Search results for: bioinformatics pipeline
33 Incidence and Molecular Mechanism of Human Pathogenic Bacterial Interaction with Phylloplane of Solanum lycopersicum
Authors: Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Susmita Goswami, Prem D. Sharma, Prabir K. Paul
Abstract:
The concept of organic agriculture has been accepted as novelty in Indian society, but there is no data available on the human pathogens colonizing plant parts due to such practices. Also, the pattern and mechanism of their colonization need to be understood in order to devise possible strategies for their prevention. In the present study, human pathogenic bacteria were isolated from organically grown tomato plants and five of them were identified as Klebsiella pneumoniae, Enterobacter ludwigii, Serratia fonticola, Stenotrophomonas maltophilia and Chryseobacterium jejuense. Tomato plants were grown in controlled aseptic conditions with 25±1˚C, 70% humidity and 12 hour L/D photoperiod. Six weeks old plants were divided into 6 groups of 25 plants each and treated as follows: Group 1: K. pneumonia, Group 2: E. ludwigii, Group 3: S. fonticola, Group 4: S. maltophilia, Group 5: C. jejuense, Group 6: Sterile distilled water (control). The inoculums for all treatments were prepared by overnight growth with uniform concentration of 108 cells/ml. Leaf samples from above groups were collected at 0.5, 2, 4, 6 and 24 hours post inoculation for the colony forming unit counts (CFU/cm2 of leaf area) of individual pathogens using leaf impression method. These CFU counts were used for the in vivo colonization assay and adherence assay of individual pathogens. Also, resistance of these pathogens to at least 12 antibiotics was studied. Based on these findings S. fonticola was found to be most prominently colonizing the phylloplane of tomato and was further studied. Tomato plants grown in controlled aseptic conditions same as mentioned above were divided into 2 groups of 25 plants each and treated as follows: Group 1: S. fonticola, Group 2: Sterile distilled water (control). Leaf samples from above groups were collected at 0, 24, 48, 72 and 96 hours post inoculation and homogenized in suitable buffers for surface and cell wall protein isolation. Protein samples thus obtained were subjected to isocratic SDS-gel electrophoresis and analyzed. It was observed that presence of S. fonticola could induce the expression of at least 3 additional cell wall proteins at different time intervals. Surface proteins also showed variation in the expression pattern at different sampling intervals. Further identification of these proteins by MALDI-MS and bioinformatics tools revealed the gene(s) involved in the interaction of S. fonticola with tomato phylloplane.Keywords: cell wall proteins, human pathogenic bacteria, phylloplane, solanum lycopersicum
Procedia PDF Downloads 22832 Investigation of FOXM1 Gene Expression in Breast Cancer and Its Relationship with Mir-216B-5P Expression Level
Authors: Ramin Mehdiabadi, Neda Menbari, Mohammad Nazir Menbari
Abstract:
As a pressing public health concern, breast cancer stands as the predominant oncological diagnosis and principal cause of cancer-related mortality among women globally, accounting for 11.7% of new cancer incidences and 6.9% of cancer-related deaths. The annual figures indicate that approximately 230,480 women are diagnosed with breast cancer in the United States alone, with 39,520 succumbing to the disease. While developed economies have reported a deceleration in both incidence and mortality rates across various forms of cancer, including breast cancer, emerging and low-income economies manifest a contrary escalation, largely attributable to lifestyle-mediated risk factors such as tobacco usage, physical inactivity, and high caloric intake. Breast cancer is distinctly characterized by molecular heterogeneity, manifesting in specific subtypes delineated by biomarkers—Estrogen Receptors (ER), Progesterone Receptors (PR), and Human Epidermal Growth Factor Receptor 2 (HER2). These subtypes, comprising Luminal A, Luminal B, HER2-enriched, triple-negative/basal-like, and normal-like, necessitate nuanced, subtype-specific therapeutic regimens, thereby challenging the applicability of generalized treatment protocols. Within this molecular complexity, the transcription factor Forkhead Box M1 (FoxM1) has garnered attention as a significant driver of cellular proliferation, tumorigenesis, metastatic progression, and treatment resistance in a spectrum of human malignancies, including breast cancer. Concurrently, microRNAs (miRs), specifically miR-216b-5p, have been identified as post-transcriptional gene expression regulators and potential tumor suppressors. The overarching objective of this academic investigation is to explicate the multifaceted interrelationship between FoxM1 and miR-216b-5p across the disparate molecular subtypes of breast cancer. Employing a methodologically rigorous, interdisciplinary research design that incorporates cutting-edge molecular biology techniques, sophisticated bioinformatics analytics, and exhaustive meta-analyses of extant clinical data, this scholarly endeavor aims to unveil novel biomarker-specific therapeutic pathways. By doing so, this research is positioned to make a seminal contribution to the advancement of personalized, efficacious, and minimally toxic treatment paradigms, thus profoundly impacting the global efforts to ameliorate the burden of breast cancer.Keywords: breast cancer, fox m1, microRNAs, mir-216b-5p, gene expression
Procedia PDF Downloads 7431 Fueling Efficient Reporting And Decision-Making In Public Health With Large Data Automation In Remote Areas, Neno Malawi
Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Julia Huggins, Fabien Munyaneza
Abstract:
Background: Partners In Health – Malawi introduced one of Operational Researches called Primary Health Care (PHC) Surveys in 2020, which seeks to assess progress of delivery of care in the district. The study consists of 5 long surveys, namely; Facility assessment, General Patient, Provider, Sick Child, Antenatal Care (ANC), primarily conducted in 4 health facilities in Neno district. These facilities include Neno district hospital, Dambe health centre, Chifunga and Matope. Usually, these annual surveys are conducted from January, and the target is to present final report by June. Once data is collected and analyzed, there are a series of reviews that take place before reaching final report. In the first place, the manual process took over 9 months to present final report. Initial findings reported about 76.9% of the data that added up when cross-checked with paper-based sources. Purpose: The aim of this approach is to run away from manually pulling the data, do fresh analysis, and reporting often associated not only with delays in reporting inconsistencies but also with poor quality of data if not done carefully. This automation approach was meant to utilize features of new technologies to create visualizations, reports, and dashboards in Power BI that are directly fished from the data source – CommCare hence only require a single click of a ‘refresh’ button to have the updated information populated in visualizations, reports, and dashboards at once. Methodology: We transformed paper-based questionnaires into electronic using CommCare mobile application. We further connected CommCare Mobile App directly to Power BI using Application Program Interface (API) connection as data pipeline. This provided chance to create visualizations, reports, and dashboards in Power BI. Contrary to the process of manually collecting data in paper-based questionnaires, entering them in ordinary spreadsheets, and conducting analysis every time when preparing for reporting, the team utilized CommCare and Microsoft Power BI technologies. We utilized validations and logics in CommCare to capture data with less errors. We utilized Power BI features to host the reports online by publishing them as cloud-computing process. We switched from sharing ordinary report files to sharing the link to potential recipients hence giving them freedom to dig deep into extra findings within Power BI dashboards and also freedom to export to any formats of their choice. Results: This data automation approach reduced research timelines from the initial 9 months’ duration to 5. It also improved the quality of the data findings from the original 76.9% to 98.9%. This brought confidence to draw conclusions from the findings that help in decision-making and gave opportunities for further researches. Conclusion: These results suggest that automating the research data process has the potential of reducing overall amount of time spent and improving the quality of the data. On this basis, the concept of data automation should be taken into serious consideration when conducting operational research for efficiency and decision-making.Keywords: reporting, decision-making, power BI, commcare, data automation, visualizations, dashboards
