Search results for: anchor nodes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 751

Search results for: anchor nodes

301 Cooperative Jamming for Implantable Medical Device Security

Authors: Kim Lytle, Tim Talty, Alan Michaels, Jeff Reed

Abstract:

Implantable medical devices (IMDs) are medically necessary devices embedded in the human body that monitor chronic disorders or automatically deliver therapies. Most IMDs have wireless capabilities that allow them to share data with an offboard programming device to help medical providers monitor the patient’s health while giving the patient more insight into their condition. However, serious security concerns have arisen as researchers demonstrated these devices could be hacked to obtain sensitive information or harm the patient. Cooperative jamming can be used to prevent privileged information leaks by maintaining an adequate signal-to-noise ratio at the intended receiver while minimizing signal power elsewhere. This paper uses ray tracing to demonstrate how a low number of friendly nodes abiding by Bluetooth Low Energy (BLE) transmission regulations can enhance IMD communication security in an office environment, which in turn may inform how companies and individuals can protect their proprietary and personal information.

Keywords: implantable biomedical devices, communication system security, array signal processing, ray tracing

Procedia PDF Downloads 114
300 Quantifying Stability of Online Communities and Its Impact on Disinformation

Authors: Victor Chomel, Maziyar Panahi, David Chavalarias

Abstract:

Misinformation has taken an increasingly worrying place in social media. Propagation patterns are closely linked to the structure of communities. This study proposes a method of community analysis based on a combination of centrality indicators for the network and its main communities. The objective is to establish a link between the stability of the communities over time, the social ascension of its members internally, and the propagation of information in the community. To this end, data from the debates about global warming and political communities on Twitter have been collected, and several tens of millions of tweets and retweets have helped us better understand the structure of these communities. The quantification of this stability allows for the study of the propagation of information of any kind, including disinformation. Our results indicate that the most stable communities over time are the ones that enable the establishment of nodes capturing a large part of the information and broadcasting its opinions. Conversely, communities with a high turnover and social ascendancy only stabilize themselves strongly in the face of adversity and external events but seem to offer a greater diversity of opinions most of the time.

Keywords: community analysis, disinformation, misinformation, Twitter

Procedia PDF Downloads 142
299 The Application of the Analytic Basis Function Expansion Triangular-z Nodal Method for Neutron Diffusion Calculation

Authors: Kunpeng Wang, Hongchun, Wu, Liangzhi Cao, Chuanqi Zhao

Abstract:

The distributions of homogeneous neutron flux within a node were expanded into a set of analytic basis functions which satisfy the diffusion equation at any point in a triangular-z node for each energy group, and nodes were coupled with each other with both the zero- and first-order partial neutron current moments across all the interfaces of the triangular prism at the same time. Based this method, a code TABFEN has been developed and applied to solve the neutron diffusion equation in a complicated geometry. In addition, after a series of numerical derivation, one can get the neutron adjoint diffusion equations in matrix form which is the same with the neutron diffusion equation; therefore, it can be solved by TABFEN, and the low-high scan strategy is adopted to improve the efficiency. Four benchmark problems are tested by this method to verify its feasibility, the results show good agreement with the references which demonstrates the efficiency and feasibility of this method.

Keywords: analytic basis function expansion method, arbitrary triangular-z node, adjoint neutron flux, complicated geometry

Procedia PDF Downloads 446
298 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking

Authors: Sachin Sharma

Abstract:

A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.

Keywords: energy efficient, quality of service, wireless sensor networks, MAC

Procedia PDF Downloads 349
297 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty

Procedia PDF Downloads 107
296 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory

Authors: Ci Lin, Tet Yeap, Iluju Kiringa

Abstract:

This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.

Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule

Procedia PDF Downloads 120
295 Wave Interaction with Defects in Pressurized Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint.

Keywords: Finite Element, Prestressed Structures, Wave Finite Element, Wave Propagation Properties, Wave Scattering Coefficients.

Procedia PDF Downloads 295
294 Performance Comparison of AODV and Soft AODV Routing Protocol

Authors: Abhishek, Seema Devi, Jyoti Ohri

Abstract:

A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET's node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV.

Keywords: ANFIS, AODV, fuzzy, MANET, reactive routing protocol, routing protocol, truetime

Procedia PDF Downloads 499
293 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network

Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram

Abstract:

Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.

Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power

Procedia PDF Downloads 71
292 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers

Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang

Abstract:

In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.

