Search results for: brushless dc motor test
9490 Obtaining the Analytic Dependence for Estimating the Ore Mill Operation Modes
Authors: Baghdasaryan Marinka
Abstract:
The particular significance of comprehensive estimation of the increase in the operation efficiency of the mill motor electromechanical system, providing the main technological process for obtaining a metallic concentrate, as well as the technical state of the system are substantiated. The works carried out in the sphere of investigating, creating, and improving the operation modes of electric drive motors and ore-grinding mills have been studied. Analytic dependences for estimating the operation modes of the ore-grinding mills aimed at improving the ore-crashing process maintenance and technical service efficiencies have been obtained. The obtained analytic dependencies establish a link between the technological and power parameters of the electromechanical system, and allow to estimate the state of the system and reveal the controlled parameters required for the efficient management in case of changing the technological parameters. It has been substantiated that the changes in the technological factors affecting the consumption power of the drive motor do not cause an instability in the electromechanical system.Keywords: electromechanical system, estimation, operation mode, productivity, technological process, the mill filling degree
Procedia PDF Downloads 2699489 The Use of Degradation Measures to Design Reliability Test Plans
Authors: Stephen V. Crowder, Jonathan W. Lane
Abstract:
With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. In this work we present a case study involving an electronic component subject to degradation. The data, consisting of 42 degradation paths of cycles to failure, are first used to estimate a reliability function. Bootstrapping techniques are then used to perform power studies and develop a minimal reliability test plan for future production of this component.Keywords: degradation measure, time to failure distribution, bootstrap, computational science
Procedia PDF Downloads 5319488 A Mathematical Model for 3-DOF Rotary Accuracy Measurement Method Based on a Ball Lens
Authors: Hau-Wei Lee, Yu-Chi Liu, Chien-Hung Liu
Abstract:
A mathematical model is presented for a system that measures rotational errors in a shaft using a ball lens. The geometric optical characteristics of the ball lens mounted on the shaft allows the measurement of rotation axis errors in both the radial and axial directions. The equipment used includes two quadrant detectors (QD), two laser diodes and a ball lens that is mounted on the rotating shaft to be evaluated. Rotational errors in the shaft cause changes in the optical geometry of the ball lens. The resulting deflection of the laser beams is detected by the QDs and their output signals are used to determine rotational errors. The radial and the axial rotational errors can be calculated as explained by the mathematical model. Results from system calibration show that the measurement error is within ±1 m and resolution is about 20 nm. Using a direct drive motor (DD motor) as an example, experimental results show a rotational error of less than 20 m. The most important features of this system are that it does not require the use of expensive optical components, it is small, very easy to set up, and measurements are highly accurate.Keywords: ball lens, quadrant detector, axial error, radial error
Procedia PDF Downloads 4739487 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study
Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin
Abstract:
Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.Keywords: activities of daily living, hand function, robotic rehabilitation, stroke
Procedia PDF Downloads 1189486 An Electronic and Performance Test for the Applicants to Faculty of Education for Early Childhood in Egypt for Measuring the Skills of Teacher Students
Authors: Ahmed Amin Mousa, Gehan Azam
Abstract:
The current study presents an electronic test to measure teaching skills. This test is a part of the admission system of the Faculty of Education for Early Childhood, Cairo University. The test has been prepared to evaluate university students who apply for admission the Faculty. It measures some social and physiological skills which are important for successful teachers, such as emotional adjustment and problem solving; moreover, the extent of their love for children and their capability to interact with them. The test has been approved by 13 experts. Finally, it has been introduced to 1,100 students during the admission system of the academic year 2016/2017. The results showed that most of the applicants have an auditory learning style. In addition, 97% of them have the minimum requirement skills for teaching children.Keywords: electronic test, performance, early childhood, skills, teacher student
Procedia PDF Downloads 2539485 The Influence of Concrete Pictorial Abstract Teaching Approach on Students' Concepts Understanding and Retention in Mathematics in Rwandan Lower Secondary Schools
Authors: Emmanuel Iyamuremye, Irenee Ndayambaje
Abstract:
