Search results for: refractory high entropy alloy
16040 Increase of Quinoa Tolerance to High Salinity Involves Agrophysiological Parameters Improvement by Soil Amendments
Authors: Bourhim Mohammad Redouane, Cheto Said, Qaddoury Ahmed, Hirich Abdelaziz, Ghoulam Cherki
Abstract:
Several abiotic stresses cause disruptions in the properties of agricultural soils and hence their loss worldwide. Among these abiotic stresses, Salinity to which most crops were exposed caused an important reduction in their productivity. Therefore, in order to deal with this challenging problem, we rely on cultivating alternative plants that can tolerate the adverse salinity stress, such as quinoa (Chenopodium quinoa). Although even it was qualified as tolerant to Salinity, the quinoa’s performance could be negatively affected under high salinity levels. Thus, our study aims to assess the effects of the application of soil amendments to improve quinoa tolerance levels under high Salinity. Thus, three quinoa varieties (Puno, ICBA-Q5, and Titicaca) were grown on agricultural soil under a greenhouse with five amendments; Biochar “Bc,” compost “Cp,” black soldier insect frass “If,” cow manure “Fb” and phosphogypsum “Pg.” Two controls without amendment were adopted consisting of the salinized negative one “T(-)” and the non-salinized positive one “T(+).” After 20 days from sowing, the plants were irrigated with a saline solution of 16 dS/m prepared with NaCl for a period of 60 days. Then plant tolerance was assessed based on agrophysiological parameters. The results showed that salinity stress negatively affected the quinoa plants for all the analyzed agrophysiological parameters in the three varieties compared to their corresponding controls “T(+).” However, most of these parameters were significantly enhanced by the application of soil amendments compared to their negative controls “T(-).” For instance, the biomass was improved by 91.8% and 69.4%, respectively, for Puno and Titicaca varieties amended with “Bc.” The total nitrogen amount was increased by 220% for Titicaca and ICBA-Q5 plants cultivated in the soil amended with “If.” One of the most important improvements was noted for potassium content in Titicaca amended with “Pg,” which was six times higher compared to the negative control. Besides, the plants of Puno amended with “Cp” showed an improvement of 75.9% for the stomatal conductance and 58.5% for nitrate reductase activity. Nevertheless, the pronounced varietal difference was registered between Puno and Titicaca, presenting the highest performances mainly for the soil amended with “If,” “Bc,” and “Pg.”Keywords: chenopodium quinoa, salinity, soil amendments, growth, nutrients, nitrate reductase
Procedia PDF Downloads 7416039 Automation of AAA Game Development Using AI
Authors: Branden Heng, Harsheni Siddharthan, Allison Tseng, Paul Toprac, Sarah Abraham, Etienne Vouga
Abstract:
The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high-budget, high-profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 12 AI tools for game development. During this process, the following tools were found to be the most productive: (i) ChatGPT 4.0 for both game and narrative concepts and documentation; (ii) Dall-E 3 and OpenArt for concept art; (iii) Beatoven for music drafting; (iv) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are, at best, tools to enhance developer productivity rather than as a system to replace developers.Keywords: AAA games, AI, automation tools, game development
Procedia PDF Downloads 2616038 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts
Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan
Abstract:
Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly
Procedia PDF Downloads 13616037 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver
Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin
Abstract:
National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band
Procedia PDF Downloads 36916036 PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance
Authors: Shah Sufaid, Hussain Shahid, Tianyan You, Liu Guiwu, Qiao Guanjun
Abstract:
Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application.Keywords: NiO@CuO NFs, metal organic framework, porous structure, H₂, gas sensing
Procedia PDF Downloads 4516035 Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul
Authors: Nihan Gurel Ulusan
Abstract:
It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users.Keywords: educational buildings, energy efficient, illumination techniques, lighting
Procedia PDF Downloads 28216034 Nutrition of Preschool Children in the Aspect of Nutritional Status
Authors: Klaudia Tomala, Elzbieta Grochowska-Niedworok, Katarzyna Brukalo, Marek Kardas, Beata Calyniuk, Renata Polaniak
Abstract:
Background. Nutrition plays an important role in the psychophysical growth of children and has effects on their health. Providing children with the appropriate supply of macro- and micro-nutrients requires dietary diversity across every food group. Meals in kindergartens should provide 70-75% of their daily food requirement. Aim. The aim of this study was to determine the vitamin content in the food rations of children attending kindergarten in the wider aspect of nutritional status. Material and Methods. Kindergarten menus from the spring and autumn seasons of 2015 were analyzed. In these meals, fat content and levels of water-soluble vitamins were estimated. The vitamin content was evaluated using the diet calculator “Aliant”. Statistical analysis was done in MS Office Excel 2007. Results. Vitamin content in the analyzed menus in many cases is too high with reference to dietary intake, with only vitamin D intake being insufficient. Vitamin E intake was closest to the dietary reference intake. Conclusion. The results show that vitamin intake is usually too high, and menus should, therefore, be modified. Also, nutrition education among kindergarten staff is needed. The identified errors in the composition of meals will affect the nutritional status of children and their proper composition in the body.Keywords: children, nutrition status, vitamins, preschool
Procedia PDF Downloads 15916033 Indoor Air Pollution: A Major Threat to Human Health
Authors: Pooja Rawat, Rakhi Tyagi
Abstract:
Globally, almost 3 billion people rely on biomass (wood, charcoal, dung and crop residues) and coal as their primary source of domestic energy. Cooking and heating with solid fuels on open fire give rise to major pollutants. Women are primarily affected by these pollutants as they spend most of their time in the house. The WHO World Health Report 2002 estimates that indoor air pollution (IAP) is responsible for 2.7% of the loss of disability adjusted life years (DALYs) worldwide and 3.7% in high mortality developing countries. Indoor air pollution has the potential to not only impact health, but also impact the general economic well-being of the household. Exposure to high level of household pollution lead to acute and chronic respiratory conditions (e.g.: pneumonia, chronic obstructive pulmonary disease, lung cancer and cataract). There has been many strategies for reducing IAP like subsidize cleaner fuel technologies, for example use of kerosene rather than traditional biomass fuels. Another example is development, promotion of 'improved cooking stoves'. India, likely ranks second- distributing over 12 million improved stoves in the first seven years of a national program to develop. IAP should be reduced by understanding the welfare effects of reducing IAP within households and to understanding the most cost effective way to reduce it.Keywords: open fire, indoor pollution, lung diseases, indoor air pollution
Procedia PDF Downloads 29816032 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 12816031 Space Vector Pulse Width Modulation Based Design and Simulation of a Three-Phase Voltage Source Converter Systems
Authors: Farhan Beg
Abstract:
A space vector based pulse width modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the space vector based pulse width modulation, sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value of sine signal is larger than triangle signal, the pulse will start producing to high; and then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will change by changing the value of the modulation index and frequency used in this system to produce more pulse width. When more pulse width is produced, the output voltage will have lower harmonics contents and the resolution will increase.Keywords: power factor, SVPWM, PWM rectifier, SPWM
Procedia PDF Downloads 33516030 Designing Nanowire Based Honeycomb Photonic Crystal Surface Emitting Lasers
Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li
Abstract:
Photonic Crystal Surface Emitting Lasers (PCSELs) are structures which are made up of a periodically repeating patterns with a unit cell consisting of changes in refractive index. The variation in refractive index can be achieved by etching air holes in a semiconductor material to get hole based PCSELs or by growing nanowires to get nanowire based PCSELs. As opposed to hole based PCSELs, nanowire based PCSELs can be integrated on silicon platform without threading dislocations, thanks to the small area of the nanowire that is in contact with silicon substrate that relaxes the strain. Nanowire based PCSELs reported in the literature have been designed using a triangular, square or honeycomb patterns. The triangular and square pattern PCSELs have limited degrees of freedom in tuning the design parameters which hinders the ability to design high quality factor (Q-factor) and/or variable wavelength devices. Nanowire based PCSELs designed using triangular and square patterns have been reported with the lasing thresholds of 130 kW/〖cm〗^2 and 7 kW/〖cm〗^2 respectively. On the other hand the honeycomb pattern gives more degrees of freedom in tuning the design parameters, which can allow one to design high Q-factor devices. A deformed honeycomb pattern device was reported with lasing threshold of 6.25 W/〖cm〗^2 corresponding to a simulated Q-factor of 5.84X〖10〗^5.Despite this achievement, the design principles which can lead to realization of even higher Q-factor honeycomb pattern PCSELs have not yet been investigated. In this work we study how the resonance wavelength and the Q-factor of three different resonance modes of the device vary when their design parameters are tuned. Through this study we establish the design and simulation of devices operating in 970nm wavelength band, O band and in the C band with quality factors up to 7X〖10〗^7 . We also investigate the quality factors of undeformed device and establish that the band edge close to 970nm can attain high quality factor when the device is undeformed and the quality factor degrades as the device is deformed.Keywords: honeycomb PCSEL, nanowire laser, photonic crystal laser, simulation of photonic crystal surface emitting laser