Procedia PDF Downloads 11630 Bioinformatic Strategies for the Production of Glycoproteins in Algae
Authors: Fadi Saleh, Çığdem Sezer Zhmurov
Abstract:
Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.Keywords: microalgae, glycoproteins, post-translational modification, genome
Procedia PDF Downloads 2429 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 6828 A Novel Chicken W Chromosome Specific Tandem Repeat
Authors: Alsu F. Saifitdinova, Alexey S. Komissarov, Svetlana A. Galkina, Elena I. Koshel, Maria M. Kulak, Stephen J. O'Brien, Elena R. Gaginskaya
Abstract:
The mystery of sex determination is one of the most ancient and still not solved until the end so far. In many species, sex determination is genetic and often accompanied by the presence of dimorphic sex chromosomes in the karyotype. Genomic sequencing gave the information about the gene content of sex chromosomes which allowed to reveal their origin from ordinary autosomes and to trace their evolutionary history. Female-specific W chromosome in birds as well as mammalian male-specific Y chromosome is characterized by the degeneration of gene content and the accumulation of repetitive DNA. Tandem repeats complicate the analysis of genomic data. Despite the best efforts chicken W chromosome assembly includes only 1.2 Mb from expected 55 Mb. Supplementing the information on the sex chromosome composition not only helps to complete the assembly of genomes but also moves us in the direction of understanding of the sex-determination systems evolution. A whole-genome survey to the assembly Gallus_gallus WASHUC 2.60 was applied for repeats search in assembled genome and performed search and assembly of high copy number repeats in unassembled reads of SRR867748 short reads datasets. For cytogenetic analysis conventional methods of fluorescent in situ hybridization was used for previously cloned W specific satellites and specifically designed directly labeled synthetic oligonucleotide DNA probe was used for bioinformatically identified repetitive sequence. Hybridization was performed with mitotic chicken chromosomes and manually isolated giant meiotic lampbrush chromosomes from growing oocytes. A novel chicken W specific satellite (GGAAA)n which is not co-localizes with any previously described classes of W specific repeats was identified and mapped with high resolution. In the composition of autosomes this repeat units was found as a part of upstream regions of gonad specific protein coding sequences. These findings may contribute to the understanding of the role of tandem repeats in sex specific differentiation regulation in birds and sex chromosome evolution. This work was supported by the postdoctoral fellowships from St. Petersburg State University (#1.50.1623.2013 and #1.50.1043.2014), the grant for Leading Scientific Schools (#3553.2014.4) and the grant from Russian foundation for basic researches (#15-04-05684). The equipment and software of Research Resource Center “Chromas” and Theodosius Dobzhansky Center for Genome Bioinformatics of Saint Petersburg State University were used.Keywords: birds, lampbrush chromosomes, sex chromosomes, tandem repeats
Procedia PDF Downloads 38927 First Attempts Using High-Throughput Sequencing in Senecio from the Andes
Authors: L. Salomon, P. Sklenar
Abstract:
The Andes hold the highest plant species diversity in the world. How this occurred is one of the most intriguing questions in studies addressing the origin and patterning of plant diversity worldwide. Recently, the explosive adaptive radiations found in high Andean groups have been pointed as triggers to this spectacular diversity. The Andes is the species-richest area for the biggest genus from the Asteraceae family: Senecio. There, the genus presents an incredible diversity of species, striking growth form variation, and large niche span. Even when some studies tried to disentangle the evolutionary story for some Andean species in Senecio, they obtained partially resolved and low supported phylogenies, as expected for recently radiated groups. The high-throughput sequencing (HTS) approaches have proved to be a powerful tool answering phylogenetic questions in those groups whose evolutionary stories are recent and traditional techniques like Sanger sequencing are not informative enough. Although these tools have been used to understand the evolution of an increasing number of Andean groups, nowadays, their scope has not been applied for Senecio. This project aims to contribute to a better knowledge of the mechanisms shaping the hyper diversity of Senecio in the Andean region, using HTS focusing on Senecio ser. Culcitium (Asteraceae), recently recircumscribed. Firstly, reconstructing a highly resolved and supported phylogeny, and after assessing the role of allopatric differentiation, hybridization, and genome duplication in the diversification of the group. Using the Hyb-Seq approach, combining target enrichment using Asteraceae COS loci baits and genome skimming, more than 100 new accessions were generated. HybPhyloMaker and HybPiper pipelines were used for the phylogenetic analyses, and another pipeline in development (Paralogue Wizard) was used to deal with paralogues. RAxML was used to generate gene trees and Astral for species tree reconstruction. Phyparts were used to explore as first step of gene tree discordance along the clades. Fully resolved with moderated supported trees were obtained, showing Senecio ser. Culcitium as monophyletic. Within the group, some species formed well-supported clades with morphologically related species, while some species would not have exclusive ancestry, in concordance with previous studies using amplified fragment length polymorphism (AFLP) showing geographical differentiation. Discordance between gene trees was detected. Paralogues were detected for many loci, indicating possible genome duplications; ploidy level estimation using flow cytometry will be carried out during the next months in order to identify the role of this process in the diversification of the group. Likewise, TreeSetViz package for Mesquite, hierarchical likelihood ratio congruence test using Concaterpillar, and Procrustean Approach to Cophylogeny (PACo), will be used to evaluate the congruence among different inheritance patterns. In order to evaluate the influence of hybridization and Incomplete Lineage Sorting (ILS) in each resultant clade from the phylogeny, Joly et al.'s 2009 method in a coalescent scenario and Paterson’s D-statistic will be performed. Even when the main discordance sources between gene trees were not explored in detail yet, the data show that at least to some degree, processes such as genome duplication, hybridization, and/or ILS could be involved in the evolution of the group.Keywords: adaptive radiations, Andes, genome duplication, hybridization, Senecio
Procedia PDF Downloads 13926 A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease
Authors: Marina Passero, Tianhua Zhai, Zuyi (Jacky) Huang
Abstract:
Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease.Keywords: Alzheimer’s disease, drug discovery, ligand-protein docking, gene-network analysis, cholesterol regulation
Procedia PDF Downloads 7425 Biostabilisation of Sediments for the Protection of Marine Infrastructure from Scour
Authors: Rob Schindler
Abstract:
Industry-standard methods of mitigating erosion of seabed sediments rely on ‘hard engineering’ approaches which have numerous environmental shortcomings: (1) direct loss of habitat by smothering of benthic species, (2) disruption of sediment transport processes, damaging geomorphic and ecosystem functionality (3) generation of secondary erosion problems, (4) introduction of material that may propagate non-local species, and (5) provision of pathways for the spread of invasive species. Recent studies have also revealed the importance of biological cohesion, the result of naturally occurring extra-cellular polymeric substances (EPS), in stabilizing natural sediments. Mimicking the strong bonding kinetics through the deliberate addition of EPS to sediments – henceforth termed ‘biostabilisation’ - offers a means in which to mitigate against erosion induced by structures or episodic increases in hydrodynamic forcing (e.g. storms and floods) whilst avoiding, or reducing, hard engineering. Here we present unique experiments that systematically examine how biostabilisation reduces scour around a monopile in a current, a first step to realizing the potential of this new method of scouring reduction for a wide range of engineering purposes in aquatic substrates. Experiments were performed in Plymouth University’s recirculating sediment flume which includes a recessed scour pit. The model monopile was 0.048 m in diameter, D. Assuming a prototype monopile diameter of 2.0 m yields a geometric ratio of 41.67. When applied to a 10 m prototype water depth this yields a model depth, d, of 0.24 m. The sediment pit containing the monopile was filled with different biostabilised substrata prepared using a mixture of fine sand (D50 = 230 μm) and EPS (Xanthan gum). Nine sand-EPS mixtures were examined spanning EPS contents of 0.0% < b0 < 0.50%. Scour development was measured using a laser point gauge along a 530 mm centreline at 10 mm increments at regular periods over 5 h. Maximum scour depth and excavated area were determined at different time steps and plotted against time to yield equilibrium values. After 5 hours the current was stopped and a detailed scan of the final scour morphology was taken. Results show that increasing EPS content causes a progressive reduction in the equilibrium depth and lateral extent of scour, and hence excavated material. Very small amounts equating to natural communities (< 0.1% by mass) reduce scour rate, depth and extent of scour around monopiles. Furthermore, the strong linear relationships between EPS content, equilibrium scour depth, excavation area and timescales of scouring offer a simple index on which to modify existing scour prediction methods. We conclude that the biostabilisation of sediments with EPS may offer a simple, cost-effective and ecologically sensitive means of reducing scour in a range of contexts including OWFs, bridge piers, pipeline installation, and void filling in rock armour. Biostabilisation may also reduce economic costs through (1) Use of existing site sediments, or waste dredged sediments (2) Reduced fabrication of materials, (3) Lower transport costs, (4) Less dependence on specialist vessels and precise sub-sea assembly. Further, its potential environmental credentials may allow sensitive use of the seabed in marine protection zones across the globe.Keywords: biostabilisation, EPS, marine, scour
Procedia PDF Downloads 16624 Mirna Expression Profile is Different in Human Amniotic Mesenchymal Stem Cells Isolated from Obese Respect to Normal Weight Women
Authors: Carmela Nardelli, Laura Iaffaldano, Valentina Capobianco, Antonietta Tafuto, Maddalena Ferrigno, Angela Capone, Giuseppe Maria Maruotti, Maddalena Raia, Rosa Di Noto, Luigi Del Vecchio, Pasquale Martinelli, Lucio Pastore, Lucia Sacchetti
Abstract:
Maternal obesity and nutrient excess in utero increase the risk of future metabolic diseases in the adult life. The mechanisms underlying this process are probably based on genetic, epigenetic alterations and changes in foetal nutrient supply. In mammals, the placenta is the main interface between foetus and mother, it regulates intrauterine development, modulates adaptive responses to sub optimal in uterus conditions and it is also an important source of human amniotic mesenchymal stem cells (hA-MSCs). We previously highlighted a specific microRNA (miRNA) profiling in amnion from obese (Ob) pregnant women, here we compared the miRNA expression profile of hA-MSCs isolated from (Ob) and control (Co) women, aimed to search for any alterations in metabolic pathways that could predispose the new-born to the obese phenotype. Methods: We isolated, at delivery, hA-MSCs from amnion of 16 Ob- and 7 Co-women with pre-pregnancy body mass index (mean/SEM) 40.3/1.8 and 22.4/1.0 kg/m2, respectively. hA-MSCs were phenotyped by flow cytometry. Globally, 384 miRNAs were evaluated by the TaqMan Array Human MicroRNA Panel v 1.0 (Applied Biosystems). By the TargetScan program we selected the target genes of the miRNAs differently expressed in Ob- vs Co-hA-MSCs; further, by KEGG database, we selected the statistical significant biological pathways. Results: The immunophenotype characterization confirmed the mesenchymal origin of the isolated hA-MSCs. A large percentage of the tested miRNAs, about 61.4% (232/378), was expressed in hA-MSCs, whereas 38.6% (146/378) was not. Most of the expressed miRNAs (89.2%, 207/232) did not differ between Ob- and Co-hA-MSCs and were not further investigated. Conversely, 4.8% of miRNAs (11/232) was higher and 6.0% (14/232) was lower in Ob- vs Co-hA-MSCs. Interestingly, 7/232 miRNAs were obesity-specific, being expressed only in hA-MSCs isolated from obese women. Bioinformatics showed that these miRNAs significantly regulated (P<0.001) genes belonging to several metabolic pathways, i.e. MAPK signalling, actin cytoskeleton, focal adhesion, axon guidance, insulin signaling, etc. Conclusions: Our preliminary data highlight an altered miRNA profile in Ob- vs Co-hA-MSCs and suggest that an epigenetic miRNA-based mechanism of gene regulation could affect pathways involved in placental growth and function, thereby potentially increasing the newborn’s risk of metabolic diseases in the adult life.Keywords: hA-MSCs, obesity, miRNA, biosystem
Procedia PDF Downloads 52823 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets
Authors: Debjit Ray
Abstract:
Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.Keywords: genomics, pathogens, genome assembly, superbugs
Procedia PDF Downloads 19722 Reverse Logistics Network Optimization for E-Commerce
Authors: Albert W. K. Tan
Abstract:
This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives.Keywords: reverse logistics, supply chain management, optimization, e-commerce
Procedia PDF Downloads 3821 Increasing Student Engagement through Culturally-Responsive Classroom Management
Authors: Catherine P. Bradshaw, Elise T. Pas, Katrina J. Debnam, Jessika H. Bottiani, Michael Rosenberg
Abstract:
Worldwide, ethnically and culturally diverse students are at increased risk for school failure, discipline problems, and dropout. Despite decades of concern about this issue of disparities in education and other fields (e.g., 'school to prison pipeline'), there has been limited empirical examination of models that can actually reduce these gaps in schools. Moreover, few studies have examined the effectiveness of in-service teacher interventions and supports specifically designed to reduce discipline disparities and improve student engagement. This session provides an overview of the evidence-based Double Check model which serves as a framework for teachers to use culturally-responsive strategies to engage ethnically and culturally diverse students in the classroom and reduce discipline problems. Specifically, Double Check is a school-based prevention program which includes three core components: (a) enhancements to the school-wide Positive Behavioral Interventions and Supports (PBIS) tier-1 level of support; (b) five one-hour professional development training sessions, each of which addresses five domains of cultural competence (i.e., connection to the curriculum, authentic relationships, reflective thinking, effective communication, and sensitivity