This study investigated the influence of Concrete Pictorial Abstract (CPA) teaching approach on mathematics achievement based on a sample of eighth-grade students (N = 10,345) from the Rwandan Lower Secondary School quasi-experimental study with pre-test and post-test control group of 2019 (RLSQES19). Key aspects studied included mathematics concept understanding and mathematics concept retention and how these are influenced by teacher's teaching approach. Specifically, the study aimed to a.) investigate students' concept understanding and concept retention in mathematics when exposed to CPA approach and to those exposed to non-CPA approach before and after the intervention, and b.) ascertain the significant difference between the performance of the students exposed to CPA approach and those exposed to non-CPA approach in terms of post-test scores and retention test scores. Two groups (control and experimental) undergone pre-test, post-test, and retention test. The assignment of control and experimental group among senior two classes from 10 schools was done randomly. The materials used to determine the performance of the students is a teacher-made test. Descriptive statistics and ANCOVA were used for the analysis of the study. For determining the improvement in concept understanding of mathematics, Hakes methods of calculating gain were used to analyze the pre-test and post test score. The level of performance of the two groups in the pre-test is below average level. During the post-test and retention test, the performance of students in non-CPA group is on average level, and students in CPA group are on above average level. Hakes methods of calculating gain revealed higher significant performance in the post-test and retention test of CPA group of students than non-CPA group of students.Keywords: concept understanding, concept retention, performance, teaching approach
Procedia PDF Downloads 1259484 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm
Authors: Anuradha Chug, Sunali Gandhi
Abstract:
Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm
Procedia PDF Downloads 3809483 Testing of Electronic Control Unit Communication Interface
Authors: Petr Šimek, Kamil Kostruk
Abstract:
This paper deals with the problem of testing the Electronic Control Unit (ECU) for the specified function validation. Modern ECUs have many functions which need to be tested. This process requires tracking between the test and the specification. The technique discussed in this paper explores the system for automating this process. The paper focuses in its chapter IV on the introduction to the problem in general, then it describes the proposed test system concept and its principle. It looks at how the process of the ECU interface specification file for automated interface testing and test tracking works. In the end, the future possible development of the project is discussed.Keywords: electronic control unit testing, embedded system, test generate, test automation, process automation, CAN bus, ethernet
Procedia PDF Downloads 1129482 Proposed Algorithms to Assess Concussion Potential in Rear-End Motor Vehicle Collisions: A Meta-Analysis
Authors: Rami Hashish, Manon Limousis-Gayda, Caitlin McCleery
Abstract:
Introduction: Mild traumatic brain injuries, also referred to as concussions, represent an increasing burden to society. Due to limited objective diagnostic measures, concussions are diagnosed by assessing subjective symptoms, often leading to disputes to their presence. Common biomechanical measures associated with concussion are high linear and/or angular acceleration to the head. With regards to linear acceleration, approximately 80g’s has previously been shown to equate with a 50% probability of concussion. Motor vehicle collisions (MVCs) are a leading cause of concussion, due to high head accelerations experienced. The change in velocity (delta-V) of a vehicle in an MVC is an established metric for impact severity. As acceleration is the rate of delta-V with respect to time, the purpose of this paper is to determine the relation between delta-V (and occupant parameters) with linear head acceleration. Methods: A meta-analysis was conducted for manuscripts collected using the following keywords: head acceleration, concussion, brain injury, head kinematics, delta-V, change in velocity, motor vehicle collision, and rear-end. Ultimately, 280 studies were surveyed, 14 of which fulfilled the inclusion criteria as studies investigating the human response to impacts, reporting head acceleration, and delta-V of the occupant’s vehicle. Statistical analysis was conducted with SPSS and R. The best fit line analysis allowed for an initial understanding of the relation between head acceleration and delta-V. To further investigate the effect of occupant parameters on head acceleration, a quadratic model and a full linear mixed model was developed. Results: From the 14 selected studies, 139 crashes were analyzed with head accelerations and delta-V values ranging from 0.6 to 17.2g and 1.3 to 11.1 km/h, respectively. Initial analysis indicated that the best line of fit (Model 1) was defined as Head Acceleration = 0.465Keywords: acceleration, brain injury, change in velocity, Delta-V, TBI
Procedia PDF Downloads 2339481 Reliability Qualification Test Plan Derivation Method for Weibull Distributed Products
Authors: Ping Jiang, Yunyan Xing, Dian Zhang, Bo Guo
Abstract:
The reliability qualification test (RQT) is widely used in product development to qualify whether the product meets predetermined reliability requirements, which are mainly described in terms of reliability indices, for example, MTBF (Mean Time Between Failures). It is widely exercised in product development. In engineering practices, RQT plans are mandatorily referred to standards, such as MIL-STD-781 or GJB899A-2009. But these conventional RQT plans in standards are not preferred, as the test plans often require long test times or have high risks for both producer and consumer due to the fact that the methods in the standards only use the test data of the product itself. And the standards usually assume that the product is exponentially distributed, which is not suitable for a complex product other than electronics. So it is desirable to develop an RQT plan derivation method that safely shortens test time while keeping the two risks under control. To meet this end, for the product whose lifetime follows Weibull distribution, an RQT plan derivation method is developed. The merit of the method is that expert judgment is taken into account. This is implemented by applying the Bayesian method, which translates the expert judgment into prior information on product reliability. Then producer’s risk and the consumer’s risk are calculated accordingly. The procedures to derive RQT plans are also proposed in this paper. As extra information and expert judgment are added to the derivation, the derived test plans have the potential to shorten the required test time and have satisfactory low risks for both producer and consumer, compared with conventional test plans. A case study is provided to prove that when using expert judgment in deriving product test plans, the proposed method is capable of finding ideal test plans that not only reduce the two risks but also shorten the required test time as well.Keywords: expert judgment, reliability qualification test, test plan derivation, producer’s risk, consumer’s risk
Procedia PDF Downloads 1379480 The Hyundai Model: A Self-Sufficient State like Entity Masquerading as a Company
Authors: Nikita Koradia
Abstract:
Hyundai Motor Company, which started off as a small fish in a big sea, paved its way out successfully and established itself as an independent group from the conglomerate. Hyundai, with its officious power across the globe and particularly in South Korea in the automobile industry, has one the most complex yet fascinating governance structure. Being the second largest contributor to the Gross Domestic Product of South Korea after Samsung and having a market share of 51.3% domestically in automobile industry, Hyundai has faced its part of criticism owing to its anti-labor union approach and owing to its internalization of supply chain management. The censure has been coming from across jurisdictions like China, India, Canada, the EU, etc. The paper focuses on the growth of Hyundai and its inward and outward investment structure. The paper questions the ability of Hyundai to become a mini-state in itself by focusing on its governance structure. The paper further elaborates on its compliance and disclosure regime in the field of Corporate social responsibility and explores how far the business structure adopted by Hyundai works in its favor to become one of the leading automobile contenders in the market.Keywords: compliance regime, disclosure regime, Hyundai motor company, supply-chain management
Procedia PDF Downloads 1189479 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System
Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah
Abstract:
High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.Keywords: high-speed transportation, hyperloop, railways transportation, single-sided linear induction Motor (SLIM)
Procedia PDF Downloads 2769478 Effect of Measured and Calculated Static Torque on Instantaneous Torque Profile of Switched Reluctance Motor
Authors: Ali Asghar Memon
Abstract:
The simulation modeling of switched reluctance (SR) machine often relies and uses the three data tables identified as static torque characteristics that include flux linkage characteristics, co energy characteristics and static torque characteristics separately. It has been noticed from the literature that the data of static torque used in the simulation model is often calculated so far the literature is concerned. This paper presents the simulation model that include the data of measured and calculated static torque separately to see its effect on instantaneous torque profile of the machine. This is probably for the first time so far the literature review is concerned that static torque from co energy information, and measured static torque directly from experiments are separately used in the model. This research is helpful for accurate modeling of switched reluctance drive.Keywords: static characteristics, current chopping, flux linkage characteristics, switched reluctance motor
Procedia PDF Downloads 2929477 Tele-Rehabilitation for Multiple Sclerosis: A Case Study
Authors: Sharon Harel, Rachel Kizony, Yoram Feldman, Gabi Zeilig, Mordechai Shani
Abstract:
Multiple Sclerosis (MS) is a neurological disease that may cause restriction in participation in daily activities of young adults. Main symptoms include fatigue, weakness and cognitive decline. The appearance of symptoms, their severity and deterioration rate, change between patients. The challenge of health services is to provide long-term rehabilitation services to people with MS. The objective of this presentation is to describe a course of tele-rehabilitation service of a woman with MS. Methods; R is a 48 years-old woman, diagnosed with MS when she was 22. She started to suffer from weakness of her non-dominant left upper extremity about ten years after the diagnosis. She was referred to the tele-rehabilitation service by her rehabilitation team, 16 years after diagnosis. Her goals were to improve ability to use her affected upper extremity in daily activities. On admission her score in the Mini-Mental State Exam was 30/30. Her Fugl-Meyer Assessment (FMA) score of the left upper extremity was 48/60, indicating mild weakness and she had a limitation of her shoulder abduction (90 degrees). In addition, she reported little use of her arm in daily activities as shown in her responses to the Motor Activity Log (MAL) that were equal to 1.25/5 in amount and 1.37 in quality of use. R. received two 30 minutes on-line sessions per week in the tele-rehabilitation service, with the CogniMotion system. These were complemented by self-practice with the system. The CogniMotion system provides a hybrid (synchronous-asynchronous), the home-based tele-rehabilitation program to improve the motor, cognitive and functional status of people with neurological deficits. The system consists of a computer, large monitor, and the Microsoft’s Kinect 3D sensor. This equipment is located in the client’s home and connected to a clinician’s computer setup in a remote clinic via WiFi. The client sits in front of the monitor and uses his body movements to interact with games and tasks presented on the monitor. The system provides feedback in the form of ‘knowledge of results’ (e.g., the success of a game) and ‘knowledge of performance’ (e.g., alerts for compensatory movements) to enhance motor learning. The games and tasks were adapted for R. motor abilities and level of difficulty was gradually increased according to her abilities. The results of her second assessment (after 35 on-line sessions) showed improvement in her FMA score to 52 and shoulder abduction to 140 degrees. Moreover, her responses to the MAL indicated an increased amount (2.4) and quality (2.2) of use of her left upper extremity in daily activities. She reported high level of enjoyment from the treatments (5/5), specifically the combination of cognitive challenges while moving her body. In addition, she found the system easy to use as reflected by her responses to the System Usability Scale (85/100). To-date, R. continues to receive treatments in the tele-rehabilitation service. To conclude, this case report shows the potential of using tele-rehabilitation for people with MS to provide strategies to enhance the use of the upper extremity in daily activities as well as for maintaining motor function.Keywords: motor function, multiple-sclerosis, tele-rehabilitation, daily activities
Procedia PDF Downloads 1809476 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 689475 Time Lag Analysis for Readiness Potential by a Firing Pattern Controller Model of a Motor Nerve System Considered Innervation and Jitter
Authors: Yuko Ishiwaka, Tomohiro Yoshida, Tadateru Itoh
Abstract:
Human makes preparation called readiness potential unconsciously (RP) before awareness of their own decision. For example, when recognizing a button and pressing the button, the RP peaks are observed 200 ms before the initiation of the movement. It has been known that the preparatory movements are acquired before actual movements, but it has not been still well understood how humans can obtain the RP during their growth. On the proposition of why the brain must respond earlier, we assume that humans have to adopt the dangerous environment to survive and then obtain the behavior to cover the various time lags distributed in the body. Without RP, humans cannot take action quickly to avoid dangerous situations. In taking action, the brain makes decisions, and signals are transmitted through the Spinal Cord to the muscles to the body moves according to the laws of physics. Our research focuses on the time lag of the neuron signal transmitting from a brain to muscle via a spinal cord. This time lag is one of the essential factors for readiness potential. We propose a firing pattern controller model of a motor nerve system considered innervation and jitter, which produces time lag. In our simulation, we adopt innervation and jitter in our proposed muscle-skeleton model, because these two factors can create infinitesimal time lag. Q10 Hodgkin Huxley model to calculate action potentials is also adopted because the refractory period produces a more significant time lag for continuous firing. Keeping constant power of muscle requires cooperation firing of motor neurons because a refractory period stifles the continuous firing of a neuron. One more factor in producing time lag is slow or fast-twitch. The Expanded Hill Type model is adopted to calculate power and time lag. We will simulate our model of muscle skeleton model by controlling the firing pattern and discuss the relationship between the time lag of physics and neurons. For our discussion, we analyze the time lag with our simulation for knee bending. The law of inertia caused the most influential time lag. The next most crucial time lag was the time to generate the action potential induced by innervation and jitter. In our simulation, the time lag at the beginning of the knee movement is 202ms to 203.5ms. It means that readiness potential should be prepared more than 200ms before decision making.Keywords: firing patterns, innervation, jitter, motor nerve system, readiness potential
