Search results for: accuracy improvement
3218 Surface Engineering and Characterization of S-Phase Formed in AISI 304 By Low-Temperature Nitrocarburizing
Authors: Jeet Vijay Sah, Alphonsa Joseph, Pravin Kumari Dwivedi, Ghanshyam Jhala, Subroto Mukherjee
Abstract:
AISI 304 is known for its corrosion resistance which comes from Cr that forms passive Cr₂O₃ on the surface. But its poor hardness makes it unsuitable for applications where the steel also requires high wear resistance. This can be improved by surface hardening using nitrocarburizing processes, which form ε-Fe2-3N, γ’-Fe4N, nitrides, and carbides of Cr and Fe on the surface and subsurface. These formed phases give the surface greater hardness, but the corrosion resistance drops because of the lack of Cr2O3 passivation as a result. To overcome this problem, plasma nitrocarburizing processes are being developed where the process temperatures are kept below 723 K to avoid Cr-N precipitation. In the presented work, low-temperature pulsed-DC plasma nitrocarburizing utilizing a discharge of N₂-H₂-C₂H₂ at 500 Pa with varying N₂:H₂ ratios was conducted on AISI 304 samples at 673 K. The process durations were also varied, and the samples were characterized by microindentation using Vicker’s hardness tester, corrosion resistances were established from electrochemical impedance studies, and corrosion potentials and corrosion currents were obtained by potentiodynamic polarization testing. XRD revealed S-phase, which is a supersaturated solid solution of N and C in the γ phase. The S-phase was observed to be composed of the expanded phases of γ; γN, γC, and γ’N and ε’N phases. Significant improvement in surface hardness was achieved after every process, which is attributed to the S-phase. Corrosion resistance was also found to improve after the processes. The samples were also characterized by XPS, SEM, and GDOES.Keywords: AISI 304, surface engineering, nitrocarburizing, S-phase
Procedia PDF Downloads 1093217 Customized Design of Amorphous Solids by Generative Deep Learning
Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang
Abstract:
The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.Keywords: metallic glass, artificial intelligence, mechanical property, automated generation
Procedia PDF Downloads 653216 Comparing Forecasting Performances of the Bass Diffusion Model and Time Series Methods for Sales of Electric Vehicles
Authors: Andreas Gohs, Reinhold Kosfeld
Abstract:
This study should be of interest for practitioners who want to predict precisely the sales numbers of vehicles equipped with an innovative propulsion technology as well as for researchers interested in applied (regional) time series analysis. The study is based on the numbers of new registrations of pure electric and hybrid cars. Methods of time series analysis like ARIMA are compared with the Bass Diffusion-model concerning their forecasting performances for new registrations in Germany at the national and federal state levels. Especially it is investigated if the additional information content from regional data increases the forecasting accuracy for the national level by adding predictions for the federal states. Results of parameters of the Bass Diffusion Model estimated for Germany and its sixteen federal states are reported. While the focus of this research is on the German market, estimation results are also provided for selected European and other countries. Concerning Bass-parameters and forecasting performances, we get very different results for Germany's federal states and the member states of the European Union. This corresponds to differences across the EU-member states in the adoption process of this innovative technology. Concerning the German market, the adoption is rather proceeded in southern Germany and stays behind in Eastern Germany except for Berlin.Keywords: bass diffusion model, electric vehicles, forecasting performance, market diffusion
Procedia PDF Downloads 1733215 Recommendations Using Online Water Quality Sensors for Chlorinated Drinking Water Monitoring at Drinking Water Distribution Systems Exposed to Glyphosate
Authors: Angela Maria Fasnacht
Abstract:
Detection of anomalies due to contaminants’ presence, also known as early detection systems in water treatment plants, has become a critical point that deserves an in-depth study for their improvement and adaptation to current requirements. The design of these systems requires a detailed analysis and processing of the data in real-time, so it is necessary to apply various statistical methods appropriate to the data generated, such as Spearman’s Correlation, Factor Analysis, Cross-Correlation, and k-fold Cross-validation. Statistical analysis and methods allow the evaluation of large data sets to model the behavior of variables; in this sense, statistical treatment or analysis could be considered a vital step to be able to develop advanced models focused on machine learning that allows optimized data management in real-time, applied to early detection systems in water treatment processes. These techniques facilitate the development of new technologies used in advanced sensors. In this work, these methods were applied to identify the possible correlations between the measured parameters and the presence of the glyphosate contaminant in the single-pass system. The interaction between the initial concentration of glyphosate and the location of the sensors on the reading of the reported parameters was studied.Keywords: glyphosate, emergent contaminants, machine learning, probes, sensors, predictive
Procedia PDF Downloads 1273214 A Fast Calculation Approach for Position Identification in a Distance Space
Authors: Dawei Cai, Yuya Tokuda
Abstract:
The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device
Procedia PDF Downloads 1763213 Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM
Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili
Abstract:
As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation.Keywords: new method AGM, sets of coupled nonlinear equations at engineering field, waves equations, integro-differential, fluid and thermal
Procedia PDF Downloads 5523212 Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique
Authors: Adinarayana Gorajana, Venkata Srikanth Meka, Sanjay Garg, Lim Sue May
Abstract:
This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system.Keywords: docetaxel, freeze drying, soluplus, solid dispersion technique
Procedia PDF Downloads 5073211 A Study on the Failure Modes of Steel Moment Frame in Post-Earthquake Fire Using Coupled Mechanical-Thermal Analysis
Authors: Ehsan Asgari, Meisam Afazeli, Nezhla Attarchian
Abstract:
Post-earthquake fire is considered as a major threat in seismic areas. After an earthquake, fire is possible in structures. In this research, the effect of post-earthquake fire on steel moment frames with and without fireproofing coating is investigated. For this purpose, finite element method is employed. For the verification of finite element results, the results of an experimental study carried out by previous researchers are used, and the predicted FE results are compared with the test results, and good agreement is observed. After ensuring the accuracy of the predictions of finite element models, the effect of post-earthquake fire on the frames is investigated taking into account the parameters including the presence or absence of fire protection, frame design assumptions, earthquake type and different fire scenario. Ordinary fire and post-earthquake fire effect on the frames is also studied. The plastic hinges induced by earthquake in the structure are determined in the beam to the column connection and in panel zone. These areas should be accurately considered when providing fireproofing coatings. The results of the study show that the occurrence of fire beside corner columns is the most damaging scenario that results in progressive collapse of structure. It was also concluded that the behavior of structure in fire after a strong ground motion is significantly different from that in a normal fire.Keywords: post earthquake fire, moment frame, finite element simulation, coupled temperature-displacement analysis, fire scenario
Procedia PDF Downloads 1563210 Real-Time Gesture Recognition System Using Microsoft Kinect
Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar
Abstract:
Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language
Procedia PDF Downloads 3103209 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 3643208 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria
Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur
Abstract:
The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria
Procedia PDF Downloads 3813207 A Comparative Study between Behaviour Activation, Rational Emotive Behaviour Therapy and Waiting List Control for Major Depressive Disorder
Authors: Shweta Jha, Digambar Darekar, Krishna Kadam
Abstract:
Major Depressive Disorder (MDD) is one of the most common of psychiatric disorders. It has a wide range of symptoms, aetiologies and risk factors, and these reasons make MDD affect not only the primary patient, but also their family, caregivers and associates; by negatively impacting their self dignity, economic condition and self-confidence. Thus, it is important to help individuals suffering from MDD learn adaptive mechanism and deal effectively with their environment, with that aim this study focused on a comparative therapeutic intervention using Behaviour Activation (BA), Rational Emotive Behaviour Therapy (REBT) and Waiting list control (WLC) for management of MDD. This study apart from enhancing personal skills will also help us understand which therapeutic method would be more beneficial in treating and prolonging relapse in patients with MDD in Indian population. Fifteen individuals following application of inclusion and exclusion criteria were selected as study samples. They were randomly assigned to three treatment groups. Ten sessions of therapy, forty-five minutes each according to the proposed sessions plan were conducted for each group. The individuals selected as samples were re–assessed after 2 months and 6 months post intervention. The overall result showed that individuals treated with BA and REBT showed more improvement in comparison to those in WLC.Keywords: behaviour activation, major depressive disorder, rational emotive behaviour therapy, therapeutic intervention
Procedia PDF Downloads 2583206 A Large Language Model-Driven Method for Automated Building Energy Model Generation
Authors: Yake Zhang, Peng Xu
Abstract:
The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.Keywords: artificial intelligence, building energy modelling, building simulation, large language model
Procedia PDF Downloads 353205 Automated Irrigation System with Programmable Logic Controller and Photovoltaic Energy
Authors: J. P. Reges, L. C. S. Mazza, E. J. Braga, J. A. Bessa, A. R. Alexandria
Abstract:
This paper proposes the development of control and automation of irrigation system located sunflower harvest in the Teaching Unit, Research and Extension (UEPE), the Apodi Plateau in Limoeiro do Norte. The sunflower extraction, which in turn serves to get the produced oil from its seeds, animal feed, and is widely used in human food. Its nutritional potential is quite high what makes of foods produced from vegetal, very rich and healthy. The focus of research is to make the autonomous irrigation system sunflower crop from programmable logic control energized with alternative energy sources, solar photovoltaics. The application of automated irrigation system becomes interesting when it provides convenience and implements new forms of managements of the implementation of irrigated cropping systems. The intended use of automated addition to irrigation quality and consequently brings enormous improvement for production of small samples. Addition to applying the necessary and sufficient features of water management in irrigation systems, the system (PLC + actuators + Renewable Energy) will enable to manage the quantitative water required for each crop, and at the same time, insert the use of sources alternative energy. The entry of the automated collection will bring a new format, and in previous years, used the process of irrigation water wastage base and being the whole manual irrigation process.Keywords: automation, control, sunflower, irrigation, programming, renewable energy