Procedia PDF Downloads 1116029 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure
Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi
Abstract:
With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance
Procedia PDF Downloads 17416028 Preliminary Geophysical Assessment of Soil Contaminants around Wacot Rice Factory Argungu, North-Western Nigeria
Authors: A. I. Augie, Y. Alhassan, U. Z. Magawata
Abstract:
Geophysical investigation was carried out at wacot rice factory Argungu north-western Nigeria, using the 2D electrical resistivity method. The area falls between latitude 12˚44′23ʺN to 12˚44′50ʺN and longitude 4032′18′′E to 4032′39′′E covering a total area of about 1.85 km. Two profiles were carried out with Wenner configuration using resistivity meter (Ohmega). The data obtained from the study area were modeled using RES2DIVN software which gave an automatic interpretation of the apparent resistivity data. The inverse resistivity models of the profiles show the high resistivity values ranging from 208 Ωm to 651 Ωm. These high resistivity values in the overburden were due to dryness and compactness of the strata that lead to consolidation, which is an indication that the area is free from leachate contaminations. However, from the inverse model, there are regions of low resistivity values (1 Ωm to 18 Ωm), these zones were observed and identified as clayey and the most contaminated zones. The regions of low resistivity thereby indicated the leachate plume or the highly leachate concentrated zones due to similar resistivity values in both clayey and leachate. The regions of leachate are mainly from the factory into the surrounding area and its groundwater. The maximum leachate infiltration was found at depths 1 m to 15.9 m (P1) and 6 m to 15.9 m (P2) vertically, as well as distance along the profiles from 67 m to 75 m (P1), 155 m to 180 m (P1), and 115 m to 192 m (P2) laterally.Keywords: contaminant, leachate, soil, groundwater, electrical, resistivity
Procedia PDF Downloads 16016027 Spatial Analysis for Wind Risk Index Assessment
Authors: Ljiljana Seric, Vladimir Divic, Marin Bugaric
Abstract:
This paper presents methodology for spatial analysis of GIS data that is used for assessing the microlocation risk index from potential damages of high winds. The analysis is performed on freely available GIS data comprising information about wind load, terrain cover and topography of the area. The methodology utilizes the legislation of Eurocode norms for determination of wind load of buildings and constructions. The core of the methodology is adoption of the wind load parameters related to location on geographical spatial grid. Presented work is a part of the Wind Risk Project, supported by the European Commission under the Civil Protection Financial Instrument of the European Union (ECHO). The partners involved in Wind Risk project performed Wind Risk assessment and proposed action plan for three European countries – Slovenia, Croatia and Germany. The proposed method is implemented in GRASS GIS open source GIS software and demonstrated for Case study area of wider area of Split, Croatia. Obtained Wind Risk Index is visualized and correlated with critical infrastructures like buildings, roads and power lines. The results show good correlation between high Wind Risk Index with recent incidents related to wind.Keywords: Eurocode norms, GIS, spatial analysis, wind distribution, wind risk
Procedia PDF Downloads 31716026 Reform of the Intellectual Property Administrative System and High-Quality Innovation of Enterprises
Authors: Prof. Hao Mao, Phd Qia Wei, Dr.Siwei Cao
Abstract:
The administrative system is the organisational carrier for managing the operation of the market and the basic guarantee for achieving innovation incentives. This paper takes the reform of provincial administrative institutions in the process of Chinese national intellectual property administrative system reform in 2018 as a quasi-natural experiment to assess the impact of IP administrative system reform on enterprise innovation. The study finds that reducing the independence of some provincial administrative institutions will lead to a reduction in the number of local enterprises' innovations and a decrease in the quality of innovations, which is mainly triggered by a decrease in R&D investment due to a decrease in the strength of subsidy policies. The new round of intellectual property administrative system reform in 2023 elevated the administrative status of China National Intellectual Property Administration (CNIPA), and re-strengthened the top-level design and centralization of IP administration. This paper clarifies the role of the 2018 IP administrative system reform on China's market innovation, provides empirical evidence for the properly handling government market relations and property rights incentives and other institutional designs, and also provides empirical references for further promoting the improvement of national and local IP institutional mechanisms and the implementation of the innovation-driven development strategy in the new round of reform.Keywords: intellectual property, administrative systems, reform, high-quality innovation
