Search results for: pan-tilt application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8225

Search results for: pan-tilt application

3485 State of the Art and Future Perspectives of Virtual Reality, Augmented Reality, and Mixed Reality in Cardiovascular Care

Authors: Adisu Mengesha Assefa

Abstract:

The field of cardiovascular care is being transformed by the incorporation of Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR), collectively known as Extended Reality (XR), into medical education, procedural planning, and patient care. This review examines the state-of-the-art applications of XR in cardiology, emphasizing its role in enhancing the precision of interventional procedures and understanding complex anatomical structures. XR technologies complement conventional imaging methods by enabling immersive three-dimensional interaction that facilitates both preoperative planning and intraoperative guidance. Despite these promising developments, challenges such as harmonizing data, integrating various imaging systems, and addressing the prevalence of cybersickness remain. Ethical considerations, including maintaining physician focus and ensuring patient safety, are crucial when implementing XR in clinical settings. This review summarizes the existing literature and highlights the need for more rigorous future studies to validate therapeutic benefits and ensure safe application. By examining both the potential and the challenges, this paper aims to delineate the current and future roles of XR in cardiovascular care, emphasizing the necessity for continued innovation and ethical oversight to improve patient outcomes.

Keywords: virtual reality, augmented reality, mixed reality, cardiovascular care, education, preprocedural planning, intraoperative guidance, postoperative patient rehabilitation

Procedia PDF Downloads 35
3484 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 282
3483 Electrolyte Loaded Hexagonal Boron Nitride/Polyacrylonitrile Nanofibers for Lithium Ion Battery Application

Authors: Umran Kurtan, Hamide Aydin, Sevim Unugur Celik, Ayhan Bozkurt

Abstract:

In the present work, novel hBN/polyacrylonitrile composite nanofibers were produced via electrospinning approach and loaded with the electrolyte for rechargeable lithium-ion battery applications. The electrospun nanofibers comprising various hBN contents were characterized by using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The influence of hBN/PAN ratios onto the properties of the porous composite system, such as fiber diameter, porosity, and the liquid electrolyte uptake capability were systematically studied. Ionic conductivities and electrochemical characterizations were evaluated after loading electrospun hBN/PAN composite nanofiber with liquid electrolyte, i.e., 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). The electrolyte loaded nanofiber has a highest ionic conductivity of 10−3 S cm⁻¹ at room temperature. According to cyclic voltammetry (CV) results it exhibited a high electrochemical stability window up to 4.7 V versus Li+/Li. Li//10 wt% hBN/PAN//LiCO₂ cell was produced which delivered high discharge capacity of 144 mAhg⁻¹ and capacity retention of 92.4%. Considering high safety and low cost properties of the resulting hBN/PAN fiber electrolytes, these materials can be suggested as potential separator materials for lithium-ion batteries.

Keywords: hexagonal boron nitride, polyacrylonitrile, electrospinning, lithium ion battery

Procedia PDF Downloads 148
3482 AI-Based Technologies for Improving Patient Safety and Quality of Care

Authors: Tewelde Gebreslassie Gebreanenia, Frie Ayalew Yimam, Seada Hussen Adem

Abstract:

Patient safety and quality of care are essential goals of health care delivery, but they are often compromised by human errors, system failures, or resource constraints. In a variety of healthcare contexts, artificial intelligence (AI), a quickly developing field, can provide fresh approaches to enhancing patient safety and treatment quality. Artificial Intelligence (AI) has the potential to decrease errors and enhance patient outcomes by carrying out tasks that would typically require human intelligence. These tasks include the detection and prevention of adverse events, monitoring and warning patients and clinicians about changes in vital signs, symptoms, or risks, offering individualized and evidence-based recommendations for diagnosis, treatment, or prevention, and assessing and enhancing the effectiveness of health care systems and services. This study examines the state-of-the-art and potential future applications of AI-based technologies for enhancing patient safety and care quality, as well as the opportunities and problems they present for patients, policymakers, researchers, and healthcare providers. In order to ensure the safe, efficient, and responsible application of AI in healthcare, the paper also addresses the ethical, legal, social, and technical challenges that must be addressed and regulated.