to students’ culture); and (c) coaching of classroom teachers using an adapted version of the Classroom Check-Up, which intends to increase teachers’ use of effective classroom management and culturally-responsive strategies using research-based motivational interviewing and data-informed problem-solving approaches. This paper presents findings from a randomized controlled trial (RCT) testing the impact of Double Check, on office discipline referrals (disaggregated by race) and independently observed and self-reported culturally-responsive practices and classroom behavior management. The RCT included 12 elementary and middle schools; 159 classroom teachers were randomized either to receive coaching or serve as comparisons. Specifically, multilevel analyses indicated that teacher self-reported culturally responsive behavior management improved over the course of the school year for teachers who received the coaching and professional development. However, the average annual office discipline referrals issued to black students were reduced among teachers who were randomly assigned to receive coaching relative to comparison teachers. Similarly, observations conducted by trained external raters indicated significantly more teacher proactive behavior management and anticipation of student problems, higher student compliance, less student non-compliance, and less socially disruptive behaviors in classrooms led by coached teachers than classrooms led teachers randomly assigned to the non-coached condition. These findings indicated promising effects of the Double Check model on a range of teacher and student outcomes, including disproportionality in office discipline referrals among Black students. These results also suggest that the Double Check model is one of only a few systematic approaches to promoting culturally-responsive behavior management which has been rigorously tested and shown to be associated with improvements in either student or staff outcomes indicated significant reductions in discipline problems and improvements in behavior management. Implications of these findings are considered within the broader context of globalization and demographic shifts, and their impacts on schools. These issues are particularly timely, given growing concerns about immigration policies in the U.S. and abroad.Keywords: ethnically and culturally diverse students, student engagement, school-based prevention, academic achievement
Procedia PDF Downloads 28220 Burkholderia Cepacia ST 767 Causing a Three Years Nosocomial Outbreak in a Hemodialysis Unit
Authors: Gousilin Leandra Rocha Da Silva, Stéfani T. A. Dantas, Bruna F. Rossi, Erika R. Bonsaglia, Ivana G. Castilho, Terue Sadatsune, Ary Fernandes Júnior, Vera l. M. Rall
Abstract:
Kidney failure causes decreased diuresis and accumulation of nitrogenous substances in the body. To increase patient survival, hemodialysis is used as a partial substitute for renal function. However, contamination of the water used in this treatment, causing bacteremia in patients, is a worldwide concern. The Burkholderia cepacia complex (Bcc), a group of bacteria with more than 20 species, is frequently isolated from hemodialysis water samples and comprises opportunistic bacteria, affecting immunosuppressed patients, due to its wide variety of virulence factors, in addition to innate resistance to several antimicrobial agents, contributing to the permanence in the hospital environment and to the pathogenesis in the host. The objective of the present work was to characterize molecularly and phenotypically Bcc isolates collected from the water and dialysate of the Hemodialysis Unit and from the blood of patients at a Public Hospital in Botucatu, São Paulo, Brazil, between 2019 and 2021. We used 33 Bcc isolates, previously obtained from blood cultures from patients with bacteremia undergoing hemodialysis treatment (2019-2021) and 24 isolates obtained from water and dialysate samples in a Hemodialysis Unit (same period). The recA gene was sequenced to identify the specific species among the Bcc group. All isolates were tested for the presence of some genes that encode virulence factors such as cblA, esmR, zmpA and zmpB. Considering the epidemiology of the outbreak, the Bcc isolates were molecularly characterized by Multi Locus Sequence Type (MLST) and by pulsed-field gel electrophoresis (PFGE). The verification and quantification of biofilm in a polystyrene microplate were performed by submitting the isolates to different incubation temperatures (20°C, average water temperature and 35°C, optimal temperature for group growth). The antibiogram was performed with disc diffusion tests on agar, using discs impregnated with cefepime (30µg), ceftazidime (30µg), ciprofloxacin (5µg), gentamicin (10µg), imipenem (10µg), amikacin 30µg), sulfametazol/trimethoprim (23.75/1.25µg) and ampicillin/sulbactam (10/10µg). The presence of ZmpB was identified in all isolates, while ZmpA was observed in 96.5% of the isolates, while none of them presented the cblA and esmR genes. The antibiogram of the 33 human isolates indicated that all were resistant to gentamicin, colistin, ampicillin/sulbactam and imipenem. 16 (48.5%) isolates were resistant to amikacin and lower rates of resistance were observed for meropenem, ceftazidime, cefepime, ciprofloxacin and piperacycline/tazobactam (6.1%). All isolates were sensitive to sulfametazol/trimethoprim, levofloxacin and tigecycline. As for the water isolates, resistance was observed only to gentamicin (34.8%) and imipenem (17.4%). According to PFGE results, all isolates obtained from humans and water belonged to the same pulsotype (1), which was identified by recA sequencing as B. cepacia¸, belonging to sequence type ST-767. By observing a single pulse type over three years, one can observe the persistence of this isolate in the pipeline, contaminating patients undergoing hemodialysis, despite the routine disinfection of water with peracetic acid. This persistence is probably due to the production of biofilm, which protects bacteria from disinfectants and, making this scenario more critical, several isolates proved to be multidrug-resistant (resistance to at least three groups of antimicrobials), turning the patient care even more difficult.Keywords: hemodialysis, burkholderia cepacia, PFGE, MLST, multi drug resistance
Procedia PDF Downloads 9919 Toward Understanding the Glucocorticoid Receptor Network in Cancer
Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden
Abstract:
The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor
Procedia PDF Downloads 22718 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 2317 An in silico Approach for Exploring the Intercellular Communication in Cancer Cells
Authors: M. Cardenas-Garcia, P. P. Gonzalez-Perez
Abstract:
Intercellular communication is a necessary condition for cellular functions and it allows a group of cells to survive as a population. Throughout this interaction, the cells work in a coordinated and collaborative way which facilitates their survival. In the case of cancerous cells, these take advantage of intercellular communication to preserve their malignancy, since through these physical unions they can send signs of malignancy. The Wnt/β-catenin signaling pathway plays an important role in the formation of intercellular communications, being also involved in a large number of cellular processes such as proliferation, differentiation, adhesion, cell survival, and cell death. The modeling and simulation of cellular signaling systems have found valuable support in a wide range of modeling approaches, which cover a wide spectrum ranging from mathematical models; e.g., ordinary differential equations, statistical methods, and numerical methods– to computational models; e.g., process algebra for modeling behavior and variation in molecular systems. Based on these models, different simulation tools have been developed from mathematical ones to computational ones. Regarding cellular and molecular processes in cancer, its study has also found a valuable support in different simulation tools that, covering a spectrum as mentioned above, have allowed the in silico experimentation of this