Procedia PDF Downloads 3816025 Short Answer Grading Using Multi-Context Features
Authors: S. Sharan Sundar, Nithish B. Moudhgalya, Nidhi Bhandari, Vineeth Vijayaraghavan
Abstract:
Automatic Short Answer Grading is one of the prime applications of artificial intelligence in education. Several approaches involving the utilization of selective handcrafted features, graphical matching techniques, concept identification and mapping, complex deep frameworks, sentence embeddings, etc. have been explored over the years. However, keeping in mind the real-world application of the task, these solutions present a slight overhead in terms of computations and resources in achieving high performances. In this work, a simple and effective solution making use of elemental features based on statistical, linguistic properties, and word-based similarity measures in conjunction with tree-based classifiers and regressors is proposed. The results for classification tasks show improvements ranging from 1%-30%, while the regression task shows a stark improvement of 35%. The authors attribute these improvements to the addition of multiple similarity scores to provide ensemble of scoring criteria to the models. The authors also believe the work could reinstate that classical natural language processing techniques and simple machine learning models can be used to achieve high results for short answer grading.Keywords: artificial intelligence, intelligent systems, natural language processing, text mining
Procedia PDF Downloads 13316024 Synergy Surface Modification for High Performance Li-Rich Cathode
Authors: Aipeng Zhu, Yun Zhang
Abstract:
The growing grievous environment problems together with the exhaustion of energy resources put urgent demands for developing high energy density. Considering the factors including capacity, resource and environment, Manganese-based lithium-rich layer-structured cathode materials xLi₂MnO₃⋅(1-x)LiMO₂ (M = Ni, Co, Mn, and other metals) are drawing increasing attention due to their high reversible capacities, high discharge potentials, and low cost. They are expected to be one type of the most promising cathode materials for the next-generation Li-ion batteries (LIBs) with higher energy densities. Unfortunately, their commercial applications are hindered with crucial drawbacks such as poor rate performance, limited cycle life and continuous falling of the discharge potential. With decades of extensive studies, significant achievements have been obtained in improving their cyclability and rate performances, but they cannot meet the requirement of commercial utilization till now. One major problem for lithium-rich layer-structured cathode materials (LLOs) is the side reaction during cycling, which leads to severe surface degradation. In this process, the metal ions can dissolve in the electrolyte, and the surface phase change can hinder the intercalation/deintercalation of Li ions and resulting in low capacity retention and low working voltage. To optimize the LLOs cathode material, the surface coating is an efficient method. Considering the price and stability, Al₂O₃ was used as a coating material in the research. Meanwhile, due to the low initial Coulombic efficiency (ICE), the pristine LLOs was pretreated by KMnO₄ to increase the ICE. The precursor was prepared by a facile coprecipitation method. The as-prepared precursor was then thoroughly mixed with Li₂CO₃ and calcined in air at 500℃ for 5h and 900℃ for 12h to produce Li₁.₂[Ni₀.₂Mn₀.₆]O₂ (LNMO). The LNMO was then put into 0.1ml/g KMnO₄ solution stirring for 3h. The resultant was filtered and washed with water, and dried in an oven. The LLOs obtained was dispersed in Al(NO₃)₃ solution. The mixture was lyophilized to confer the Al(NO₃)₃ was uniformly coated on LLOs. After lyophilization, the LLOs was calcined at 500℃ for 3h to obtain LNMO@LMO@ALO. The working electrodes were prepared by casting the mixture of active material, acetylene black, and binder (polyvinglidene fluoride) dissolved in N-methyl-2-pyrrolidone with a mass ratio of 80: 15: 5 onto an aluminum foil. The electrochemical performance tests showed that the multiple surface modified materials had a higher initial Coulombic efficiency (84%) and better capacity retention (91% after 100 cycles) compared with that of pristine LNMO (76% and 80%, respectively). The modified material suggests that the KMnO₄ pretreat and Al₂O₃ coating can increase the ICE and cycling stability.Keywords: Li-rich materials, surface coating, lithium ion batteries, Al₂O₃
Procedia PDF Downloads 13316023 Investigation of the Role of Friction in Reducing Pedestrian Injuries in Accidents at Intersections
Authors: Seyed Abbas Tabatabaei, Afshin Ghanbarzadeh, Mehdi Abidizadeh
Abstract:
Nowadays the subject of road traffic accidents and the high social and economic costs due to them is the most fundamental problem that experts and providers of transport and traffic brought to a challenge. One of the most effective measures is to enhance the skid resistance of road surface. This research aims to study the intersection of one case in Ahwaz and the effect of increasing the skid resistance in reducing pedestrian injuries in accidents at intersections. In this research the device was developed to measure the coefficient of friction and tried the rules and practices of it have a high similarity with the Locked Wheel Trailer. This device includes a steel frame, wheels, hydration systems, and force gauge. The output of the device is that the force gauge registers. By investigate this data and applying the relationships relative surface coefficient of friction is obtained. Friction coefficient data for the current state and the state of the new pavement are obtained and plotted on the graphs based on the graphs we can compare the two situations and speed at the moment of collision between the two modes are compared. The results show that increasing the coefficient of friction to what extent can be effective on the severity and number of accidents.Keywords: intersection, coefficient of friction, skid resistance, locked wheels, accident, pedestrian
Procedia PDF Downloads 32816022 Embedded Digital Image System
Authors: Dawei Li, Cheng Liu, Yiteng Liu
Abstract:
This paper introduces an embedded digital image system for Chinese space environment vertical exploration sounding rocket. In order to record the flight status of the sounding rocket as well as the payloads, an onboard embedded image processing system based on ADV212, a JPEG2000 compression chip, is designed in this paper. Since the sounding rocket is not designed to be recovered, all image data should be transmitted to the ground station before the re-entry while the downlink band used for the image transmission is only about 600 kbps. Under the same condition of compression ratio compared with other algorithm, JPEG2000 standard algorithm can achieve better image quality. So JPEG2000 image compression is applied under this condition with a limited downlink data band. This embedded image system supports lossless to 200:1 real time compression, with two cameras to monitor nose ejection and motor separation, and two cameras to monitor boom deployment. The encoder, ADV7182, receives PAL signal from the camera, then output the ITU-R BT.656 signal to ADV212. ADV7182 switches between four input video channels as the program sequence. Two SRAMs are used for Ping-pong operation and one 512 Mb SDRAM for buffering high frame-rate images. The whole image system has the characteristics of low power dissipation, low cost, small size and high reliability, which is rather suitable for this sounding rocket application.Keywords: ADV212, image system, JPEG2000, sounding rocket
Procedia PDF Downloads 42116021 Assets Misappropriation in the Malaysian Public and Private Sectors
Authors: I. K. Norziaton, M. D. Ridhuan, A. N. Nur Adura
Abstract:
Assets misappropriation is becoming a major concern in organizations. Over the years, the Malaysian Auditor General has reported high occurrences of assets misappropriation at the federal, state and even local governments. It is surprising that assets misappropriation is not the only major concern in the public sector but it has also indicates a common sight in private sector. The current situation is rather disconcerting because employees are accountable to perform their jobs at the interest of the organizations. Various researches in the past has found that the incidence of assets misappropriation occurs when employees used the official vehicles, internet connection, computers, stationery and facilities for personal and family benefits. The issue of assets misappropriation has continue to be a major concern for organizations and its impact on the reputation and financial health can be enormous. Even though the issue seems to be trivial, yet, if it is left untreated, the symptoms will become an incurable disease that it will cause major leakages to the organizations. Hence, this paper highlights the common practices of assets misappropriation in public and private sectors. It also discusses why the acts of assets misappropriation occurs. Using the data through questionnaire survey, a total of 250 questionnaires were distributed to the private and public sectors employees. However 173 (69.2%) were returned and usable. This paper concludes that it is vital to promote awareness to the public and private sectors employees on issues of assets misappropriation. Assets misappropriation could have been avoided provided that the officers in charge are more vigilant, competent and practice high level of integrity in discharging their responsibilities towards the organizations.Keywords: assets misappropriation, fraud, public sector, private sector
Procedia PDF Downloads 19716020 Risk Factors Associated with Ectoprotozoa Infestation of Wild and Farmed Cyprinids
Authors: M. A. Peribanez, G. Illan, I. De Blas, A. Muniesa, I. Ruiz-Zarzuela
Abstract:
Intensive aquaculture is commonly associated with increased incidence of parasites. However, in Spain, the recent intensification of cyprinid production has not led to knowledge of the parasites that develop in the aquaculture facilities, the factors that affect their development and spread and the transmission between wild and cultivated fish species. The present study focuses on the knowledge of environmental factors, as well as host dependent factors, and their possible influence as risk factors in the incidence and intensity of parasitic infections. This work was conducted in the Duero River Basin, NW Spain. A total of 114 tenches (Tinca tinca) were caught in a fish farm and 667 specimens belonging to six species of cyprinid, not tench, in five rivers. An exhaustive search and microscopic identification of