Search results for: surface features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10144

Search results for: surface features

5464 Application of Response Surface Methodology to Assess the Impact of Aqueous and Particulate Phosphorous on Diazotrophic and Non-Diazotrophic Cyanobacteria Associated with Harmful Algal Blooms

Authors: Elizabeth Crafton, Donald Ott, Teresa Cutright

Abstract:

Harmful algal blooms (HABs), more notably cyanobacteria-dominated HABs, compromise water quality, jeopardize access to drinking water and are a risk to public health and safety. HABs are representative of ecosystem imbalance largely caused by environmental changes, such as eutrophication, that are associated with the globally expanding human population. Cyanobacteria-dominated HABs are anticipated to increase in frequency, magnitude, and are predicted to plague a larger geographical area as a result of climate change. The weather pattern is important as storm-driven, pulse-input of nutrients have been correlated to cyanobacteria-dominated HABs. The mobilization of aqueous and particulate nutrients and the response of the phytoplankton community is an important relationship in this complex phenomenon. This relationship is most apparent in high-impact areas of adequate sunlight, > 20ᵒC, excessive nutrients and quiescent water that corresponds to ideal growth of HABs. Typically the impact of particulate phosphorus is dismissed as an insignificant contribution; which is true for areas that are not considered high-impact. The objective of this study was to assess the impact of a simulated storm-driven, pulse-input of reactive phosphorus and the response of three different cyanobacteria assemblages (~5,000 cells/mL). The aqueous and particulate sources of phosphorus and changes in HAB were tracked weekly for 4 weeks. The first cyanobacteria composition consisted of Planktothrix sp., Microcystis sp., Aphanizomenon sp., and Anabaena sp., with 70% of the total population being non-diazotrophic and 30% being diazotrophic. The second was comprised of Anabaena sp., Planktothrix sp., and Microcystis sp., with 87% diazotrophic and 13% non-diazotrophic. The third composition has yet to be determined as these experiments are ongoing. Preliminary results suggest that both aqueous and particulate sources are contributors of total reactive phosphorus in high-impact areas. The results further highlight shifts in the cyanobacteria assemblage after the simulated pulse-input. In the controls, the reactors dosed with aqueous reactive phosphorus maintained a constant concentration for the duration of the experiment; whereas, the reactors that were dosed with aqueous reactive phosphorus and contained soil decreased from 1.73 mg/L to 0.25 mg/L of reactive phosphorus from time zero to 7 days; this was higher than the blank (0.11 mg/L). Suggesting a binding of aqueous reactive phosphorus to sediment, which is further supported by the positive correlation observed between total reactive phosphorus concentration and turbidity. The experiments are nearly completed and a full statistical analysis will be completed of the results prior to the conference.

Keywords: Anabaena, cyanobacteria, harmful algal blooms, Microcystis, phosphorous, response surface methodology

Procedia PDF Downloads 167
5463 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit

Abstract:

In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.

Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes

Procedia PDF Downloads 251
5462 Computational Investigation of Gas-Solid Flow in High Pressure High Temperature Filter

Authors: M. H. Alhajeri, Hamad M. Alhajeri, A. H. Alenezi

Abstract:

This paper reports a Computational Fluid Dynamics (CFD) investigation for a high-temperature high-pressure filtration (ceramic candle filter). However, parallel flow to the filter is considered in this study. Different face (filtration) velocities are examined using the CFD code, FLUENT. Different sizes of particles are tracked through the domain to find the height at which the particles will impinge on the filter surface. Furthermore, particle distribution around the filter (or filter cake) is studied to design efficient cleaning mechanisms. Gravity effect to the particles with various inlet velocities and pressure drop are both considered. In the CFD study, it is found that the gravity influence should not be ignored if the particle sizes exceed 1 micron.