Keywords: centrality, patent coupling network, patent influence, social network analysis

Procedia PDF Downloads 54
291 Air Cargo Network Structure Characteristics and Robustness Analysis under the Belt and Road Area

Authors: Feng-jie Xie, Jian-hong Yan

Abstract:

Based on the complex network theory, we construct the air cargo network of the Belt and Road area, analyze its regional distribution and structural characteristics, measure the robustness of the network. The regional distribution results show that Southeast Asia and China have the most prominent development in the air cargo network of the Belt and Road area, Central Asia is the least developed. The structure characteristics found that the air cargo network has obvious small-world characteristics; the degree distribution has single-scale property; it shows a significant rich-club phenomenon simultaneously. The network robustness is measured by two attack strategies of degree and betweenness, but the betweenness of network nodes has a greater impact on network connectivity. And identified 24 key cities that have a large impact on the robustness of the network under the two attack strategies. Based on these results, recommendations are given to maintain the air cargo network connectivity in the Belt and Road area.

Keywords: air cargo, complex network, robustness, structure properties, The Belt and Road

Procedia PDF Downloads 198
290 SA-SPKC: Secure and Efficient Aggregation Scheme for Wireless Sensor Networks Using Stateful Public Key Cryptography

Authors: Merad Boudia Omar Rafik, Feham Mohammed

Abstract:

Data aggregation in wireless sensor networks (WSNs) provides a great reduction of energy consumption. The limited resources of sensor nodes make the choice of an encryption algorithm very important for providing security for data aggregation. Asymmetric cryptography involves large ciphertexts and heavy computations but solves, on the other hand, the problem of key distribution of symmetric one. The latter provides smaller ciphertexts and speed computations. Also, the recent researches have shown that achieving the end-to-end confidentiality and the end-to-end integrity at the same is a challenging task. In this paper, we propose (SA-SPKC), a novel security protocol which addresses both security services for WSNs, and where only the base station can verify the individual data and identify the malicious node. Our scheme is based on stateful public key encryption (StPKE). The latter combines the best features of both kinds of encryption along with state in order to reduce the computation overhead. Our analysis

Keywords: secure data aggregation, wireless sensor networks, elliptic curve cryptography, homomorphic encryption

Procedia PDF Downloads 300
289 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring

Authors: Ebrahim Farahmand, Ali Mahani

Abstract:

Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.

Keywords: WSN, healthcare monitoring, weighted based clustering, lifetime

Procedia PDF Downloads 311
288 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm

Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri

Abstract:

Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.

Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering

Procedia PDF Downloads 105
287 The Influence of Beta Shape Parameters in Project Planning

Authors: Αlexios Kotsakis, Stefanos Katsavounis, Dimitra Alexiou

Abstract:

Networks can be utilized to represent project planning problems, using nodes for activities and arcs to indicate precedence relationship between them. For fixed activity duration, a simple algorithm calculates the amount of time required to complete a project, followed by the activities that comprise the critical path. Program Evaluation and Review Technique (PERT) generalizes the above model by incorporating uncertainty, allowing activity durations to be random variables, producing nevertheless a relatively crude solution in planning problems. In this paper, based on the findings of the relevant literature, which strongly suggests that a Beta distribution can be employed to model earthmoving activities, we utilize Monte Carlo simulation, to estimate the project completion time distribution and measure the influence of skewness, an element inherent in activities of modern technical projects. We also extract the activity criticality index, with an ultimate goal to produce more accurate planning estimations.

Keywords: beta distribution, PERT, Monte Carlo simulation, skewness, project completion time distribution

Procedia PDF Downloads 150
286 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 142
285 Digital Twin Strategies and Technologies for Modern Supply Chains

Authors: Mayank Sharma, Anubhaw Kumar, Siddharth Desai, Ankit Tomar

Abstract:

With the advent of cost-effective hardware and communication technologies, the scope of digitalising operations within a supply chain has tremendously increased. This has provided the opportunity to create digital twins of entire supply chains through the use of Internet-of-Things (IoT) and communication technologies. Adverse events like the COVID-19 pandemic and unpredictable geo-political situations have further warranted the importance of digitalization and remote operability of day-to-day operations at critical nodes. Globalisation, rising consumerism & e-commerce has exponentially increased the complexities of existing supply chains. We discuss here a scalable, future-ready and inclusive framework for creating digital twins developed along with the industry leaders from Cisco, Bosch, Accenture, Intel, Deloitte & IBM. We have proposed field-tested key technologies and frameworks required for creating digital twins. We also present case studies of real-life stable deployments done by us in the supply chains of a few marquee industry leaders.

