedia PDF Downloads 247429 A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection
Authors: Nikolaos Reppas, Yilin Gui
Abstract:
A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient.Keywords: carbon capture and storage, Wellbore stability, elastoplastic damage response for rock, constitutive THM model, fully coupled thermo-hydraulic-mechanical model
Procedia PDF Downloads 172428 Extending Smart City Infrastructure to Cover Natural Disasters
Authors: Nina Dasari, Satvik Dasari
Abstract:
Smart city solutions are being developed across the globe to transform urban areas. However, the infrastructure enablement for alerting natural disasters such as floods and wildfires is deficient. This paper discusses an innovative device that could be used as part of the smart city initiative to detect and provide alerts in case of floods at road crossings and wildfires. An Internet of Things (IoT) smart city node was designed, tested, and deployed with collaboration from the City of Austin. The end to end solution includes a 3G enabled IoT device, flood and fire sensors, cloud, a mobile app, and IoT analytics. The real-time data was collected and analyzed using IoT analytics to refine the solution for the past year. The results demonstrate that the proposed solution is reliable and provides accurate results. This low-cost solution is viable, and it can replace the current solution which costs tens of thousands of dollars.Keywords: analytics, internet of things, natural disasters, smart city
Procedia PDF Downloads 224427 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 148426 Developing Heat-Power Efficiency Criteria for Characterization of Technosphere Structural Elements
Authors: Victoria Y. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Aleksandr A. Gajour, Andrei P. Garnov
Abstract:
This paper refers to the analysis of the characteristics of industrial and lifestyle facilities heat- energy objects as a part of the thermal envelope of Earth's surface for inclusion in any database of economic forecasting. The idealized model of the Earth's surface is discussed. This model gives the opportunity to obtain the energy equivalent for each element of terrain and world ocean. Energy efficiency criterion of comfortable human existence is introduced. Dynamics of changes of this criterion offers the possibility to simulate the possible technogenic catastrophes with a spontaneous industrial development of the certain Earth areas. Calculated model with the confirmed forecast of the Gulf Stream freezing in the Polar Regions in 2011 due to the heat-energy balance disturbance for the oceanic subsurface oil polluted layer is given. Two opposing trends of human development under the limited and unlimited amount of heat-energy resources are analyzed.Keywords: Earth's surface, heat-energy consumption, energy criteria, technogenic catastrophes
Procedia PDF Downloads 322425 Development of the Logistic Service Providers under the Pandemic Affects during COVID-19 in Turkey
Authors: Süleyman Günes
Abstract:
The crucial effects of the COVID-19 pandemic have on social and economic systems in Turkey as well as all over the world. It has impacted logistic providers and worldwide supply chains. Unexpected risks played a central role in creating vulnerabilities for logistics service operations during the pandemic terms. This study aims to research and design qualitative and quantitive contributions to logistic services. The COVID-19 pandemic brought unavoidable risks to the logistics industry in Turkey. The Logistic Service Providers (LSPs) have learned how to ensure uncertainties and risks triggered by main and adverse effects. The risks that LSPs encounter during the COVID-19 pandemic have been investigated and unveiled, and identified uncertainties and risks. The cause-effect structures were displayed by the qualitative and quantitive studies. The results suggest that supply chains and demand changes triggered by the COVID-19 pandemic while it influenced financial failure and forecast horizon with operational performances.Keywords: logistic service providers, COVID-19, development, financial failure
Procedia PDF Downloads 73424 Stream Extraction from 1m-DTM Using ArcGIS
Authors: Jerald Ruta, Ricardo Villar, Jojemar Bantugan, Nycel Barbadillo, Jigg Pelayo
Abstract:
Streams are important in providing water supply for industrial, agricultural and human consumption, In short when there are streams there are lives. Identifying streams are essential since many developed cities are situated in the vicinity of these bodies of water and in flood management, it serves as basin for surface runoff within the area. This study aims to process and generate features from high-resolution digital terrain model (DTM) with 1-meter resolution using Hydrology Tools of ArcGIS. The raster was then filled, processed flow direction and accumulation, then raster calculate and provide stream order, converted to vector, and clearing undesirable features using the ancillary or google earth. In field validation streams were classified whether perennial, intermittent or ephemeral. Results show more than 90% of the extracted feature were accurate in assessment through field validation.Keywords: digital terrain models, hydrology tools, strahler method, stream classification
Procedia PDF Downloads 272423 Health Percentage Evaluation for Satellite Electrical Power System Based on Linear Stresses Accumulation Damage Theory
Authors: Lin Wenli, Fu Linchun, Zhang Yi, Wu Ming
Abstract:
To meet the demands of long-life and high-intelligence for satellites, the electrical power system should be provided with self-health condition evaluation capability. Any over-stress events in operations should be recorded. Based on Linear stresses accumulation damage theory, accumulative damage analysis was performed on thermal-mechanical-electrical united stresses for three components including the solar array, the batteries and the power conditioning unit. Then an overall health percentage evaluation model for satellite electrical power system was built. To obtain the accurate quantity for system health percentage, an automatic feedback closed-loop correction method for all coefficients in the evaluation model was present. The evaluation outputs could be referred as taking earlier fault-forecast and interventions for Ground Control Center or Satellites self.Keywords: satellite electrical power system, health percentage, linear stresses accumulation damage, evaluation model