Procedia PDF Downloads 8299474 Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing
Authors: Ravindra Mallya, B. Satish Shenoy, B. Raghuvir Pai
Abstract:
The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed.Keywords: axial groove, hydrodynamic pressure, journal bearing, test rig, water lubrication
Procedia PDF Downloads 5029473 Automatic MC/DC Test Data Generation from Software Module Description
Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau
Abstract:
Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that is highly recommended or required for safety-critical software coverage. Therefore, many testing standards include this criterion and require it to be satisfied at a particular level of testing (e.g. validation and unit levels). However, an important amount of time is needed to meet those requirements. In this paper we propose to automate MC/DC test data generation. Thus, we present an approach to automatically generate MC/DC test data, from software module description written over a dedicated language. We introduce a new merging approach that provides high MC/DC coverage for the description, with only a little number of test cases.Keywords: domain-specific language, MC/DC, test data generation, safety-critical software coverage
Procedia PDF Downloads 4419472 A Novel Approach towards Test Case Prioritization Technique
Authors: Kamna Solanki, Yudhvir Singh, Sandeep Dalal
Abstract:
Software testing is a time and cost intensive process. A scrutiny of the code and rigorous testing is required to identify and rectify the putative bugs. The process of bug identification and its consequent correction is continuous in nature and often some of the bugs are removed after the software has been launched in the market. This process of code validation of the altered software during the maintenance phase is termed as Regression testing. Regression testing ubiquitously considers resource constraints; therefore, the deduction of an appropriate set of test cases, from the ensemble of the entire gamut of test cases, is a critical issue for regression test planning. This paper presents a novel method for designing a suitable prioritization process to optimize fault detection rate and performance of regression test on predefined constraints. The proposed method for test case prioritization m-ACO alters the food source selection criteria of natural ants and is basically a modified version of Ant Colony Optimization (ACO). The proposed m-ACO approach has been coded in 'Perl' language and results are validated using three examples by computation of Average Percentage of Faults Detected (APFD) metric.Keywords: regression testing, software testing, test case prioritization, test suite optimization
Procedia PDF Downloads 3389471 Effects of Vertimax Training on Agility, Quickness and Acceleration
Authors: Dede Basturk, Metin Kaya, Halil Taskin, Nurtekin Erkmen
Abstract:
In total, 29 students studying in Selçuk University Physical Training and Sports School who are recreationally active participated voluntarilyin this study which was carried out in order to examine effects of Vertimax trainings on agility, quickness and acceleration. 3 groups took their parts in this study as Vertimax training group (N=10), Ordinary training group (N=10) and Control group (N=9). Measurements were carried out in performance laboratory of Selçuk University Physical Training and Sports School. A training program for quickness and agility was followed up for subjects 3 days a week (Monday, Wednesday, Friday) for 8 weeks. Subjects taking their parts in vertimax training group and ordinary training group participated in the training program for quickness and agility. Measurements were applied as pre-test and post-test. Subjects of vertimax training group followed the training program with vertimax device and subjects of ordinary training group followed the training program without vertimax device. As to control group who are recreationally active, they did not participate in any program. 4 gate photocells were used for measuring and measurement of distances was carried out in m. Furthermore, single gate photocell and honi were used for agility test. Measurements started with 15 minutes of warm-up. Acceleration, quickness and agility tests were applied on subjects. 3 measurements were made for each subject at 3 minutes resting intervals. The best rating of three measurements was recorded. 5 m quickness pre-test value of vertimax training groups has been determined as 1,11±0,06 s and post-test value has been determined as 1,06 ± 0,08 s (P<0,05). 