Keywords: artificial intelligence, health care, human intelligence, patient safty, quality of care

Procedia PDF Downloads 78
3481 A Low-Latency Quadratic Extended Domain Modular Multiplier for Bilinear Pairing Based on Non-Least Positive Multiplication

Authors: Yulong Jia, Xiang Zhang, Ziyuan Wu, Shiji Hu

Abstract:

The calculation of bilinear pairing is the core of the SM9 algorithm, which relies on the underlying prime domain algorithm and the quadratic extension domain algorithm. Among the field algorithms, modular multiplication operation is the most time-consuming part. Therefore, the underlying modular multiplication algorithm is optimized to maximize the operation speed of bilinear pairings. This paper uses a modular multiplication method based on non-least positive (NLP) combined with Karatsuba and schoolbook multiplication to improve the Montgomery algorithm. At the same time, according to the characteristics of multiplication operation in the quadratic extension domain, a quadratic extension domain FP2-NLP modular multiplication algorithm for bilinear pairings is proposed, which effectively reduces the operation time of modular multiplication in the quadratic extension domain. The sub-expanded domain Fp₂ -NLP modular multiplication algorithm effectively reduces the operation time of modular multiplication under the second-expanded domain. The multiplication unit in the quadratic extension domain is implemented using SMIC55nm process, and two different implementation architectures are designed to cope with different application scenarios. Compared with the existing related literature, The output latency of this design can reach a minimum of 15 cycles. The shortest time for calculating the (AB+CD)r⁻¹ mod form is 37.5ns, and the comprehensive area-time product (AT) is 11400. The final R-ate pairing algorithm hardware accelerator consumes 2670k equivalent logic gates and 1.8ms computing time in 55nm process.

Keywords: sm9, hardware, NLP, Montgomery

Procedia PDF Downloads 3
3480 The Effects of Adlerian Supervision on Enhancing Career Consultants’ Case Conceptualization

Authors: Lin Shang Neng

Abstract:

Due to rapid changes in the societal environment, career development and planning have become increasingly crucial, leading more individuals to seek the assistance of career consultations. However, the training process for career consultants often emphasizes the application of assessment tools and guidance in job-seeking behavior. The abilities of case conceptualization and consulting skills require further in-service supervision. This study aims to inquire about the supervised experiences of employment specialists at the Employment Service Center of the Taiwan Ministry of Labor or career consultants who held private clinics for at least three years. The research participants were continuously supervised by the Adlerian approach twice a month for at least one year, helping them integrate the whole picture of the client through Lifestyle Assessment (the qualitative way, specific diagnosis) and other Adlerian assessment tools (the quantitative way, general diagnosis.) The supervisor was familiar with Adlerian Psychology and certified by the North American Society of Adlerian Psychology. The research method involves semi-structured interviews and qualitative analysis. For the ethical considerations, the participants were invited to interview after the supervision sessions finished. The findings of this research were discussed with possible implications, like how they applied Adlerian Psychology to their career consultations, especially to case conceptualizations and consulting skills. Recommendations for further research and training for career consultants are also discussed.

Keywords: supervision, Adlerian psychology, case conceptualization, career consultant

Procedia PDF Downloads 78
3479 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.

Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques

Procedia PDF Downloads 74
3478 Characterization of High Carbon Ash from Pulp and Paper mill for Potential Utilization

Authors: Ruma Rano, Firoza Sultana, Bishal Bhuyan, Nurul Alam Mazumder

Abstract:

Fly ash collected from Cachar Paper Mill, Assam, India has been thoroughly characterized in respect of its physico-chemical, morphological and mineralogical features were concerned by using density, LOI, FTIR, XRD, SEM-EDS etc. The results reveal that there is a striking difference in the features and properties of the coarser and finer fractions .The high carbon ash consists of large unburnt carbon (chars), irregular carbonaceous particles in the coarser fraction, which appear to be porous and may be used as domestic fuel. The percentage of char albeit the carbon content decreases with decrease in size of particles. The various fractions essentially contain quartz and mullite as the main mineral phases. For suggesting the potential utilization channels, number of experiments were performed correlating the total characteristic features. Water holding capacities of different size classified fractions were determined, the coarser fractions have unexpectedly higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained with potential use in agriculture. Another potential application of coarser particles is used as adsorbent for effluents containing waste organic materials. Thus thorough characterization leads to not only a definite direction about the uses of the value added components but also gives useful information regarding the prevailing combustion process.

Keywords: chars, porous, water holding capacity, combustion process

Procedia PDF Downloads 363
3477 Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 238
3476 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.

Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing

Procedia PDF Downloads 428
3475 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators

Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino

Abstract:

In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.

Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators

Procedia PDF Downloads 433
3474 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images

Authors: Khitem Amiri, Mohamed Farah

Abstract:

Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.

Keywords: hyperspectral images, deep belief network, radiometric indices, image classification

Procedia PDF Downloads 280
3473 Nitric Oxide: Role in Immunity and Therapeutics

Authors: Anusha Bhardwaj, Shekhar Shinde

Abstract:

Nitric oxide (NO•) has been documented in research papers as one of the most versatile player in the therapeutics. It is identified as a biological multifunctional messenger molecule which is synthesized by the action of nitric oxide synthase (NOS) enzyme from L-arginine. The protective and the toxic effect in conjunction form the complete picture of the biological function of nitric oxide in humans. The dual nature is because of various factors such as concentration of NO, the isoform of NOS involved, type of cells in which it is synthesized, reaction partners like proteins, reactive oxygen intermediates, prosthetic groups, thiols etc., availability of the substrate L-arginine, intracellular environment in which NO is produced and generation of guanosine 3, 5’- cyclic monophosphate (cGMP). Activation of NOS through infection or trauma leads to one or more systemic effects including enhanced immune activity against invading pathogens, vaso/bronchodilatation in the cardiovascular and respiratory systems and altered neurotransmission which can be protective or toxic. Hence, NO affects the balance between healthy signaling and neurodegeneration in the brain. In lungs, it has beneficial effects on the function of airways as a bronchodilator and acts as the neurotransmitter of bronchodilator nerves. Whereas, on the other hand, NO may have deleterious effects by amplifying the asthmatic inflammatory response and also act as a vasodilator in the airways by increasing plasma exudation. But NOS Inhibitors and NO donors hamper the signalling pathway and hence a therapeutic application of NO is compromised.

Keywords: nitric oxide, multifunctional, dual nature, therapeutic applications

Procedia PDF Downloads 498
3472 Governance and Public Policy: The Perception of Efficiency and Equility in Brazil and South Africa

Authors: Paulino V. Tavares, Ana L. Romao

Abstract:

Public governance represents an articulated arrangement, dynamic and interactive, present in the exercise of authority aimed at strengthening the decision-making procedure in public administration with transparency, accountability, responsiveness and capable of to emerge control and social empowerment, to pursue and achieve the objectives efficiently and with the effectiveness desired by the collective, respecting laws and providing social, institutional and economic equility in society. With this, using a multidimensional approach with the application of three questionnaires to a universe of twenty Counselors of the Courts of Auditors (Brazil), twenty professionals of public administration (Brazil), twenty Government/Provincial Counselors (South Africa), and twenty South African professionals of public administration, the present work aims to capture what is the perception about the efficiency and equility of public policies in Brazil and South Africa. With this, up until now, 30 responses have been obtained, and the results indicate that, in Brazil, 65% affirm due to the inefficiency of public policies, 70% point out that they do not believe in the equility of these same policies. In South Africa, the results indicate that 45% believe in government efficiency, and, with regard to the equility of public policies, 65% do not believe. In Brazil, the research reveals at least three reasons for this result, that is, lack of planning, lack of clear objectives of public policies, and lack of information on the part of society, while in South Africa, so far, research has not identified a specific reason for this result.