phenomenon at the cellular and molecular level. In this work, we simulate and explore the complex interaction patterns of intercellular communication in cancer cells using the Cellulat bioinformatics tool, a computational simulation tool developed by us and motivated by two key elements: 1) a biochemically inspired model of self-organizing coordination in tuple spaces, and 2) the Gillespie’s algorithm, a stochastic simulation algorithm typically used to mimic systems of chemical/biochemical reactions in an efficient and accurate way. The main idea behind the Cellulat simulation tool is to provide an in silico experimentation environment that complements and guides in vitro experimentation in intra and intercellular signaling networks. Unlike most of the cell signaling simulation tools, such as E-Cell, BetaWB and Cell Illustrator which provides abstractions to model only intracellular behavior, Cellulat is appropriate for modeling both intracellular signaling and intercellular communication, providing the abstractions required to model –and as a result, simulate– the interaction mechanisms that involve two or more cells, that is essential in the scenario discussed in this work. During the development of this work we made evident the application of our computational simulation tool (Cellulat) for the modeling and simulation of intercellular communication between normal and cancerous cells, and in this way, propose key molecules that may prevent the arrival of malignant signals to the cells that surround the tumor cells. In this manner, we could identify the significant role that has the Wnt/β-catenin signaling pathway in cellular communication, and therefore, in the dissemination of cancer cells. We verified, using in silico experiments, how the inhibition of this signaling pathway prevents that the cells that surround a cancerous cell are transformed.Keywords: cancer cells, in silico approach, intercellular communication, key molecules, modeling and simulation
Procedia PDF Downloads 24916 Detection and Identification of Antibiotic Resistant UPEC Using FTIR-Microscopy and Advanced Multivariate Analysis
Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel
Abstract:
Antimicrobial drugs have played an indispensable role in controlling illness and death associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global healthcare problem. Many antibiotics had lost their effectiveness since the beginning of the antibiotic era because many bacteria have adapted defenses against these antibiotics. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing require the isolation of the pathogen from a clinical specimen by culturing on the appropriate media (this culturing stage lasts 24 h-first culturing). Then, chosen colonies are grown on media containing antibiotic(s), using micro-diffusion discs (second culturing time is also 24 h) in order to determine its bacterial susceptibility. Other methods, genotyping methods, E-test and automated methods were also developed for testing antimicrobial susceptibility. Most of these methods are expensive and time-consuming. Fourier transform infrared (FTIR) microscopy is rapid, safe, effective and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria; nonetheless, its true potential in routine clinical diagnosis has not yet been established. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The UTI E.coli bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 700 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 90% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.Keywords: antibiotics, E.coli, FTIR, multivariate analysis, susceptibility, UTI
Procedia PDF Downloads 17115 Identification of Hub Genes in the Development of Atherosclerosis
Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia
Abstract:
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics
Procedia PDF Downloads 6614 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics
Authors: Leo Nnamdi Ozurumba-Dwight
Abstract:
Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq
Procedia PDF Downloads 17613 Microbial Biogeography of Greek Olive Varieties Assessed by Amplicon-Based Metagenomics Analysis
Authors: Lena Payati, Maria Kazou, Effie Tsakalidou
Abstract:
Table olives are one of the most popular fermented vegetables worldwide, which along with olive oil, have a crucial role in the world economy. They are highly appreciated by the consumers for their characteristic taste and pleasant aromas, while several health and nutritional benefits have been reported as well. Until recently, microbial biogeography, i.e., the study of microbial diversity over time and space, has been mainly associated with wine. However, nowadays, the term 'terroir' has been extended to other crops and food products so as to link the geographical origin and environmental conditions to quality aspects of fermented foods. Taking the above into consideration, the present study focuses on the microbial fingerprinting of the most important olive varieties of Greece with the state-of-the-art amplicon-based metagenomics analysis. Towards this, in 2019, 61 samples from 38 different olive varieties were collected at the final stage of ripening from 13 well spread geographical regions in Greece. For the metagenomics analysis, total DNA was extracted from the olive samples, and the 16S rRNA gene and ITS DNA region were sequenced and analyzed using bioinformatics tools for the identification of bacterial and yeasts/fungal diversity, respectively. Furthermore, principal component analysis (PCA) was also performed for data clustering based on the average microbial composition of all samples from each region of origin. According to the composition, results obtained, when samples were analyzed separately, the majority of both bacteria (such as Pantoea, Enterobacter, Roserbergiella, and Pseudomonas) and yeasts/fungi (such as Aureobasidium, Debaromyces, Candida, and Cladosporium) genera identified were found in all 61 samples. Even though interesting differences were observed at the relative abundance level of the identified genera, the bacterial genus Pantoea and the yeast/fungi genus Aureobasidium were the dominant ones in 35 and 40 samples, respectively. Of note, olive samples collected from the same region had similar fingerprint (genera identified and relative abundance level) regardless of the variety, indicating a potential association between the relative abundance of certain taxa and the geographical region. When samples were grouped by region of origin, distinct bacterial profiles per region were observed, which was also evident from the PCA analysis. This was not the case for the yeast/fungi profiles since 10 out of the 13 regions were grouped together mainly due to the dominance of the genus Aureobasidium. A second cluster was formed for the islands Crete and Rhodes, both of which are located in the Southeast Aegean Sea. These two regions clustered together mainly due to the identification of the genus Toxicocladosporium in relatively high abundances. Finally, the Agrinio region was separated from the others as it showed a completely different microbial fingerprinting. However, due to the limited number of olive samples from some regions, a subsequent PCA analysis with more samples from these regions is expected to yield in a more clear clustering. The present study is part of a bigger project, the first of its kind in Greece, with the ultimate goal to analyze a larger set of olive samples of different varieties and from different regions in Greece in order to have a reliable olives’ microbial biogeography.Keywords: amplicon-based metagenomics analysis, bacteria, microbial biogeography, olive microbiota, yeasts/fungi
Procedia PDF Downloads 11412 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis
Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns
Abstract:
Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics
Procedia PDF Downloads 7611 Targeting Peptide Based Therapeutics: Integrated Computational and Experimental Studies of Autophagic Regulation in Host-Parasite Interaction
Authors: Vrushali Guhe, Shailza Singh
Abstract:
Cutaneous leishmaniasis is neglected tropical disease present worldwide caused by the protozoan parasite Leishmania major, the therapeutic armamentarium for leishmaniasis are showing several limitations as drugs are showing toxic effects with increasing resistance by a parasite. Thus identification of novel therapeutic targets is of paramount importance. Previous studies have shown that autophagy, a cellular process, can either facilitate infection or aid in the elimination of the parasite, depending on the specific parasite species and host background in leishmaniasis. In the present study, our objective was to target the essential autophagy protein ATG8, which plays a crucial role in the survival, infection dynamics, and differentiation of the Leishmania parasite. ATG8 in Leishmania major and its homologue, LC3, in Homo sapiens, act as autophagic markers. Present study manifested the crucial role of ATG8 protein as a potential target for combating Leishmania major infection. Through bioinformatics analysis, we identified non-conserved motifs within the ATG8 protein of Leishmania major, which are not present in LC3 of Homo sapiens. Against these two non-conserved motifs, we generated a peptide library of 60 peptides on the basis of physicochemical properties. These peptides underwent a filtering process based on various parameters, including feasibility of synthesis and purification, compatibility with Selective Reaction Monitoring (SRM)/Multiple reaction monitoring (MRM), hydrophobicity, hydropathy index, average molecular weight (Mw average), monoisotopic molecular weight (Mw monoisotopic), theoretical isoelectric point (pI), and half-life. Further filtering criterion shortlisted three peptides by using molecular docking and molecular dynamics simulations. The direct interaction between ATG8 and the shortlisted peptides was confirmed through Surface Plasmon Resonance (SPR) experiments. Notably, these peptides exhibited the remarkable ability to penetrate the parasite membrane and exert profound effects on Leishmania major. The treatment with these peptides significantly impacted parasite survival, leading to alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, suggesting their involvement in disrupting the regulation of autophagy within Leishmania major. In vitro, studies demonstrated that the selected peptides effectively reduced the parasite load within infected host cells. Encouragingly, these findings were corroborated by in vivo experiments, which showed a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II within host cells. In conclusion, our findings highlight the efficacy of these novel peptides in targeting Leishmania major’s ATG8 and disrupting parasite survival. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis via targeting autophagy protein ATG8 of Leishmania major.Keywords: ATG8, leishmaniasis, surface plasmon resonance, MD simulation, molecular docking, peptide designing, therapeutics
Procedia PDF Downloads 8010 The Immunology Evolutionary Relationship between Signal Transducer and Activator of Transcription Genes from Three Different Shrimp Species in Response to White Spot Syndrome Virus Infection
Authors: T. C. C. Soo, S. Bhassu
Abstract:
Unlike the common presence of both innate and adaptive immunity in vertebrates, crustaceans, in particular, shrimps, have been discovered to possess only innate immunity. This further emphasizes the importance of innate immunity within shrimps in pathogenic resistance. Under the study of pathogenic immune challenge, different shrimp species actually exhibit varying degrees of immune resistance towards the same pathogen. Furthermore, even within the same shrimp species, different batches of challenged shrimps can have different strengths of immune defence. Several important pathways are activated within shrimps during pathogenic infection. One of them is JAK-STAT pathway that is activated during bacterial, viral and fungal infections by which STAT(Signal Transducer and Activator of Transcription) gene is the core element of the pathway. Based on theory of Central Dogma, the genomic information is transmitted in the order of DNA, RNA and protein. This study is focused in uncovering the important evolutionary patterns present within the DNA (non-coding region) and RNA (coding region). The three shrimp species involved are Macrobrachium rosenbergii, Penaeus monodon and Litopenaeus vannamei which all possess commercial significance. The shrimp species were challenged with a famous penaeid shrimp virus called white spot syndrome virus (WSSV) which can cause serious lethality. Tissue samples were collected during time intervals of 0h, 3h, 6h, 12h, 24h, 36h and 48h. The DNA and RNA samples were then extracted using conventional kits from the hepatopancreas tissue samples. PCR technique together with designed STAT gene conserved primers were utilized for identification of the STAT coding sequences using RNA-converted cDNA samples and subsequent characterization using various bioinformatics approaches including Ramachandran plot, ProtParam and SWISS-MODEL. The varying levels of immune STAT gene activation for the three shrimp species during WSSV infection were confirmed using qRT-PCR technique. For one sample, three biological replicates with three technical replicates each were used for qRT-PCR. On the other hand, DNA samples were important for uncovering the structural variations within the genomic region of STAT gene which would greatly assist in understanding the STAT protein functional variations. The partially-overlapping primers technique was used for the genomic region sequencing. The evolutionary inferences and event predictions were then conducted through the Bayesian Inference method using all the acquired coding and non-coding sequences. This was supplemented by the construction of conventional phylogenetic trees using Maximum likelihood method. The results showed that adaptive evolution caused STAT gene sequence mutations between different shrimp species which led to evolutionary divergence event. Subsequently, the divergent sites were correlated to the differing expressions of STAT gene. Ultimately, this study assists in knowing the shrimp species innate immune variability and selection of disease resistant shrimps for breeding purpose. The deeper understanding of STAT gene evolution from the perspective of both purifying and adaptive approaches not only can provide better immunological insight among shrimp species, but also can be used as a good reference for immunological studies in humans or other model organisms.Keywords: gene evolution, JAK-STAT pathway, immunology, STAT gene
Procedia PDF Downloads 1509 Integrating Animal Nutrition into Veterinary Science: Enhancing Health, Productivity, and Sustainability through Advanced Nutritional Strategies and Collaborative Approaches
Authors: Namiiro Shirat Umar
Abstract:
The science of animals and veterinary medicine is a multidisciplinary field dedicated to understanding, managing, and enhancing the health and welfare of animals. This field encompasses a broad spectrum of disciplines, including animal physiology, genetics, nutrition, behavior, and pathology, as well as preventive and therapeutic veterinary care. Veterinary science focuses on diagnosing, treating, and preventing diseases in animals, ensuring their health and well-being. It involves the study of various animal species, from companion animals and livestock to wildlife and exotic species. Through advanced diagnostic techniques, medical treatments, and surgical procedures, veterinarians address a wide range of health issues, from infectious diseases and injuries to chronic conditions and reproductive health. Animal science complements veterinary medicine by providing a deeper understanding of animal biology and behavior, which is essential for effective health management. It includes research on animal breeding, nutrition, and husbandry practices aimed at improving animal productivity and welfare. Incorporating modern technologies and methodologies, such as genomics, bioinformatics, and precision farming, the science of animals and veterinary medicine continually evolves to address emerging challenges. This integrated approach ensures the development of