Procedia PDF Downloads 411422 Synthetic Daily Flow Duration Curves for the Çoruh River Basin, Turkey
Authors: Ibrahim Can, Fatih Tosunoğlu
Abstract:
The flow duration curve (FDC) is an informative method that represents the flow regime’s properties for a river basin. Therefore, the FDC is widely used for water resource projects such as hydropower, water supply, irrigation and water quality management. The primary purpose of this study is to obtain synthetic daily flow duration curves for Çoruh Basin, Turkey. For this aim, we firstly developed univariate auto-regressive moving average (ARMA) models for daily flows of 9 stations located in Çoruh basin and then these models were used to generate 100 synthetic flow series each having same size as historical series. Secondly, flow duration curves of each synthetic series were drawn and the flow values exceeded 10, 50 and 95 % of the time and 95% confidence limit of these flows were calculated. As a result, flood, mean and low flows potential of Çoruh basin will comprehensively be represented.Keywords: ARMA models, Çoruh basin, flow duration curve, Turkey
Procedia PDF Downloads 403421 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model
Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo
Abstract:
Considering the energetic crisis that is hitting Europe, it becomes more and more necessary to change the energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy not only to satisfy energy needs and fulfill the required consumption but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energetic communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next ten years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.Keywords: ARIMA, electricity consumption, forecasting models, time series
Procedia PDF Downloads 174420 The Environmental Impact of Geothermal Energy and Opportunities for Its Utilization in Hungary
Authors: András Medve, Katalin Szabad, István Patkó
Abstract:
According to the International Energy Association the previous principles of the energy sector should be reassessed, in which renewable energy sources have a significant role. We might witness the exchange of roles of countries from importer to exporter, which look for the main resources of market needs. According to the World Energy Outlook 2013, the duration of high oil prices is exceptionally long in the history of the energy market. Forecasts also point at the expected great differences between the regional prices of gas and electric energy. The energy need of the world will grow by its third. two thirds of which will appear in China, India, and South-East Asia, while only 4 per cent of which will be related to OECD countries. Current trends also forecast the growth of the price of energy sources and the emission of glasshouse gases. As a reflection of these forecasts alternative energy sources will gain value, of which geothermic energy is one of the cheapest and most economical. Hungary possesses outstanding resources of geothermic energy. The aim of the study is to research the environmental effects of geothermic energy and the opportunities of its exploitation in Hungary, related to „Horizon 2020” project.Keywords: sustainable energy, renewable energy, development of geothermic energy in Hungary
Procedia PDF Downloads 602419 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations
Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal
Abstract:
As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting
Procedia PDF Downloads 106418 Maintenance Dredging at Port of Townsville
Authors: Mohamed Jaditager, Julie Lovisa, Nagaratnam Sivakugan
Abstract:
The Port of Townsville conducts regular annual maintenance dredging to maintain depths of its harbor basin and approach channels for the navigational safety of the vessels against the natural accumulation of marine sediments. In addition to the regular maintenance dredging, the port undertakes emergency dredging in cases where large quantities of sediments are mobilized and deposited in port waters by cyclone or major flood events. The maintenance dredging material derived from the port may be disposed at sea or on land in accordance with relevant state and commonwealth regulations. For the land disposal, the dredged mud slurry is hydraulically placed into containment ponds and left to undergo sedimentation and self-weight consolidation to form fill material for land reclamation. This paper provides an overview of the maintenance dredging at the Port of Townsville and emphasis on maintenance dredging requirements, sediment quality, bathymetry, dredging methods used, and dredged material disposal options.Keywords: consolidation, dredged material, maintenance dredging, marine sediments, sedimentation
Procedia PDF Downloads 444417 Gravity and Geodetic Control of Geodynamic Activity near Aswan Lake, Egypt
Authors: Anwar H. Radwan, Jan Mrlina, El-Sayed A. Issawy, Ali Rayan, Salah M. Mahmoud
Abstract:
Geodynamic investigations in the Aswan Lake region were started after the M=5.5 earthquake in 1981, triggered by the lake water fluctuations. Besides establishing the seismological networks, also the geodetic observations focused on the Kalabsha and Sayal fault zones were started. It was found that the Kalabsha fault is an active dextral strike-slip with normal component indicating uplift on its southern side. However, the annual velocity rates in both components do not exceed 2 mm/y, and do not therefore represent extremely active faulting. We also launched gravity monitoring in 1997, and performed another two campaigns in 2000 and 2002. The observed non- tidal temporal gravity changes indicate rather the flood water infiltration into the porous Nubian sandstone, than tectonic stress effect. The station nearest to the lake exhibited about 60 μGal positive gravity change within the 1997-2002 period.Keywords: gravity monitoring, surface movements, Lake Aswan, groundwater change
Procedia PDF Downloads 501