5 m quickness pre-test value of ordinary training group has been determined as 1,11±0,06 s and post-test value has been determined as 1,07±0,07 s (P<0,05).5 m quickness pre-test value of control group has been determined as 1,13±0,08 s and post-test value has been determined as 1,10 ± 0,07 s (P>0,05). Upon examination of 10 m acceleration value before and after the training, 10 m acceleration pre-test value of vertimax training group has been determined as 1,82 ± 0,07 s and post-test value has been determined as 1,76±0,83 s (P>0,05). 10 m acceleration pre-test value of ordinary training group has been determined as 1,83±0,05 s and post-test value has been determined as 1,78 ± 0,08 s (P>0,05).10 m acceleration pre-test value of control group has been determined as 1,87±0,11 s and post-test value has been determined as 1,83 ± 0,09 s (P>0,05). Upon examination of 15 m acceleration value before and after the training, 15 m acceleration pre-test value of vertimax training group has been determined as 2,52±0,10 s and post-test value has been determined as 2,46 ± 0,11 s (P>0,05).15 m acceleration pre-test value of ordinary training group has been determined as 2,52±0,05 s and post-test value has been determined as 2,48 ± 0,06 s (P>0,05). 15 m acceleration pre-test value of control group has been determined as 2,55 ± 0,11 s and post-test value has been determined as 2,54 ± 0,08 s (P>0,05).Upon examination of agility performance before and after the training, agility pre-test value of vertimax training group has been determined as 9,50±0,47 s and post-test value has been determined as 9,66 ± 0,47 s (P>0,05). Agility pre-test value of ordinary training group has been determined as 9,99 ± 0,05 s and post-test value has been determined as 9,86 ± 0,40 s (P>0,05). Agility pre-test value of control group has been determined as 9,74 ± 0,45 s and post-test value has been determined as 9,92 ± 0,49 s (P>0,05). Consequently, it has been observed that quickness and acceleration features were developed significantly following 8 weeks of vertimax training program and agility features were not developed significantly. It is suggested that training practices used for the study may be used for situations which may require sudden moves and in order to attain the maximum speed in a short time. Nevertheless, it is also suggested that this training practice does not make contribution in development of moves which may require sudden direction changes. It is suggested that productiveness and innovation may come off in terms of training by using various practices of vertimax trainings.Keywords: vertimax, training, quickness, agility, acceleration
Procedia PDF Downloads 4939470 Robust Control of Traction Motors based Electric Vehicles by Means of High-Gain
Authors: H. Mekki, A. Djerioui, S. Zeghlache, L. Chrifi-Alaoui
Abstract:
Induction motor (IM)Induction motor (IM) are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system.Keywords: electric vehicles, sliding mode control, induction motor drive, high gain observer
Procedia PDF Downloads 749469 Current Status of 5A Lab6 Hollow Cathode Life Tests in Lanzhou Institute of Physics, China
Authors: Yanhui Jia, Ning Guo, Juan Li, Yunkui Sun, Wei Yang, Tianping Zhang, Lin Ma, Wei Meng, Hai Geng
Abstract:
The current statuses of lifetime test of LaB6 hollow cathode at the Lanzhou institute of physics (LIP), China, was described. 5A LaB6 hollow cathode was designed for LIPS-200 40mN Xenon ion thruster and it could be used for LHT-100 80 mN Hall thruster, too. Life test of the discharge and neutralizer modes of LHC-5 hollow cathode were stared in October 2011, and cumulative operation time reached 17,300 and 16,100 hours in April 2015, respectively. The life of cathode was designed more than 11,000 hours. Parameters of discharge and key structure dimensions were monitored in different stage of life test indicated that cathodes were health enough. The test will continue until the cathode cannot work or operation parameter is not in normally. The result of the endurance test of cathode demonstrated that the LaB6 hollow cathode is satisfied for the required of thruster in life and performance.Keywords: LaB6, hollow cathode, thruster, lifetime test, electric propulsion
Procedia PDF Downloads 6069468 Predictors of Motor and Cognitive Domains of Functional Performance after Rehabilitation of Individuals with Acute Stroke
Authors: A. F. Jaber, E. Dean, M. Liu, J. He, D. Sabata, J. Radel
Abstract:
Background: Stroke is a serious health care concern and a major cause of disability in the United States. This condition impacts the individual’s functional ability to perform daily activities. Predicting functional performance of people with stroke assists health care professionals in optimizing the delivery of health services to the affected individuals. The purpose of this study was to identify significant predictors of Motor FIM and of Cognitive FIM subscores among individuals with stroke after discharge from inpatient rehabilitation (typically 4-6 weeks after stroke onset). A second purpose is to explore the relation among personal characteristics, health status, and functional performance of daily activities within 2 weeks of stroke onset. Methods: This study used a retrospective chart review to conduct a secondary analysis of data obtained from the Healthcare Enterprise Repository for Ontological Narration (HERON) database. The HERON database