Keywords: internet-of-things, digital twins, smart factory, industry 4.0, smart manufacturing

Procedia PDF Downloads 96
284 Secure Network Coding against Content Pollution Attacks in Named Data Network

Authors: Tao Feng, Xiaomei Ma, Xian Guo, Jing Wang

Abstract:

Named Data Network (NDN) is one of the future Internet architecture, all nodes (i.e., hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for content. However, depending on caching allows an adversary to perform attacks that are very effective and relatively easy to implement, such as content pollution attack. In this paper, we use a method of secure network coding based on homomorphic signature system to solve this problem. Firstly ,we use a dynamic public key technique, our scheme for each generation authentication without updating the initial secret key used. Secondly, employing the homomorphism of hash function, intermediate node and destination node verify the signature of the received message. In addition, when the network topology of NDN is simple and fixed, the code coefficients in our scheme are generated in a pseudorandom number generator in each node, so the distribution of the coefficients is also avoided. In short, our scheme not only can efficiently prevent against Intra/Inter-GPAs, but also can against the content poisoning attack in NDN.

Keywords: named data networking, content polloution attack, network coding signature, internet architecture

Procedia PDF Downloads 338
283 Optimal Allocation of PHEV Parking Lots to Minimize Dstribution System Losses

Authors: Mohsen Mazidi, Ali Abbaspour, Mahmud Fotuhi-Firuzabad, Mohamamd Rastegar

Abstract:

To tackle the air pollution issues, Plug-in Hybrid Electric Vehicles (PHEVs) are proposed as an appropriate solution. Charging a large amount of PHEV batteries, if not controlled, would have negative impacts on the distribution system. The control process of charging of these vehicles can be centralized in parking lots that may provide a chance for better coordination than the individual charging in houses. In this paper, an optimization-based approach is proposed to determine the optimum PHEV parking capacities in candidate nodes of the distribution system. In so doing, a profile for charging and discharging of PHEVs is developed in order to flatten the network load profile. Then, this profile is used in solving an optimization problem to minimize the distribution system losses. The outputs of the proposed method are the proper place for PHEV parking lots and optimum capacity for each parking. The application of the proposed method on the IEEE-34 node test feeder verifies the effectiveness of the method.

Keywords: loss, plug-in hybrid electric vehicle (PHEV), PHEV parking lot, V2G

Procedia PDF Downloads 543
282 Doing Durable Organisational Identity Work in the Transforming World of Work: Meeting the Challenge of Different Workplace Strategies

Authors: Theo Heyns Veldsman, Dieter Veldsman

Abstract:

Organisational Identity (OI) refers to who and what the organisation is, what it stands for and does, and what it aspires to become. OI explores the perspectives of how we see ourselves, are seen by others and aspire to be seen. It provides as rationale the ‘why’ for the organisation’s continued existence. The most widely accepted differentiating features of OI are encapsulated in the organisation’s core, distinctive, differentiating, and enduring attributes. OI finds its concrete expression in the organisation’s Purpose, Vision, Strategy, Core Ideology, and Legacy. In the emerging new order infused by hyper-turbulence and hyper-fluidity, the VICCAS world, OI provides a secure anchor and steady reference point for the organisation, particularly the growing widespread focus on Purpose, which is indicative of the organisation’s sense of social citizenship. However, the transforming world of work (TWOW) - particularly the potent mix of ongoing disruptive innovation, the 4th Industrial Revolution, and the gig economy with the totally unpredicted COVID19 pandemic - has resulted in the consequential adoption of different workplace strategies by organisations in terms of how, where, and when work takes place. Different employment relations (transient to permanent); work locations (on-site to remote); work time arrangements (full-time at work to flexible work schedules); and technology enablement (face-to-face to virtual) now form the basis of the employer/employee relationship. The different workplace strategies, fueled by the demands of TWOW, pose a substantive challenge to organisations of doing durable OI work, able to fulfill OI’s critical attributes of core, distinctive, differentiating, and enduring. OI work is contained in the ongoing, reciprocally interdependent stages of sense-breaking, sense-giving, internalisation, enactment, and affirmation. The objective of our paper is to explore how to do durable OI work relative to different workplace strategies in the TWOW. Using a conceptual-theoretical approach from a practice-based orientation, the paper addresses the following topics: distinguishes different workplace strategies based upon a time/place continuum; explicates stage-wise the differential organisational content and process consequences of these strategies for durable OI work; indicates the critical success factors of durable OI work under these differential conditions; recommends guidelines for OI work relative to TWOW; and points out ethical implications of all of the above.