protozoa on skin and gills were carried out. Physical, chemical, and biological parameters of water samples from the capture points were determined. Only two ectoprotozoa were identified, Ichthyophthirius multifiliis and Tripartiella sp. In I. multifiliis, a high intensity of infection (more than 40 parasites on the body surface and more than 80 on gills) was determined in farmed tench (14%) and in Iberian barbel (Luciobarbus bocagei) (91%) and Duero nase (Pseudochondrostoma duriense) (71%) of middle stretches of rivers. The prevalence was similar between farmed tenches and cyprinids of middle courses. Tripartiella sp. was only found in barbels (prevalence in middle stretches, 0.7%) and in farmed tenches (63%), this species resulting in a high risk factor (odds ratio, OR= 1143) in the presence of the ciliate. There were no differences between the two species relative to the intensity of parasitization. Some of the physical, chemical and microbiological water quality parameters appear to be risk factors in the presence of I. multifiliis, with maximum OR of 8. Nevertheless, in Tripartiella sp., the risk is multiplied by 720 when the pH value exceeds 8.4, if we consider the total of the data, and it is increased more than 500 times if we only consider the values recorded in the fish farm (529 by nitrates > 3 mg/l; 530 by total coliforms > 100 CFU/100 ml). However, the high prevalence and risk of infection by I. multifiliis and Tripartiella sp. in fish farms should be related to environmental factors that dependent upon sampling point rather than in direct influence of the physical-chemical and biological parameters of the water. The high pH value recorded in the fish farm (9.62 ± 0.76) is the only parameter that we consider may have a substantial direct influence. Chronic exposure to alkaline pH levels can be a chronic stress generator, predisposing to parasitization by Tripartiella sp. In conclusion, often minor changes in ecosystem conditions, both natural and man-made, can modify the host-parasite relationship, resulting in an increase in the prevalence and intensity of parasitic infections in populations of cyprinids, sometimes causing disease outbreaks.Keywords: cyprinids, fish, parasites, protozoa, risk factors
Procedia PDF Downloads 11416019 Enhancing Heavy Oil Recovery: Experimental Insights into Low Salinity Polymer in Sandstone Reservoirs
Authors: Intisar, Khalifa, Salim, Al Busaidi
Abstract:
Recently, the synergic combination of low salinity water flooding with polymer flooding has been a subject of paramount interest for the oil industry. Numerous studies have investigated the efficiency of enhanced oil recovery using low salinity polymer flooding (LSPF). However, there is no clear conclusion that can explain the incremental oil recovery, determine the main factors controlling the oil recovery process, and define the relative contribution of rock/fluids or fluid/fluid interactions to extra oil recovery. Therefore, this study aims to perform a systematic investigation of the interactions between oil, polymer, low salinity and sandstone rock surface from pore to core scale during LSPF. Partially hydrolyzed polyacrylamide (HPAM) polymer, Boise outcrop, a crude oil sample and reservoir cores from an Omani oil field, and brine at two different salinities were used in the study. Several experimental measurements including static bulk measurements of polymer solutions prepared with brines of high and low salinities, single phase displacement experiments, along with rheological, total organic carbon and ion chromatography measurements to analyze ion exchange reactions, polymer adsorption, and viscosity loss were used. In addition, two-phase experiments were performed to demonstrate the oil recovery efficiency of LSPF. The results revealed that the incremental oil recovery from LSPF was attributed to the combination of the reduction in the water-oil mobility ratio, an increase in the repulsion forces between crude oil/brine/rock interfaces and an increase in pH of the aqueous solution. In addition, lowering the salinity of the make-up brine resulted in a larger conformation (expansion) of the polymer molecules, which in turn resulted in less adsorption and a greater in-situ viscosity without any negative impact on injectivity. This plays a positive role in the oil displacement process. Moreover, the loss of viscosity in the effluent of polymer solutions was lower in low-salinity than in high-salinity brine, indicating that an increase in cations concentration (mainly driven by Ca2+ ions) has stronger effect on the viscosity of high-salinity polymer solution compared with low-salinity polymer.Keywords: polymer, heavy oil, low salinity, COBR interactions
Procedia PDF Downloads 9316018 Effects of Mindfulness Practice on Clinician Burnout: A Scoping Review
Authors: Hani Malik
Abstract:
Background: Clinician burnout is a growing phenomenon in current health systems worldwide. Increasing emotional exhaustion, depersonalisation, and reduced personal accomplishment threaten the effective delivery of healthcare. This can potentially be mitigated by mindfulness practice, which has shown promising results in reducing burnout, restoring compassion, and preventing moral injury in clinicians. Objectives: To conduct a scoping review and identify high-quality studies on mindfulness practice in clinician burnout, synthesize themes that emerge from these studies, and discuss the implications of the results to healthcare leadership and innovation. Methodology: A focused scoping review was carried out to investigate the effects of mindfulness practice on clinician burnout. High-ranking journals were targeted to analyse high-quality studies and synthesize common themes in the literature. Studies conducted on current, practicing physicians were included. Mindfulness practice of varying forms was the main intervention studied. Grey literature and studies conducted only on allied health personnel were excluded from this review. Analysis:31 studies were included in this scoping review. Mindfulness practice was found to decrease emotional exhaustion and depersonalisation while improving mood, responses to stress, and vigour. Self-awareness, compassion, and empathy were also increased in study participants. From this review, four themes emerged which include: innovations in mindfulness practice, mindfulness and positive psychology, the impact of mindfulness on work and patient care, and barriers and facilitators to clinician mindfulness practice. Conclusion: Mindfulness had widely been reported to benefit mental health and well-being, but the studies reviewed seemed to adopt a mono focus and omitted key considerations to healthcare leadership, systems-level culture, and practices. Mindfulness practice is a quintessential component of positive psychology and is inherently linked to effective leadership. A mindful and compassionate clinician leader will play a crucial role in addressing gaps in current practice, prioritise staff mental health, and provide a supportive platform for innovation.Keywords: mindfulness practice, clinician burnout, healthcare leadership, COVID-19
Procedia PDF Downloads 15216017 The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating
Authors: Asma Salman, Brian Gabbitas, Peng Cao, Deliang Zhang
Abstract:
The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment.Keywords: coating, feedstock, powder processing, thermal shock resistance, thermally spraying
Procedia PDF Downloads 27216016 A Kinetic Study on Recovery of High-Purity Rutile TiO₂ Nanoparticles from Titanium Slag Using Sulfuric Acid under Sonochemical Procedure
Authors: Alireza Bahramian
Abstract:
High-purity TiO₂ nanoparticles (NPs) with size ranging between 50 nm and 100 nm are synthesized from titanium slag through sulphate route under sonochemical procedure. The effect of dissolution parameters such as the sulfuric acid/slag weight ratio, caustic soda concentration, digestion temperature and time, and initial particle size of the dried slag on the extraction efficiency of TiO₂ and removal of iron are examined. By optimizing the digestion conditions, a rutile TiO₂ powder with surface area of 42 m²/g and mean pore diameter of 22.4 nm were prepared. A thermo-kinetic analysis showed that the digestion temperature has an important effect, while the acid/slag weight ratio and initial size of the slag has a moderate effect on the dissolution rate. The shrinking-core model including both chemical surface reaction and surface diffusion is used to describe the leaching process. A low value of activation energy, 38.12 kJ/mol, indicates the surface chemical reaction model is a rate-controlling step. The kinetic analysis suggested a first order reaction mechanism with respect to the acid concentrations.Keywords: TiO₂ nanoparticles, titanium slag, dissolution rate, sonochemical method, thermo-kinetic study
Procedia PDF Downloads 25616015 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances
Authors: Mankour Mohamed, Miloudi Mohamed
Abstract:
A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults
Procedia PDF Downloads 9416014 Comparing the Effectiveness of Social Skills Training and Stress Management on Self Esteem and Agression in First Grade Students of Iranian West High School
Authors: Hossein Nikandam Kermanshah, Babak Samavatian, Akbar Hemmati Sabet, Mohammad Ahmadpanah
Abstract:
This is a quasi-experimental study that has been conducted in order to compare the effectiveness of social skills training and stress management training on self-esteem and aggression in first grade high school students. Forty-five people were selected from research community and were put randomly in there groups of social skills training, stress management training and control ones. Collecting data tools in this study was devise, self-esteem and AGQ aggression questionnaire. Self-esteem and aggression questionnaires has been conducted as the pre-test and post-test. Social skills training and stress management groups participated in eight 1.5 hour session in a week. But control group did not receive any therapy. For descriptive analysis of data, statistical indicators like mean, standard deviation were used, and in inferential statistics level multi variable covariance analysis have been used. The finding result show that group training social skills and stress management is significantly effective on the self-esteem and aggression, there is a meaningful difference between training social skills and stress management on self-esteem that the preference is with group social skills training, in the difference between group social skills training and stress management on aggression, the preference is with group stress management.Keywords: social skill training, stress management training, self-esteem aggression, psychological sciences