integrates de-identified clinical data from seven different regional sources including hospital electronic medical record systems of the University of Kansas Health System. The initial HERON data extract encompassed 1192 records and the final sample consisted of 207 participants who were mostly white (74%) males (55%) with a diagnosis of ischemic stroke (77%). The outcome measures collected from HERON included performance scores on the National Institute of Health Stroke Scale (NIHSS), the Glasgow Coma Scale (GCS), and the Functional Independence Measure (FIM). The data analysis plan included descriptive statistics, Pearson correlation analysis, and Stepwise regression analysis. Results: significant predictors of discharge Motor FIM subscores included age, baseline Motor FIM subscores, discharge NIHSS scores, and comorbid electrolyte disorder (R2 = 0.57, p <0.026). Significant predictors of discharge Cognitive FIM subscores were age, baseline cognitive FIM subscores, client cooperative behavior, comorbid obesity, and the total number of comorbidities (R2 = 0.67, p <0.020). Functional performance on admission was significantly associated with age (p < 0.01), stroke severity (p < 0.01), and length of hospital stay (p < 0.05). Conclusions: our findings show that younger age, good motor and cognitive abilities on admission, mild stroke severity, fewer comorbidities, and positive client attitude all predict favorable functional outcomes after inpatient stroke rehabilitation. This study provides health care professionals with evidence to evaluate predictors of favorable functional outcomes early at stroke rehabilitation, to tailor individualized interventions based on their client’s anticipated prognosis, and to educate clients about the benefits of making lifestyle changes to improve their anticipated rate of functional recovery.Keywords: functional performance, predictors, stroke, recovery
Procedia PDF Downloads 1449467 Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip
Authors: Mahdiar Hosseinghadiry, Razali Ismail, F. Fotovati
Abstract:
One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC.Keywords: on chip, interconnection testing, horizontal-vertical testing, enhanced unicast
Procedia PDF Downloads 5539466 Automated User Story Driven Approach for Web-Based Functional Testing
Authors: Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam
Abstract:
Manual writing of test cases from functional requirements is a time-consuming task. Such test cases are not only difficult to write but are also challenging to maintain. Test cases can be drawn from the functional requirements that are expressed in natural language. However, manual test case generation is inefficient and subject to errors. In this paper, we have presented a systematic procedure that could automatically derive test cases from user stories. The user stories are specified in a restricted natural language using a well-defined template. We have also presented a detailed methodology for writing our test ready user stories. Our tool “Test-o-Matic” automatically generates the test cases by processing the restricted user stories. The generated test cases are executed by using open source Selenium IDE. We evaluate our approach on a case study, which is an open source web based application. Effectiveness of our approach is evaluated by seeding faults in the open source case study using known mutation operators. Results show that the test case generation from restricted user stories is a viable approach for automated testing of web applications.Keywords: automated testing, natural language, restricted user story modeling, software engineering, software testing, test case specification, transformation and automation, user story, web application testing
Procedia PDF Downloads 3879465 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test
Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad
Abstract:
The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7 to 132 , 224 , and 396 in presence of 15 cm, 20 cm, and 30 cm base course, respectively.Keywords: modulus of subgrade reaction, plate load test, base course, sandy subgrade
Procedia PDF Downloads 2479464 Impact of an Exercise Program on Physical Fitness of a Candidate to Naval Academy: A Case Study
Authors: Ricardo Chaves, Carlos Vasconcelos
Abstract:
Candidates to join the Naval Academy have to take a set of physical tests, which is crucial for a high level of physical fitness. Thus, the planning of physical exercises for candidates to the Naval School must take into account the improvement of their physical fitness. The aim of this study was to investigate the impact of a 6-month exercise program to improve the physical fitness of an individual who will apply for the Naval Academy. This was a non-experimental pre-post-evaluation study. The patient was male, had 18 years old, and a body mass index of 21.1 kg.m². The patient participated in a 6-month aerobic and strength exercise program (3 sessions per week, 75 minutes duration each session). Physical fitness tests were performed according to the physical fitness requirements for entry into the Naval academy (muscle strength [maximum number of lifts and maximum number of sit-ups for 1 minute]; aerobic fitness [2.4 km run and 200 m swimming test]) before (baseline) and after the exercise intervention (6 months). Regarding muscle strength, in the abdominal test, the improvements between the pre-test (39 abdominals.) and post-test (61 abdominals) were 56.4%. For elevations, there was an increase in its number by 150% between the pre-test (4 elevations) and post-test (10 elevations). With regard to aerobic fitness, in the 2.4 km race, there was an evolution of 32.0% between the pre-test (16.46 min.) and the post-test (12.42 min.). For the 200-meter swimming test, there was a negative variation of 2% between the pre-test (2.25 min.) and post-test (2.28 min). A 6-month aerobic and strength exercise program leads to a positive evolution in the muscular strength of the patient. Regarding aerobic fitness, opposite results were found, with a positive evolution in the 2.4 km running test and a negative evolution in the swimming test. In future exercise programs for the improvement of the physical fitness of candidates for the Naval Academy, more emphasis has to be done on specific swimming training.Keywords: case study, exercise program, Naval Academy, physical fitness
Procedia PDF Downloads 919463 Evaluating the Validity of the Combined Bedside Test in Diagnosing Juvenile Myasthenia Gravis (2012-2024)
Authors: Pechpailin Kortnoi, Tanitnun Paprad
Abstract:
Background: Myasthenia gravis (MG) is an autoimmune disorder characterized by impaired neuromuscular transmission due to antibodies against nicotinic receptors, leading to muscle weakness, ptosis, and respiratory issues. The incidence of MG has risen globally, emphasizing the need for effective diagnostics. Objective: This study evaluates the validity of a combined bedside test (the ice pack test and fatigability test) for diagnosing juvenile myasthenia gravis (JMG) in pediatric patients with ptosis. Methods: This cross-sectional study, conducted from January 2012 to May 2024 at King Chulalongkorn Memorial Hospital, Thailand, included pediatric patients (1 month to 18 years) with ptosis undergoing ice pack and fatigability tests. Data included demographics, clinical findings, and test results. Diagnostic efficacy was assessed using sensitivity, specificity, accuracy, PPV, NPV, Fagan Nomogram, Kappa Statistics, and McNemar’s Chi-Square. Results: Of 43 identified patients, 32 were included, with 47% male and a mean age of 7 years. The combined bedside test had high sensitivity (92.8%) and accuracy (87.5%) but moderate specificity (50%). It significantly outperformed the ice pack test (P = 0.0005), which showed low sensitivity (42.8%) and accuracy (43.8%). The fatigability test had 82% sensitivity and 92% PPV. Confirmatory tests (AChR-Ab, MuSK-Ab, neostigmine, repetitive nerve stimulation) supported most diagnoses. Conclusions: The combined bedside test, with high sensitivity (92.8%) and accuracy (87.5%), is an effective screening tool for juvenile myasthenia gravis, outperforming the ice pack test. Integrating it into clinical practice may improve diagnosis and enable timely treatment. The fatigability test (82% sensitivity) is also useful as an adjunct screening tool.Keywords: myasthenia gravis (MG), the ice pack test, the fatigability test, the combined bedside test
Procedia PDF Downloads 59462 Development of a Social Assistive Robot for Elderly Care
Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He
Abstract:
This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.Keywords: social robot, vision, elderly care, machine learning
Procedia PDF Downloads 4419461 Mastering Test Automation: Bridging Gaps for Seamless QA
Authors: Rohit Khankhoje
Abstract:
The rapid evolution of software development practices has given rise to an increasing demand for efficient and effective test automation. The paper titled "Mastering Test Automation: Bridging Gaps for Seamless QA" delves into the crucial aspects of test automation, addressing the obstacles faced by organizations in achieving flawless quality assurance. The paper highlights the importance of bridging knowledge gaps within organizations, emphasizing the necessity for management to acquire a deeper comprehension of test automation scenarios, coverage, report trends, and the importance of communication. To tackle these challenges, this paper introduces innovative solutions, including the development of an automation framework that seamlessly integrates with test cases and reporting tools like TestRail and Jira. This integration facilitates the automatic recording of bugs in Jira, enhancing bug reporting and communication between manual QA and automation teams as well as TestRail have all newly added automated testcases as soon as it is part of the automation suite. The paper demonstrates how this framework empowers management by providing clear insights into ongoing automation activities, bug origins, trend analysis, and test case specifics. "Mastering Test Automation" serves as a comprehensive guide for organizations aiming to enhance their quality assurance processes through effective test automation. It not only identifies the common pitfalls and challenges but also offers practical solutions to bridge the gaps, resulting in a more streamlined and efficient QA process.Keywords: automation framework, API integration, test automation, test management tools
Procedia PDF Downloads 73