sustainable practices, enhances animal welfare and contributes to public health by monitoring zoonotic diseases and ensuring the safety of animal products. Animal nutrition is a cornerstone of animal and veterinary science, focusing on the dietary needs of animals to promote health, growth, reproduction, and overall well-being. Proper nutrition ensures that animals receive essential nutrients, including macronutrients (carbohydrates, proteins, fats) and micronutrients (vitamins, minerals), tailored to their specific species, life stages, and physiological conditions. By emphasizing a balanced diet, animal nutrition serves as a preventive measure against diseases and enhances recovery from illnesses, reducing the need for pharmaceutical interventions. It addresses key health issues such as metabolic disorders, reproductive inefficiencies, and immune system deficiencies. Moreover, optimized nutrition improves the quality of animal products like meat, milk, and eggs and enhances the sustainability of animal farming by improving feed efficiency and reducing environmental waste. The integration of animal nutrition into veterinary practice necessitates a collaborative approach involving veterinarians, animal nutritionists, and farmers. Advances in nutritional science, such as precision feeding and the use of nutraceuticals, provide innovative solutions to traditional veterinary challenges. Overall, the focus on animal nutrition as a primary aspect of veterinary care leads to more holistic, sustainable, and effective animal health management practices, promoting the welfare and productivity of animals in various settings. This abstract is a trifold in nature as it traverses how education can put more emphasis on animal nutrition as an alternative for improving animal health as an important issue espoused under the discipline of animal and veterinary science; therefore, brief aspects of this paper and they are as follows; animal nutrition, veterinary science and animals.Keywords: animal nutrition as a way to enhance growth, animal science as a study, veterinary science dealing with health of the animals, animals healthcare dealing with proper sanitation
Procedia PDF Downloads 318 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine
Authors: Adriana Haulica
Abstract:
Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics
Procedia PDF Downloads 707 Differential Expression Profile Analysis of DNA Repair Genes in Mycobacterium Leprae by qPCR
Authors: Mukul Sharma, Madhusmita Das, Sundeep Chaitanya Vedithi
Abstract:
Leprosy is a chronic human disease caused by Mycobacterium leprae, that cannot be cultured in vitro. Though treatable with multidrug therapy (MDT), recently, bacteria reported resistance to multiple antibiotics. Targeting DNA replication and repair pathways can serve as the foundation of developing new anti-leprosy drugs. Due to the absence of an axenic culture medium for the propagation of M. leprae, studying cellular processes, especially those belonging to DNA repair pathways, is challenging. Genomic understanding of M. Leprae harbors several protein-coding genes with no previously assigned function known as 'hypothetical proteins'. Here, we report identification and expression of known and hypothetical DNA repair genes from a human skin biopsy and mouse footpads that are involved in base excision repair, direct reversal repair, and SOS response. Initially, a bioinformatics approach was employed based on sequence similarity, identification of known protein domains to screen the hypothetical proteins in the genome of M. leprae, that are potentially related to DNA repair mechanisms. Before testing on clinical samples, pure stocks of bacterial reference DNA of M. leprae (NHDP63 strain) was used to construct standard graphs to validate and identify lower detection limit in the qPCR experiments. Primers were designed to amplify the respective transcripts, and PCR products of the predicted size were obtained. Later, excisional skin biopsies of newly diagnosed untreated, treated, and drug resistance leprosy cases from SIHR & LC hospital, Vellore, India were taken for the extraction of RNA. To determine the presence of the predicted transcripts, cDNA was generated from M. leprae mRNA isolated from clinically confirmed leprosy skin biopsy specimen across all the study groups. Melting curve analysis was performed to determine the integrity of the amplification and to rule out primer‑dimer formation. The Ct values obtained from qPCR were fitted to standard curve to determine transcript copy number. Same procedure was applied for M. leprae extracted after processing a footpad of nude mice of drug sensitive and drug resistant strains. 16S rRNA was used as positive control. Of all the 16 genes involved in BER, DR, and SOS, differential expression pattern of the genes was observed in terms of Ct values when compared to human samples; this was because of the different host and its immune response. However, no drastic variation in gene expression levels was observed in human samples except the nth gene. The higher expression of nth gene could be because of the mutations that may be associated with sequence diversity and drug resistance which suggests an important role in the repair mechanism and remains to be explored. In both human and mouse samples, SOS system – lexA and RecA, and BER genes AlkB and Ogt were expressing efficiently to deal with possible DNA damage. Together, the results of the present study suggest that DNA repair genes are constitutively expressed and may provide a reference for molecular diagnosis, therapeutic target selection, determination of treatment and prognostic judgment in M. leprae pathogenesis.Keywords: DNA repair, human biopsy, hypothetical proteins, mouse footpads, Mycobacterium leprae, qPCR
Procedia PDF Downloads 1036 Broad Host Range Bacteriophage Cocktail for Reduction of Staphylococcus aureus as Potential Therapy for Atopic Dermatitis
Authors: Tamar Lin, Nufar Buchshtab, Yifat Elharar, Julian Nicenboim, Rotem Edgar, Iddo Weiner, Lior Zelcbuch, Ariel Cohen, Sharon Kredo-Russo, Inbar Gahali-Sass, Naomi Zak, Sailaja Puttagunta, Merav Bassan
Abstract:
Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is characterized by dry skin and flares of eczematous lesions and intense pruritus. Multiple lines of evidence suggest that AD is associated with increased colonization by Staphylococcus aureus, which contributes to disease pathogenesis through the release of virulence factors that affect both keratinocytes and immune cells, leading to disruption of the skin barrier and immune cell dysfunction. The aim of the current study is to develop a bacteriophage-based product that specifically targets S. aureus. Methods: For the discovery of phage, environmental samples were screened on 118 S. aureus strains isolated from skin samples, followed by multiple enrichment steps. Natural phages were isolated, subjected to Next-generation Sequencing (NGS), and analyzed using proprietary bioinformatics tools for undesirable genes (toxins, antibiotic resistance genes, lysogeny potential), taxonomic classification, and purity. Phage host range was determined by an efficiency of plating (EOP) value above 0.1 and the ability of the cocktail to completely lyse liquid bacterial culture under different growth conditions (e.g., temperature, bacterial stage). Results: Sequencing analysis demonstrated that the 118 S. aureus clinical strains were distributed across the phylogenetic tree of all available Refseq S. aureus (~10,750 strains). Screening environmental samples on the S. aureus isolates resulted in the isolation of 50 lytic phages from different genera, including Silviavirus, Kayvirus, Podoviridae, and a novel unidentified phage. NGS sequencing confirmed the absence of toxic elements in the phages’ genomes. The host range of the individual phages, as measured by the efficiency of plating (EOP), ranged between 41% (48/118) to 79% (93/118). Host range studies in liquid culture revealed that a subset of the phages can infect a broad range of S. aureus strains in different metabolic states, including stationary state. Combining the single-phage EOP results of selected phages resulted in a broad host range cocktail which infected 92% (109/118) of the strains. When tested in vitro in a liquid infection assay, clearance was achieved in 87% (103/118) of the strains, with no evidence of phage resistance throughout the study (24 hours). A S. aureus host was identified that can be used for the production of all the phages in the cocktail at high titers suitable for large-scale manufacturing. This host was validated for the absence of contaminating prophages using advanced NGS methods combined with multiple production cycles. The phages are produced under optimized scale-up conditions and are being used for the development of a topical formulation (BX005) that may be administered to subjects with atopic dermatitis. Conclusions: A cocktail of natural phages targeting S. aureus was effective in reducing bacterial burden across multiple assays. Phage products may offer safe and effective steroid-sparing options for atopic dermatitis.Keywords: atopic dermatitis, bacteriophage cocktail, host range, Staphylococcus aureus