Keywords: fluid flow, CFD, filtration, HTHP

Procedia PDF Downloads 204
5461 Adjuvant Effect and Mineral Addition in Aggressive Environments on the Sustainability of Using Local Materials Concretes

Authors: M. Belouadah, S. Rahmouni, N. Teballe

Abstract:

The durability of concrete is not one of its features, but its response to service loads and environmental conditions. Thus, the durability of concrete depends on a variety of material characteristics, but also the aggressiveness of the environment. Much durability problems encountered in tropical regions (region M'sila) due to the presence of chlorides and sulfates (in the ground or in the aggregate) with the additional aggravation of the effect of hot weather and arid. This lack of sustainability has a direct influence on the structure of the building and can lead to the complete deterioration of many buildings. The characteristics of the nature of fillers are evaluated based on the degree of aggressiveness of the environment considering as a means of characterization: mechanical strength, porosity. Specimens will be exposed to different storage media chemically aggressive drinking water, salts and sulfates (sodium chloride, MgSO4), solutions are not renewed or PH control solutions. The parameters taken into account are: age, the nature and degree of aggressiveness of the environment conservation, the incorporation of adjuvant type superplasticizer dosage and mineral additives.

Keywords: ordinary concretes, marble powder fillers, adjuvant, strength

Procedia PDF Downloads 274
5460 Multi-Spectral Medical Images Enhancement Using a Weber’s law

Authors: Muna F. Al-Sammaraie

Abstract:

The aim of this research is to present a multi spectral image enhancement methods used to achieve highly real digital image populates only a small portion of the available range of digital values. Also, a quantitative measure of image enhancement is presented. This measure is related with concepts of the Webers Low of the human visual system. For decades, several image enhancement techniques have been proposed. Although most techniques require profuse amount of advance and critical steps, the result for the perceive image are not as satisfied. This study involves changing the original values so that more of the available range is used; then increases the contrast between features and their backgrounds. It consists of reading the binary image on the basis of pixels taking them byte-wise and displaying it, calculating the statistics of an image, automatically enhancing the color of the image based on statistics calculation using algorithms and working with RGB color bands. Finally, the enhanced image is displayed along with image histogram. A number of experimental results illustrated the performance of these algorithms. Particularly the quantitative measure has helped to select optimal processing parameters: the best parameters and transform.

Keywords: image enhancement, multi-spectral, RGB, histogram

Procedia PDF Downloads 328
5459 Identification of CLV for Online Shoppers Using RFM Matrix: A Case Based on Features of B2C Architecture

Authors: Riktesh Srivastava

Abstract:

Online Shopping have established an astonishing evolution in the last few years. And it is now apparent that B2C architecture is becoming progressively imperative channel for even traditional brick and mortar type traders as well. In this completion knowing customers and predicting behavior are extremely important. More important, when any customer logs onto the B2C architecture, the traces of their buying patterns can be stored and used for future predictions. Such a prediction is called Customer Lifetime Value (CLV). Earlier, we used Net Present Value to do so, however, it ignores two important aspects of B2C architecture, “market risks” and “big amount of customer data”. Now, we use RFM- Recency, Frequency and Monetary Value to estimate the CLV, and as the term exemplifies, market risks, is well sheltered. Big Data Analysis is also roofed in RFM, which gives real exploration of the Big Data and lead to a better estimation for future cash flow from customers. In the present paper, 6 factors (collected from varied sources) are used to determine as to what attracts the customers to the B2C architecture. For these 6 factors, RFM is computed for 3 years (2013, 2014 and 2015) respectively. CLV and Revenue are the two parameters defined using RFM analysis, which gives the clear picture of the future predictions.

Keywords: CLV, RFM, revenue, recency, frequency, monetary value

Procedia PDF Downloads 220
5458 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis

Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh

Abstract:

This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe₃O₄) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.