Keywords: organisational identity, workplace strategies, new world of work, durable organisational identity work

Procedia PDF Downloads 200
281 Impact Evaluation of Discriminant Analysis on Epidemic Protocol in Warships’s Scenarios

Authors: Davi Marinho de Araujo Falcão, Ronaldo Moreira Salles, Paulo Henrique Maranhão

Abstract:

Disruption Tolerant Networks (DTN) are an evolution of Mobile Adhoc Networks (MANET) and work good in scenarioswhere nodes are sparsely distributed, with low density, intermittent connections and an end-to-end infrastructure is not possible to guarantee. Therefore, DTNs are recommended for high latency applications that can last from hours to days. The maritime scenario has mobility characteristics that contribute to a DTN network approach, but the concern with data security is also a relevant aspect in such scenarios. Continuing the previous work, which evaluated the performance of some DTN protocols (Epidemic, Spray and Wait, and Direct Delivery) in three warship scenarios and proposed the application of discriminant analysis, as a classification technique for secure connections, in the Epidemic protocol, thus, the current article proposes a new analysis of the directional discriminant function with opening angles smaller than 90 degrees, demonstrating that the increase in directivity influences the selection of a greater number of secure connections by the directional discriminant Epidemic protocol.

Keywords: DTN, discriminant function, epidemic protocol, security, tactical messages, warship scenario

Procedia PDF Downloads 193
280 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks

Authors: Ather Saeed, Arif Khan, Jeffrey Gosper

Abstract:

Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.

Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering

Procedia PDF Downloads 77
279 A Weighted K-Medoids Clustering Algorithm for Effective Stability in Vehicular Ad Hoc Networks

Authors: Rejab Hajlaoui, Tarek Moulahi, Hervé Guyennet

Abstract:

In a highway scenario, the vehicle speed can exceed 120 kmph. Therefore, any vehicle can enter or leave the network within a very short time. This mobility adversely affects the network connectivity and decreases the life time of all established links. To ensure an effective stability in vehicular ad hoc networks with minimum broadcasting storm, we have developed a weighted algorithm based on the k-medoids clustering algorithm (WKCA). Indeed, the number of clusters and the initial cluster heads will not be selected randomly as usual, but considering the available transmission range and the environment size. Then, to ensure optimal assignment of nodes to clusters in both k-medoids phases, the combined weight of any node will be computed according to additional metrics including direction, relative speed and proximity. Empirical results prove that in addition to the convergence speed that characterizes the k-medoids algorithm, our proposed model performs well both AODV-Clustering and OLSR-Clustering protocols under different densities and velocities in term of end-to-end delay, packet delivery ratio, and throughput.

Keywords: communication, clustering algorithm, k-medoids, sensor, vehicular ad hoc network

Procedia PDF Downloads 240
278 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 79
277 Effective Layer-by-layer Chemical Grafting of a Reactive Oxazoline Polymer and MWCNTs onto Carbon Fibers for Enhancing Mechanical Properties of Composites using Polystyrene as a Model Thermoplastic Matrix

Authors: Ryoma Tokonami, Teruya Goto, Tatsuhiro Takahashi,

Abstract:

For enhancing the mechanical property ofcarbon fiber reinforced plastic (CFRP), the surface modification of carbon fiber (CF) by multi-walled carbon nanotube (MWCNT) has received considerable attention using direct MWCNT growth on CF with a catalysis, MWCNT electrophoresis, and layer-by-layer of MWCNT with reactive polymers, etc. Among above approaches, the layer-by-layer method is the simplest process, however, the amount of MWCNTs on CF is very little, resulting in the small amount of improvement of the mechanical property of the composite. The remaining amount of MWCNT on CF after melt mixing of CF (short fiber) with thermoplastic matrix polymer was not examined clearly in the former studies. The present research aims to propose an effective layer-by-layer chemical grafting of a highly reactive oxazoline polymer, which has not been used before, and MWCNTs onto CF using the highly reactivity of oxazoline and COOH on the surface of CF and MWCNTs.With layer-by-layer method, the first uniform chemically bonded mono molecular layer on carbon fiber was formed by chemical surface reaction of carbon fiber, a reactive oxazoline polymer solution between COOH of carbon fiber and oxazoline. The second chemically bonded uniform layer of MWCNTs on the first layer was prepared through the first layer coated carbon fiber in MWCNT dispersion solution by chemical reaction between oxazoline and COOH of MWCNTs. The quantitative analysis of MWCNTs on carbon fiber was performed, showing 0.44 wt.% of MWCNTs based on carbon fiber, which is much larger amount compared with the former studies in layer-by-layer method. In addition, MWCNTs were also observed uniform coating on carbon fiber by scanning electron micrograph (SEM). Carbon fiber composites were prepared by melting mixing using polystyrene (PS) as a thermoplastic matrix because of easy removal of PS by solvent for additional analysis, resulting the 20% of enhancement of tensile strength and modulus by tensile strength test. It was confirmed bySEM the layer-by-layer structure on carbon fibers were remained after the melt mixing by removing PS with a solvent. As a conclusion, the effectiveness for the enhancement of the mechanical properties of CF(short fiber)/PS composite using the highly reactive oxazoline polymer for the first layer and MWCNT for the second layer, which act as the physical anchor, was demonstrated.