Keywords: efficiency, equility, governance, public policy

Procedia PDF Downloads 124
3471 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 99
3470 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University

Authors: Greg Turner, Bin Lu, Cheer-Sun Yang

Abstract:

As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.

Keywords: agile methods, mobile apps, software process model, waterfall model

Procedia PDF Downloads 409
3469 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 186
3468 Efficient Liquid Desiccant Regeneration for Fresh Air Dehumidification Application

Authors: M. V. Rane, Tareke Tekia

Abstract:

Fresh Air Dehumidifier having a capacity of 1 TR has been developed by Heat Pump Laboratory at IITB. This fresh air dehumidifier is based on potassium formate liquid desiccant. The regeneration of the liquid desiccant can be done in two stages. The first stage of liquid desiccant regeneration involves the boiling of liquid desiccant inside the evacuated glass type solar thermal collectors. Further regeneration of liquid desiccant can be achieved using Low Temperature Regenerator, LTR. The coefficient of performance of the fresh air dehumidifier greatly depends on the performance of the major components such as high temperature regenerator, low temperature regenerator, fresh air dehumidifier, and solution heat exchangers. High effectiveness solution heat exchanger has been developed and tested. The solution heat exchanger is based on a patented aluminium extrusion with special passage geometry to enhance the heat transfer rate. Effectiveness up to 90% was achieved. Before final testing of the dehumidifier, major components have been tested individually. Testing of the solar thermal collector as hot water and steam generator reveals that efficiency up to 55% can be achieved. In this paper, the development of 1 TR fresh air dehumidifier with special focus on solution heat exchangers and solar thermal collector performance is presented.

Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration, coefficient of performance

Procedia PDF Downloads 193
3467 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells

Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi

Abstract:

Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.

Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery

Procedia PDF Downloads 373
3466 Good Faith and Accession in the New Civil Code

Authors: Adelina Vrancianu

Abstract:

The problem of artificial real accession will be analyzed in this study both in terms of old and current Civil Code provisions and in terms of comparative law, European legal and Canadian systems. The current Civil Code from 2009 has brought new changes about the application and solutions regarding artificial real accession. The hypothesis in which a person is making works with his own materials on the real estate belonging to another person is developed and analyzed in detail from national and international point of view in relation with the good faith. The scope of this analysis is to point out what are the changes issued from case-law and which ones are new, inspired from other law systems in regard to the good/bad faith. The new civil code has promoted a definition for this notion. Is this definition a new one inspired from the comparative law or is it inspired from the case-law? Is it explained for every case scenario of accession or is a general notion? The study tries to respond to these questions and to present the new aspects in the area. has reserved a special place for the situation of execution of works with own materials exceeding the border with violation of another’s right of property, where the variety of solutions brings into discussion the case of expropriation for private interest. The new Civil Code is greatly influenced by the Civil Code from Quebec in comparison with the old code of French influence. The civil reform was needed and has brought into attention new solutions inspired from the Canadian system which has mitigated the permanent conflict between the constructor and the immovable owner.

Keywords: accession, good faith, new civil code, comparative law

Procedia PDF Downloads 462
3465 Financial Intermediation: A Transaction Two-Sided Market Model Approach

Authors: Carlo Gozzelino

Abstract:

Since the early 2000s, the phenomenon of the two-sided markets has been of growing interest in academic literature as such kind of markets differs by having cross-side network effects and same-side network effects characterizing the transactions, which make the analysis different when compared to traditional seller-buyer concept. Due to such externalities, pricing strategies can be based on subsidizing the participation of one side (i.e. considered key for the platform to attract the other side) while recovering the loss on the other side. In recent years, several players of the Italian financial intermediation industry moved from an integrated landscape (i.e. selling their own products) to an open one (i.e. intermediating third party products). According to academic literature such behavior can be interpreted as a merchant move towards a platform, operating in a two-sided market environment. While several application of two-sided market framework are available in academic literature, purpose of this paper is to use a two-sided market concept to suggest a new framework applied to financial intermediation. To this extent, a model is developed to show how competitors behave when vertically integrated and how the peculiarities of a two-sided market act as an incentive to disintegrate. Additionally, we show that when all players act as a platform, the dynamics of a two-sided markets can allow at least a Nash equilibrium to exist, in which platform of different sizes enjoy positive profit. Finally, empirical evidences from Italian market are given to sustain – and to challenge – this interpretation.

Keywords: financial intermediation, network externalities, two-sided markets, vertical differentiation

Procedia PDF Downloads 160
3464 Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: biosurfactants, Mannheimia haemolytica, biodegradability, Burkholderia cepacia, Serratia ficaria

Procedia PDF Downloads 257
3463 A Comparative Study between Behaviour Activation, Rational Emotive Behaviour Therapy and Waiting List Control for Major Depressive Disorder

Authors: Shweta Jha, Digambar Darekar, Krishna Kadam

Abstract:

Major Depressive Disorder (MDD) is one of the most common of psychiatric disorders. It has a wide range of symptoms, aetiologies and risk factors, and these reasons make MDD affect not only the primary patient, but also their family, caregivers and associates; by negatively impacting their self dignity, economic condition and self-confidence. Thus, it is important to help individuals suffering from MDD learn adaptive mechanism and deal effectively with their environment, with that aim this study focused on a comparative therapeutic intervention using Behaviour Activation (BA), Rational Emotive Behaviour Therapy (REBT) and Waiting list control (WLC) for management of MDD. This study apart from enhancing personal skills will also help us understand which therapeutic method would be more beneficial in treating and prolonging relapse in patients with MDD in Indian population. Fifteen individuals following application of inclusion and exclusion criteria were selected as study samples. They were randomly assigned to three treatment groups. Ten sessions of therapy, forty-five minutes each according to the proposed sessions plan were conducted for each group. The individuals selected as samples were re–assessed after 2 months and 6 months post intervention. The overall result showed that individuals treated with BA and REBT showed more improvement in comparison to those in WLC.

Keywords: behaviour activation, major depressive disorder, rational emotive behaviour therapy, therapeutic intervention

Procedia PDF Downloads 254
3462 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 138
3461 Synthesis of Amorphous Nanosilica Anode Material from Philippine Waste Rice Hull for Lithium Battery Application

Authors: Emie A. Salamangkit-Mirasol, Rinlee Butch M. Cervera

Abstract:

Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull. In addition, initial electrode performance of the synthesized samples as an anode material in Lithium Battery have been investigated.

Keywords: agricultural waste, anode material, nanosilica, rice hull

Procedia PDF Downloads 283
3460 Automated Irrigation System with Programmable Logic Controller and Photovoltaic Energy

Authors: J. P. Reges, L. C. S. Mazza, E. J. Braga, J. A. Bessa, A. R. Alexandria

Abstract:

This paper proposes the development of control and automation of irrigation system located sunflower harvest in the Teaching Unit, Research and Extension (UEPE), the Apodi Plateau in Limoeiro do Norte. The sunflower extraction, which in turn serves to get the produced oil from its seeds, animal feed, and is widely used in human food. Its nutritional potential is quite high what makes of foods produced from vegetal, very rich and healthy. The focus of research is to make the autonomous irrigation system sunflower crop from programmable logic control energized with alternative energy sources, solar photovoltaics. The application of automated irrigation system becomes interesting when it provides convenience and implements new forms of managements of the implementation of irrigated cropping systems. The intended use of automated addition to irrigation quality and consequently brings enormous improvement for production of small samples. Addition to applying the necessary and sufficient features of water management in irrigation systems, the system (PLC + actuators + Renewable Energy) will enable to manage the quantitative water required for each crop, and at the same time, insert the use of sources alternative energy. The entry of the automated collection will bring a new format, and in previous years, used the process of irrigation water wastage base and being the whole manual irrigation process.