Keywords: LDL surface concentration (LSC), magnetic field, computational fluid dynamics, porous wall

Procedia PDF Downloads 408
5457 Formaldehyde Degradation from Indoor Air by Encapsulated Microbial Cells

Authors: C. C. Castro, T. Senechal, D. Lahem, A. L. Hantson

Abstract:

Formaldehyde is one of the most representative volatile organic compounds present in the indoor air of residential units and workplaces. Increased attention has been given to this toxic compound because of its carcinogenic effect in health. Biological or enzymatic transformation is being explored to degrade this pollutant. Pseudomonas putida is a bacteria able to synthesize formaldehyde dehydrogenase, an enzyme known to use formaldehyde as a substrate and transform it into less toxic compounds. The immobilization of bacterial cells in the surface of different supports through spraying or dip-coating is herein proposed. The determination of the enzymatic activity on the coated surfaces was performed as well as the study of its effect on formaldehyde degradation in an isolated chamber. Results show that the incorporation of microbial cells able to synthesize depolluting enzymes can be an innovative, low-cost, effective and environmentally friendly solution for indoor air depollution.

Keywords: cells encapsulation, formaldehyde, formaldehyde dehydrogenase, indoor air depollution

Procedia PDF Downloads 177
5456 Nickel and Chromium Distributions in Soil and Plant Influenced by Geogenic Sources

Authors: Mohamad Sakizadeh, Fatemeh Mehrabi Sharafabadi, Hadi Ghorbani

Abstract:

Concentrations of Cr and Ni in 97 plant samples (belonged to eight different plant species) and the associated soil groups were considered in this study. The amounts of Ni in soil groups fluctuated between 26.8 and 36.8 mgkg⁻¹ whereas the related levels of chromium ranged from 67.7 to 94.3mgkg⁻¹. The index of geoaccumulation indicated that 87 percents of the studied soils for chromium and 98.8 percents for nickel are located in uncontaminated zone. The results of Mann-Whitney U-test proved that agricultural practices have not significantly influenced the values of Ni and Cr. In addition, tillage had also little impact on the Ni and Cr transfer in the surface soil. Ni showed higher accumulation and soil-to-plant transfer factor compared with that of chromium in the studied plants. There was a high similarity between the accumulation pattern of Cr and Fe in most of the plant species.

Keywords: bioconcentration factor, chromium, geoaccumulation index, nickel

Procedia PDF Downloads 358
5455 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 141
5454 A Research on Inference from Multiple Distance Variables in Hedonic Regression Focus on Three Variables

Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro

Abstract:

In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.

Keywords: hedonic regression, urban node, distance variables, multicollinerity, collinearity

Procedia PDF Downloads 465
5453 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor

Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi

Abstract:

Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).

Keywords: adsorption, electrochemical oxidation, metals, SBR

Procedia PDF Downloads 210
5452 New Quinazoline Derivative Induce Cytotoxic Effect against Mcf-7 Human Breast Cancer Cell

Authors: Maryam Zahedi Fard, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla

Abstract:

New quinazoline schiff base 3-(5-bromo-2-hydroxy-3-methoxybenzylideneamino)-2-(5-bromo-2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one was investigated for anticancer activity against MCF-7 human breast cancer cell line with involved mechanism of apoptosis. The compound demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41 ± 0.34, after 72 hours of treatment. Morphological apoptotic features in treated MCF-7 cells were observed by AO/PI staining. Furthermore, treated MCF-7 cells subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity test demonstrated the nontoxic nature of the compound in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potent candidate for further in vivo and clinical breast cancer studies.

Keywords: antiproliferative effect, MCF-7 human breast cancer cell line, apoptosis, caspases

Procedia PDF Downloads 532
5451 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste

Authors: Maciej Szelag

Abstract:

The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.

Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS

Procedia PDF Downloads 356
5450 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
5449 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution

Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim

Abstract:

Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.

Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion

Procedia PDF Downloads 659
5448 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 223
5447 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures

Authors: José Luis Carrillo-Medina, Roberto Latorre

Abstract:

Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.

Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network

Procedia PDF Downloads 492
5446 Comparison of Silica-Filled Rubber Compound Prepared from Unmodified and Modified Silica

Authors: Thirawudh Pongprayoon, Watcharin Rassamee

Abstract:

Silica-filled natural rubber compounds were prepared from unmodified and surface-modified silica. The modified silica was coated by ultrathin film of polyisoprene by admicellar polymerization. FTIR and SEM were applied to characterize the modified silica. The cure, mechanic, and dynamics properties were investigated with the comparison of the compounds. Cure characterization of modified silica rubber compound was shorter than that of unmodified silica compound. Strength and abrasion resistance of modified silica compound were better than those of unmodified silica rubber compound. Wet grip and rolling resistance analyzed by DMA from tanδ at 0°C and 60°C using 5 Hz were also better than those of unmodified silica rubber compound.