Keywords: interface, layer-by-layer, multi walled carbon nanotubes (MWCNTs), oxazoline

Procedia PDF Downloads 204
276 Reliability Factors Based Fuzzy Logic Scheme for Spectrum Sensing

Authors: Tallataf Rasheed, Adnan Rashdi, Ahmad Naeem Akhtar

Abstract:

The accurate spectrum sensing is a fundamental requirement of dynamic spectrum access for deployment of Cognitive Radio Network (CRN). To acheive this requirement a Reliability factors based Fuzzy Logic (RFL) Scheme for Spectrum Sensing has been proposed in this paper. Cognitive Radio User (CRU) predicts the presence or absence of Primary User (PU) using energy detector and calculates the Reliability factors which are SNR of sensing node, threshold of energy detector and decision difference of each node with other nodes in a cooperative spectrum sensing environment. Then the decision of energy detector is combined with Reliability factors of sensing node using Fuzzy Logic. These Reliability Factors used in RFL Scheme describes the reliability of decision made by a CRU to improve the local spectrum sensing. This Fuzzy combining scheme provides the accuracy of decision made by sensornode. The simulation results have shown that the proposed technique provide better PU detection probability than existing Spectrum Sensing Techniques.

Keywords: cognitive radio, spectrum sensing, energy detector, reliability factors, fuzzy logic

Procedia PDF Downloads 487
275 A Dynamic Neural Network Model for Accurate Detection of Masked Faces

Authors: Oladapo Tolulope Ibitoye

Abstract:

Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.

Keywords: convolutional neural network, face detection, face mask, masked faces

Procedia PDF Downloads 70
274 The Study of Thai Millennial Attitude toward End-of-Life Planning, Opportunity of Service Design Development

Authors: Mawong R., Bussracumpakorn C.

Abstract:

Millions of young people around the world have been affected by COVID-19 to their psychological and social effects. Millennials’ stresses have been shaped by a few global issues, including climate change, political instability, and financial crisis. In particular, the spread of COVID-19 has become laying psychological and socioeconomic scars on them. When end-of-life planning turns into more widely discussed, the stigma and taboos around this issue are greatly lessened. End-of-life planning is defined as a future life plan, such as financial, legacy, funeral, and memorial planning. This plan would help millennials to discover the value and meaning of life. This study explores the attitudes of Thai Millennials toward end-of-life planning as a new normal awareness of life in order to initiate an innovative service concept to fit with their value and meaning. The study conducts an in-depth interview with 12 potential participants who have awareness or action on the plan. The framework of the customer journey map is used to analyze the responses to examine trigger points, barriers, beliefs, and expectations. The findings pointed to a service concept that is suggested for a new end-of-life planning service that is suited to Thai Millennials in 4 different groups, which are 1. Social -Conscious as a socially aware who to donate time and riches to make the world and society a better place, their end-of-life planning value is inspired by the social impact of giving something or some action that they will be able to do after life or during life which provides a variety of choice based on their preference to give to society, 2. Life Fulfillment who make a life goal for themselves and attempt to achieve it before the time comes to their value will be to inspire life value with a customized plan and provide guidance to suggest, 3. Prevention of the After-Death Effect who want to plan to avoid the effects of their death as patriarch, head of the family, and anchor of someone, so they want to have a plan that brings confidence and feel relief while they are still alive and they want to find some reliable service that they can leave the death will or asset, and 4. No Guilty Planning who plan for when they wish to be worry-free as a self-responsible they want to have the plan which is easy to understand and easy to access. The overall finding of the study is to understand the new service concept of end-of-life planning which to improve knowledge of significant life worth rather than death planning, encouraging people to reassess their lives in a positive way, leading to higher self-esteem and intrinsic motivation for this generation in this time of global crisis.

Keywords: design management, end-of-life planning, millennial generation, service design solution

Procedia PDF Downloads 190
273 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis

Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa

Abstract:

Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.

Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM

Procedia PDF Downloads 454
272 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).

Keywords: neural computing, human machine interation, artificial general intelligence, decision processing

Procedia PDF Downloads 125