Procedia PDF Downloads 47016013 Signal Integrity Performance Analysis in Capacitive and Inductively Coupled Very Large Scale Integration Interconnect Models
Authors: Mudavath Raju, Bhaskar Gugulothu, B. Rajendra Naik
Abstract:
The rapid advances in Very Large Scale Integration (VLSI) technology has resulted in the reduction of minimum feature size to sub-quarter microns and switching time in tens of picoseconds or even less. As a result, the degradation of high-speed digital circuits due to signal integrity issues such as coupling effects, clock feedthrough, crosstalk noise and delay uncertainty noise. Crosstalk noise in VLSI interconnects is a major concern and reduction in VLSI interconnect has become more important for high-speed digital circuits. It is the most effectively considered in Deep Sub Micron (DSM) and Ultra Deep Sub Micron (UDSM) technology. Increasing spacing in-between aggressor and victim line is one of the technique to reduce the crosstalk. Guard trace or shield insertion in-between aggressor and victim is also one of the prominent options for the minimization of crosstalk. In this paper, far end crosstalk noise is estimated with mutual inductance and capacitance RLC interconnect model. Also investigated the extent of crosstalk in capacitive and inductively coupled interconnects to minimizes the same through shield insertion technique.Keywords: VLSI, interconnects, signal integrity, crosstalk, shield insertion, guard trace, deep sub micron
Procedia PDF Downloads 18616012 Characterization of Fateh Sagar Wetland and Its Catchment Area at Udaipur City, (Raj.) India, Using High Resolution Data
Authors: Parul Bhalla, Sarvesh Palria
Abstract:
Wetlands are areas of land that are either temporarily or permanently covered by water. Wetlands exhibit enormous diversity according to their genesis, geographical location, water regime and chemistry, dominant plants and soil or sediment characteristics. The spatial and temporal characteristics of wetland in terms of turbidity and aquatic vegetation could serve as guiding tool, in conservation prioritization of wetlands. The aquatic vegetation in the wetland is an indicator of the trophic status of the wetland which has a bearing on the water quality, the turbidity level in any wetland is indicative of the quality of the water in it. To conserve and manage wetland resources, it is important to have inventory of wetland and its catchment. Fateh Sagar wetland in Udaipur city is the one of the important wetland for tourism industry and other economic activities in the region. Realizing the importance of the wetland, the present study has been taken up with the specific objective of delineation and characterization of Fateh Sagar wetland in terms of turbidity and aquatic vegetation, using high resolution satellite data such as Cartosat and LISS IV multi-temporal data, which will efficiently bring out the changes in water spread and quality parameters. The catchment of wetland has been also characterized for various features. The study leads in to takes necessary steps to conserve the wetland and its resources.Keywords: aquatic vegetation, catchment, turbidity status, wetland
Procedia PDF Downloads 40316011 Comparison of Rainfall Trends in the Western Ghats and Coastal Region of Karnataka, India
Authors: Vinay C. Doranalu, Amba Shetty
Abstract:
In recent days due to climate change, there is a large variation in spatial distribution of daily rainfall within a small region. Rainfall is one of the main end climatic variables which affect spatio-temporal patterns of water availability. The real task postured by the change in climate is identification, estimation and understanding the uncertainty of rainfall. This study intended to analyze the spatial variations and temporal trends of daily precipitation using high resolution (0.25º x 0.25º) gridded data of Indian Meteorological Department (IMD). For the study, 38 grid points were selected in the study area and analyzed for daily precipitation time series (113 years) over the period 1901-2013. Grid points were divided into two zones based on the elevation and situated location of grid points: Low Land (exposed to sea and low elevated area/ coastal region) and High Land (Interior from sea and high elevated area/western Ghats). Time series were applied to examine the spatial analysis and temporal trends in each grid points by non-parametric Mann-Kendall test and Theil-Sen estimator to perceive the nature of trend and magnitude of slope in trend of rainfall. Pettit-Mann-Whitney test is applied to detect the most probable change point in trends of the time period. Results have revealed remarkable monotonic trend in each grid for daily precipitation of the time series. In general, by the regional cluster analysis found that increasing precipitation trend in shoreline region and decreasing trend in Western Ghats from recent years. Spatial distribution of rainfall can be partly explained by heterogeneity in temporal trends of rainfall by change point analysis. The Mann-Kendall test shows significant variation as weaker rainfall towards the rainfall distribution over eastern parts of the Western Ghats region of Karnataka.Keywords: change point analysis, coastal region India, gridded rainfall data, non-parametric
Procedia PDF Downloads 295