Keywords: automation, control, sunflower, irrigation, programming, renewable energy

Procedia PDF Downloads 399
3459 Preparation of Bead-On-String Alginate/Soy Protein Isolated Nanofibers via Water-Based Electrospinning and Its Application for Drug Loading

Authors: Patcharakamon Nooeaid, Piyachat Chuysrinuan

Abstract:

Electrospun natural polymers-based nanofibers are one of the most interesting materials used in tissue engineering and drug delivery applications. Bead-on-string nanofibers have gained considerable interest for sustained drug release. Vancomycin was used as the model drug and sodium alginate (SA)/soy protein isolated (SPI) as the polymer blend to fabricate the bead-on-string nanofibers by aqueous-based electrospinning. The bead-on-string SA/SPI nanofibers were successfully fabricated by the addition of poly(ethylene oxide) (PEO) as a co-blending polymer. SA-PEO with mass ratio of 70/30 showed the best spinnability with continuous nanofibers without the occurrence of beads. Bead structure formed with the addition of SPI and bead number increased with increasing SPI content. The electrospinning of 80/20 SA-PEO/SPI was obtained as a great promising bead-on-string nanofibers for drug loading, while the solution of 50/50 was not able to obtain continuous fibers. In vitro release tests showed that a more sustainable release profile up to 14 days with less initial burst release on day 1 could be obtained from the bead-on-string fibers than from smooth fibers with uniform diameter. In addition, vancomycin-loaded beaded fibers inhibited the growth of Staphylococcus aureus (S. aureus) bacteria. Therefore, the SA-PEO/SPI nanofibers showed the potential to be used as biomaterials for tissue engineering and drug delivery.

Keywords: bead-on-string fibers, electrospinning, drug delivery, tissue engineering

Procedia PDF Downloads 334
3458 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine

Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef

Abstract:

Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.

Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation

Procedia PDF Downloads 198
3457 Isolation, Characterization and Application of Bacteriophages on the Biocontrol of Listeria monocytogenes in Soft Cheese

Authors: Vinicius Buccelli Ribeiro, Maria Teresa Destro, Mariza Landgraf

Abstract:

Bacteriophages are one of the most abundant replicating entities on Earth and can be found everywhere in which their hosts live and there are reports regarding isolation from different niches such as soil and foods. Since studies are moving forward with regard to biotechnology area, different research projects are being performed focusing on the phage technology and its use by the food industry. This study aimed to evaluate a cocktail (LP501) of phages isolated in Brazil for its lytic potential against Listeria monocytogenes. Three bacteriophages (LP05, LP12 and LP20) were isolated from soil samples and all of them showed 100% lysis against a panel of 10 L. monocytogenes strains representing different serotypes of this pathogen. A mix of L. monocytogenes 1/2a and 4b were inoculated in soft cheeses (approximately 105 cfu/cm2) with the phage cocktail added thereafter (1 x 109 PFU/cm2). Samples were analyzed immediately and then stored at 10°C for ten days. At 30 min post-infection, the cocktail reduced L. monocytogenes counts approximately 1.5 logs, compared to controls without bacteriophage. The treatment produced a statistically significant decrease in the counts of viable cells (p < 0.05) and in all assays performed we observed a decrease of up to 4 logs of L. monocytogenes. This study will make available to the international community behavioral and molecular data regarding bacteriophages present in soil samples in Brazil. Furthermore, there is the possibility to apply this new cocktail of phages in different food products to combat L. monocytogenes.

Keywords: bacteriophages, biocontrol, listeria monocytogenes, soft cheese

Procedia PDF Downloads 362
3456 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 94