Keywords: silica, admicellar polymerization, rubber compounds, mechanical properties, dynamic properties

Procedia PDF Downloads 350
5445 Conserving Naubad Karez Cultural Landscape – a Multi-Criteria Approach to Urban Planning

Authors: Valliyil Govindankutty

Abstract:

Human civilizations across the globe stand testimony to water being one of the major interaction points with nature. The interactions with nature especially in drier areas revolve around water, be it harnessing, transporting, usage and management. Many ingenious ideas were born, nurtured and developed for harnessing, transporting, storing and distributing water through the areas in the drier parts of the world. Many methods of water extraction, collection and management could be found throughout the world, some of which are associated with efficient, sustained use of surface water, ground water and rain water. Karez is one such ingenious method of collection, transportation, storage and distribution of ground water. Most of the Karez systems in India were developed during reign of Muslim dynasties with ruling class descending from Persia or having influential connections and inviting expert engineers from there. Karez have strongly influenced the village socio-economic organisations due to multitude of uses they were brought into. These are masterpiece engineering structures to collect groundwater and direct it, through a subsurface gallery with a gradual slope, to surface canals that provide water to settlements and agricultural fields. This ingenious technology, karez was result of need for harnessing groundwater in arid areas like that of Bidar. The study views this traditional technology in historical perspective linked to sustainable utilization and management of groundwater and above all the immediate environment. The karez system is one of the best available demonstration of human ingenuity and adaptability to situations and locations of water scarcity. Bidar, capital of erstwhile Bahmani sultanate with a history of more than 700 years or more is one of the heritage cities of present Karnataka State. The unique water systems of Bidar along with other historic entities have been listed under World Heritage Watch List by World Monument Fund. The Historical or cultural landscape in Bidar is very closely associated to the natural resources of the region, Karez systems being one of the best examples. The Karez systems were the lifeline of Bidar’s historical period providing potable water, fulfilling domestic and irrigation needs, both within and outside the fort enclosures. These systems are still functional, but under great pressure and threat of rapid and unplanned urbanisation. The change in land use and fragmentation of land are already paving way for irreversible modification of the karez cultural and geographic landscape. The Paper discusses the significance of character defining elements of Naubad Karez Landscape, highlights the importance of conserving cultural heritage and presents a geographical approach to its revival.

Keywords: Karez, groundwater, traditional water harvesting, cultural heritage landscape, urban planning

Procedia PDF Downloads 494
5444 The Effects of Above-Average Precipitation after Extended Drought on Phytoplankton in Southern California Surface Water Reservoirs

Authors: Margaret K. Spoo-Chupka

Abstract:

The Metropolitan Water District of Southern California (MWDSC) manages surface water reservoirs that are a source of drinking water for more than 19 million people in Southern California. These reservoirs experience periodic planktonic cyanobacteria blooms that can impact water quality. MWDSC imports water from two sources – the Colorado River (CR) and the State Water Project (SWP). The SWP brings supplies from the Sacramento-San Joaquin Delta that are characterized as having higher nutrients than CR water. Above average precipitation in 2017 after five years of drought allowed the majority of the reservoirs to fill. Phytoplankton was analyzed during the drought and after the drought at three reservoirs: Diamond Valley Lake (DVL), which receives SWP water exclusively, Lake Skinner, which can receive a blend of SWP and CR water, and Lake Mathews, which generally receives only CR water. DVL experienced a significant increase in water elevation in 2017 due to large SWP inflows, and there were no significant changes to total phytoplankton biomass, Shannon-Wiener diversity of the phytoplankton, or cyanobacteria biomass in 2017 compared to previous drought years despite the higher nutrient loads. The biomass of cyanobacteria that could potentially impact DVL water quality (Microcystis spp., Aphanizomenon flos-aquae, Dolichospermum spp., and Limnoraphis birgei) did not differ significantly between the heavy precipitation year and drought years. Compared to the other reservoirs, DVL generally has the highest concentration of cyanobacteria due to the water supply having greater nutrients. Lake Mathews’ water levels were similar in drought and wet years due to a reliable supply of CR water and there were no significant changes in the total phytoplankton biomass, phytoplankton diversity, or cyanobacteria biomass in 2017 compared to previous drought years. The biomass of cyanobacteria that could potentially impact water quality at Lake Mathews (L. birgei and Microcystis spp.) did not differ significantly between 2017 and previous drought years. Lake Mathews generally had the lowest cyanobacteria biomass due to the water supply having lower nutrients. The CR supplied most of the water to Lake Skinner during drought years, while the SWP was the primary source during 2017. This change in water source resulted in a significant increase in phytoplankton biomass in 2017, no significant change in diversity, and a significant increase in cyanobacteria biomass. Cyanobacteria that could potentially impact water quality at Skinner included: Microcystis spp., Dolichospermum spp., and A.flos-aquae. There was no significant difference in Microcystis spp. biomass in 2017 compared to previous drought years, but biomass of Dolichospermum spp. and A.flos-aquae were significantly greater in 2017 compared to previous drought years. Dolichospermum sp. and A. flos-aquae are two cyanobacteria that are more sensitive to nutrients than Microcystis spp., which are more sensitive to temperature. Patterns in problem cyanobacteria abundance among Southern California reservoirs as a result of above-average precipitation after more than five years of drought were most closely related to nutrient loading.

Keywords: drought, reservoirs, cyanobacteria, and phytoplankton ecology

Procedia PDF Downloads 286
5443 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 149
5442 Comparative Analysis of Automation Testing Tools

Authors: Amit Bhanushali

Abstract:

In the ever-changing landscape of software development, automated software testing has emerged as a critical component of the Software Development Life Cycle (SDLC). This research undertakes a comparative study of three major automated testing tools -UFT, Selenium, and RPA- evaluating them on usability, maintenance, and effectiveness. Leveraging existing JAVA-based applications as test cases, the study aims to guide testers in selecting the optimal tool for specific applications. By exploring key features such as source and licensing, testing expenses, object repositories, usability, and language support, the research provides practical insights into UFT, Selenium, and RPA. Acknowledging the pivotal role of these tools in streamlining testing processes amid time constraints and resource limitations, the study assists professionals in making informed choices aligned with their organizational needs.

Keywords: software testing tools, software development lifecycle (SDLC), test automation frameworks, automated software, JAVA-based, UFT, selenium and RPA (robotic process automation), source and licensing, object repository

Procedia PDF Downloads 98
5441 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 399
5440 Study of the Possibility of Adsorption of Heavy Metal Ions on the Surface of Engineered Nanoparticles

Authors: Antonina A. Shumakova, Sergey A. Khotimchenko

Abstract:

The relevance of research is associated, on the one hand, with an ever-increasing volume of production and the expansion of the scope of application of engineered nanomaterials (ENMs), and on the other hand, with the lack of sufficient scientific information on the nature of the interactions of nanoparticles (NPs) with components of biogenic and abiogenic origin. In particular, studying the effect of ENMs (TiO2 NPs, SiO2 NPs, Al2O3 NPs, fullerenol) on the toxicometric characteristics of common contaminants such as lead and cadmium is an important hygienic task, given the high probability of their joint presence in food products. Data were obtained characterizing a multidirectional change in the toxicity of model toxicants when they are co-administered with various types of ENMs. One explanation for this fact is the difference in the adsorption capacity of ENMs, which was further studied in in vitro studies. For this, a method was proposed based on in vitro modeling of conditions simulating the environment of the small intestine. It should be noted that the obtained data are in good agreement with the results of in vivo experiments: - with the combined administration of lead and TiO2 NPs, there were no significant changes in the accumulation of lead in rat liver; in other organs (kidneys, spleen, testes and brain), the lead content was lower than in animals of the control group; - studying the combined effect of lead and Al2O3 NPs, a multiple and significant increase in the accumulation of lead in rat liver was observed with an increase in the dose of Al2O3 NPs. For other organs, the introduction of various doses of Al2O3 NPs did not significantly affect the bioaccumulation of lead; - with the combined administration of lead and SiO2 NPs in different doses, there was no increase in lead accumulation in all studied organs. Based on the data obtained, it can be assumed that at least three scenarios of the combined effects of ENMs and chemical contaminants on the body: - ENMs quite firmly bind contaminants in the gastrointestinal tract and such a complex becomes inaccessible (or inaccessible) for absorption; in this case, it can be expected that the toxicity of both ENMs and contaminants will decrease; - the complex formed in the gastrointestinal tract has partial solubility and can penetrate biological membranes and / or physiological barriers of the body; in this case, ENMs can play the role of a kind of conductor for contaminants and, thus, their penetration into the internal environment of the body increases, thereby increasing the toxicity of contaminants; - ENMs and contaminants do not interact with each other in any way, therefore the toxicity of each of them is determined only by its quantity and does not depend on the quantity of another component. Authors hypothesized that the degree of adsorption of various elements on the surface of ENMs may be a unique characteristic of their action, allowing a more accurate understanding of the processes occurring in a living organism.

Keywords: absorption, cadmium, engineered nanomaterials, lead

Procedia PDF Downloads 87
5439 Transient/Steady Natural Convective Flow of Reactive Viscous Fluid in Vertical Porous Pipe

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This paper presents the effects of suction/injection of transient/steady natural convection flow of reactive viscous fluid in a vertical porous pipe. The mathematical model capturing the time dependent flow of viscous reactive fluid is solved using implicit finite difference method while the corresponding steady state model is solved using regular perturbation technique. Results of analytical and numerical solutions are reported for various parametric conditions to illustrate special features of the solutions. The coefficient of skin friction and rate of heat transfer are obtained and illustrated graphically. The numerical solution is shown to be in excellent agreement with the closed form analytical solution. It is interesting to note that time required to reach steady state is higher in case of injection in comparison to suction.

Keywords: porous pipe, reactive viscous fluid, transient natural-convective flow, analytical solution

Procedia PDF Downloads 297
5438 Design and Performance Optimization of Isostatic Pressing Working Cylinder Automatic Exhaust Valve

Authors: Wei-Zhao, Yannian-Bao, Xing-Fan, Lei-Cao

Abstract:

An isostatic pressing working cylinder automatic exhaust valve is designed. The finite element models of valve core and valve body under ultra-high pressure work environment are built to study the influence of interact of valve core and valve body to sealing performance. The contact stresses of metal sealing surface with different sizes are calculated and the automatic exhaust valve is optimized. The result of simulation and experiment shows that the sealing of optimized exhaust valve is more reliable and the service life is greatly improved. The optimized exhaust valve has been used in the warm isostatic pressing equipment.

Keywords: exhaust valve, sealing, ultra-high pressure, isostatic pressing

Procedia PDF Downloads 307
5437 Solid Particles Transport and Deposition Prediction in a Turbulent Impinging Jet Using the Lattice Boltzmann Method and a Probabilistic Model on GPU

Authors: Ali Abdul Kadhim, Fue Lien

Abstract:

Solid particle distribution on an impingement surface has been simulated utilizing a graphical processing unit (GPU). In-house computational fluid dynamics (CFD) code has been developed to investigate a 3D turbulent impinging jet using the lattice Boltzmann method (LBM) in conjunction with large eddy simulation (LES) and the multiple relaxation time (MRT) models. This paper proposed an improvement in the LBM-cellular automata (LBM-CA) probabilistic method. In the current model, the fluid flow utilizes the D3Q19 lattice, while the particle model employs the D3Q27 lattice. The particle numbers are defined at the same regular LBM nodes, and transport of particles from one node to its neighboring nodes are determined in accordance with the particle bulk density and velocity by considering all the external forces. The previous models distribute particles at each time step without considering the local velocity and the number of particles at each node. The present model overcomes the deficiencies of the previous LBM-CA models and, therefore, can better capture the dynamic interaction between particles and the surrounding turbulent flow field. Despite the increasing popularity of LBM-MRT-CA model in simulating complex multiphase fluid flows, this approach is still expensive in term of memory size and computational time required to perform 3D simulations. To improve the throughput of each simulation, a single GeForce GTX TITAN X GPU is used in the present work. The CUDA parallel programming platform and the CuRAND library are utilized to form an efficient LBM-CA algorithm. The methodology was first validated against a benchmark test case involving particle deposition on a square cylinder confined in a duct. The flow was unsteady and laminar at Re=200 (Re is the Reynolds number), and simulations were conducted for different Stokes numbers. The present LBM solutions agree well with other results available in the open literature. The GPU code was then used to simulate the particle transport and deposition in a turbulent impinging jet at Re=10,000. The simulations were conducted for L/D=2,4 and 6, where L is the nozzle-to-surface distance and D is the jet diameter. The effect of changing the Stokes number on the particle deposition profile was studied at different L/D ratios. For comparative studies, another in-house serial CPU code was also developed, coupling LBM with the classical Lagrangian particle dispersion model. Agreement between results obtained with LBM-CA and LBM-Lagrangian models and the experimental data is generally good. The present GPU approach achieves a speedup ratio of about 350 against the serial code running on a single CPU.

Keywords: CUDA, GPU parallel programming, LES, lattice Boltzmann method, MRT, multi-phase flow, probabilistic model

Procedia PDF Downloads 207
5436 High Frequency Sonochemistry: A New Field of Cavitation‐Free Acoustic Materials Synthesis and Manipulation

Authors: Amgad Rezk, Heba Ahmed, Leslie Yeo

Abstract:

Ultrasound presents a powerful means for material synthesis. In this talk, we showcase a new field demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (kHz and up to ~2 MHz) for crystalising and manipulating a variety of nanoscale materials. At these frequencies, cavitation—which underpins most sonochemical processes—is largely absent, suggesting that altogether fundamentally different mechanisms are at dominant. Examples include the crystallization of highly oriented structures, quasi-2D metal-organic frameworks and nanocomposites. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with high-frequency surface vibration gives rise to molecular ordering and assembly on the nano and microscale.

Keywords: high-frequency acoustics, microfluidics, crystallisation, composite nanomaterials

Procedia PDF Downloads 121
5435 Synthesis and Characterization of Magnesium and Strontium Doped Sulphate-Hydroxyapatite

Authors: Ammar Z. Alshemary, Yi-Fan Goh, Rafaqat Hussain

Abstract:

Magnesium (Mg2+), strontium (Sr2+) and sulphate ions (SO42-) were successfully substituted into hydroxyapatite (Ca10-x-y MgxSry(PO4)6-z(SO4)zOH2-z) structure through ion exchange process at cationic and anionic sites. Mg2+and Sr2+ ions concentrations were varied between (0.00-0.10), keeping concentration of SO42- ions at z=0.05. [Mg (NO3)2], [Sr (NO3)2] and (Na2SO4) were used as Mg2+, Sr2+, and SO42- sources respectively. The synthesized white precipitate were subjected to heat treatment at 500ºC and finally characterized by X-ray diffraction (XRD) and Fourier Transform infra-red spectroscopy (FTIR). The results showed that the substitution of Mg2+, Sr2+ and SO42- ions into the HA lattice resulted in an increase in the broadness and reduction of XRD peaks. This confirmed that the crystallinity was reduced due to the substitution of ions. Similarly, FTIR result showed the effect of substitution on phosphate bands as well as exchange of hydroxyl group by SO42- ions to balance the charges on HA surface.

Keywords: hydroxyapatite, substitution, characterization, XRD, FTIR

Procedia PDF Downloads 443