Procedia PDF Downloads 1535 Non-Mammalian Pattern Recognition Receptor from Rock Bream (Oplegnathus fasciatus): Genomic Characterization and Transcriptional Profile upon Bacterial and Viral Inductions
Authors: Thanthrige Thiunuwan Priyathilaka, Don Anushka Sandaruwan Elvitigala, Bong-Soo Lim, Hyung-Bok Jeong, Jehee Lee
Abstract:
Toll like receptors (TLRs) are a phylogeneticaly conserved family of pattern recognition receptors, which participates in the host immune responses against various pathogens and pathogen derived mitogen. TLR21, a non-mammalian type, is almost restricted to the fish species even though those can be identified rarely in avians and amphibians. Herein, this study was carried out to identify and characterize TLR21 from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at transcriptional and genomic level. In this study, the full length cDNA and genomic sequence of RbTLR21 was identified using previously constructed cDNA sequence database and BAC library, respectively. Identified RbTLR21 sequence was characterized using several bioinformatics tools. The quantitative real time PCR (qPCR) experiment was conducted to determine tissue specific expressional distribution of RbTLR21. Further, transcriptional modulation of RbTLR21 upon the stimulation with Streptococcus iniae (S. iniae), rock bream iridovirus (RBIV) and Edwardsiella tarda (E. tarda) was analyzed in spleen tissues. The complete coding sequence of RbTLR21 was 2919 bp in length which can encode a protein consisting of 973 amino acid residues with molecular mass of 112 kDa and theoretical isoelectric point of 8.6. The anticipated protein sequence resembled a typical TLR domain architecture including C-terminal ectodomain with 16 leucine rich repeats, a transmembrane domain, cytoplasmic TIR domain and signal peptide with 23 amino acid residues. Moreover, protein folding pattern prediction of RbTLR21 exhibited well-structured and folded ectodomain, transmembrane domain and cytoplasmc TIR domain. According to the pair wise sequence analysis data, RbTLR21 showed closest homology with orange-spotted grouper (Epinephelus coioides) TLR21with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 shows a close evolutionary relationship with its ortholog from Danio rerio. Genomic structure of RbTLR21 consisted of single exon similar to its ortholog of zebra fish. Sevaral putative transcription factor binding sites were also identified in 5ʹ flanking region of RbTLR21. The RBTLR 21 was ubiquitously expressed in all the tissues we tested. Relatively, high expression levels were found in spleen, liver and blood tissues. Upon induction with rock bream iridovirus, RbTLR21 expression was upregulated at the early phase of post induction period even though RbTLR21 expression level was fluctuated at the latter phase of post induction period. Post Edwardsiella tarda injection, RbTLR transcripts were upregulated throughout the experiment. Similarly, Streptococcus iniae induction exhibited significant upregulations of RbTLR21 mRNA expression in the spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed a homolog of TLR21 family members and RbTLR21 may be involved in host immune responses against bacterial and DNA viral infections.Keywords: rock bream, toll like receptor 21 (TLR21), pattern recognition receptor, genomic characterization
Procedia PDF Downloads 5394 Complete Genome Sequence Analysis of Pasteurella multocida Subspecies multocida Serotype A Strain PMTB2.1
Authors: Shagufta Jabeen, Faez J. Firdaus Abdullah, Zunita Zakaria, Nurulfiza M. Isa, Yung C. Tan, Wai Y. Yee, Abdul R. Omar
Abstract:
Pasteurella multocida (PM) is an important veterinary opportunistic pathogen particularly associated with septicemic pasteurellosis, pneumonic pasteurellosis and hemorrhagic septicemia in cattle and buffaloes. P. multocida serotype A has been reported to cause fatal pneumonia and septicemia. Pasteurella multocida subspecies multocida of serotype A Malaysian isolate PMTB2.1 was first isolated from buffaloes died of septicemia. In this study, the genome of P. multocida strain PMTB2.1 was sequenced using third-generation sequencing technology, PacBio RS2 system and analyzed bioinformatically via de novo analysis followed by in-depth analysis based on comparative genomics. Bioinformatics analysis based on de novo assembly of PacBio raw reads generated 3 contigs followed by gap filling of aligned contigs with PCR sequencing, generated a single contiguous circular chromosome with a genomic size of 2,315,138 bp and a GC content of approximately 40.32% (Accession number CP007205). The PMTB2.1 genome comprised of 2,176 protein-coding sequences, 6 rRNA operons and 56 tRNA and 4 ncRNAs sequences. The comparative genome sequence analysis of PMTB2.1 with nine complete genomes which include Actinobacillus pleuropneumoniae, Haemophilus parasuis, Escherichia coli and five P. multocida complete genome sequences including, PM70, PM36950, PMHN06, PM3480, PMHB01 and PMTB2.1 was carried out based on OrthoMCL analysis and Venn diagram. The analysis showed that 282 CDs (13%) are unique to PMTB2.1and 1,125 CDs with orthologs in all. This reflects overall close relationship of these bacteria and supports the classification in the Gamma subdivision of the Proteobacteria. In addition, genomic distance analysis among all nine genomes indicated that PMTB2.1 is closely related with other five Pasteurella species with genomic distance less than 0.13. Synteny analysis shows subtle differences in genetic structures among different P.multocida indicating the dynamics of frequent gene transfer events among different P. multocida strains. However, PM3480 and PM70 exhibited exceptionally large structural variation since they were swine and chicken isolates. Furthermore, genomic structure of PMTB2.1 is more resembling that of PM36950 with a genomic size difference of approximately 34,380 kb (smaller than PM36950) and strain-specific Integrative and Conjugative Elements (ICE) which was found only in PM36950 is absent in PMTB2.1. Meanwhile, two intact prophages sequences of approximately 62 kb were found to be present only in PMTB2.1. One of phage is similar to transposable phage SfMu. The phylogenomic tree was constructed and rooted with E. coli, A. pleuropneumoniae and H. parasuis based on OrthoMCL analysis. The genomes of P. multocida strain PMTB2.1 were clustered with bovine isolates of P. multocida strain PM36950 and PMHB01 and were separated from avian isolate PM70 and swine isolates PM3480 and PMHN06 and are distant from Actinobacillus and Haemophilus. Previous studies based on Single Nucleotide Polymorphism (SNPs) and Multilocus Sequence Typing (MLST) unable to show a clear phylogenetic relatedness between Pasteurella multocida and the different host. In conclusion, this study has provided insight on the genomic structure of PMTB2.1 in terms of potential genes that can function as virulence factors for future study in elucidating the mechanisms behind the ability of the bacteria in causing diseases in susceptible animals.Keywords: comparative genomics, DNA sequencing, phage, phylogenomics
Procedia PDF Downloads 188