Procedia PDF Downloads 4093204 Problems concerning Legal Regulation of Electronic Governance in Georgia
Authors: Giga Phartenadze
Abstract:
In the legal framework of regulation of electronic governance, those norms are considered which include measures for improvement of functions of public institutions and a complex of actions for raising their standard such as websites of public institutions, online services, some forms of internet interactions and higher level of internet services. An important legal basis for electronic governance in Georgia is Georgian Law about Electronic Communications which defines legal and economic basis for utilizing electronic communication systems in Georgia. As for single electronic basis for e-governance regulation, it can be said that it does not exist at all. The official websites of public institutions do not have standards for proactive spreading of information. At the same time, there is no common legal norm which would make all public institutions have an official website for public relations, accountability, publicity, and raising information quality. Electronic governance in Georgia needs comprehensive legal regulation. Public administration in electronic form is on the initial stage of development. Currently existing legal basis has a low quality for public institutions and officials as well as citizens and business. Services of e-involvement and e-consultation have also low quality. So far there is no established legal framework for e-governance. Therefore, a single legislative system of e-governance should be created which will help develop effective, comprehensive and multi component electronic systems in the country (central, regional, local levels). Such comprehensive legal framework will provide relevant technological, institutional, and informational conditions.Keywords: law, e-government, public administration, Georgia
Procedia PDF Downloads 3273203 A Pipeline for Detecting Copy Number Variation from Whole Exome Sequencing Using Comprehensive Tools
Authors: Cheng-Yang Lee, Petrus Tang, Tzu-Hao Chang
Abstract:
Copy number variations (CNVs) have played an important role in many kinds of human diseases, such as Autism, Schizophrenia and a number of cancers. Many diseases are found in genome coding regions and whole exome sequencing (WES) is a cost-effective and powerful technology in detecting variants that are enriched in exons and have potential applications in clinical setting. Although several algorithms have been developed to detect CNVs using WES and compared with other algorithms for finding the most suitable methods using their own samples, there were not consistent datasets across most of algorithms to evaluate the ability of CNV detection. On the other hand, most of algorithms is using command line interface that may greatly limit the analysis capability of many laboratories. We create a series of simulated WES datasets from UCSC hg19 chromosome 22, and then evaluate the CNV detective ability of 19 algorithms from OMICtools database using our simulated WES datasets. We compute the sensitivity, specificity and accuracy in each algorithm for validation of the exome-derived CNVs. After comparison of 19 algorithms from OMICtools database, we construct a platform to install all of the algorithms in a virtual machine like VirtualBox which can be established conveniently in local computers, and then create a simple script that can be easily to use for detecting CNVs using algorithms selected by users. We also build a table to elaborate on many kinds of events, such as input requirement, CNV detective ability, for all of the algorithms that can provide users a specification to choose optimum algorithms.Keywords: whole exome sequencing, copy number variations, omictools, pipeline
Procedia PDF Downloads 3233202 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 993201 Automated End-to-End Pipeline Processing Solution for Autonomous Driving
Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi
Abstract:
Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing
Procedia PDF Downloads 1323200 Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study
Authors: Anurag Tripathi, Sanad Khandelwal
Abstract:
Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction.Keywords: forensic, dental age, pulp volume, cone beam computed tomography
Procedia PDF Downloads 1063199 Variability of Hydrological Modeling of the Blue Nile
Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm
Abstract:
The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed
Procedia PDF Downloads 3693198 Structural Performance of Composite Steel and Concrete Beams
Authors: Jakub Bartus
Abstract:
In general, composite steel and concrete structures present an effective structural solution utilizing full potential of both materials. As they have a numerous advantages on the construction side, they can reduce greatly the overall cost of construction, which is the main objective of the last decade, highlighted by the current economic and social crisis. The study represents not only an analysis of composite beams’ behaviour having web openings but emphasizes the influence of these openings on the total strain distribution at the level of steel bottom flange as well. The major investigation was focused on a change of structural performance with respect to various layouts of openings. Examining this structural modification, an improvement of load carrying capacity of composite beams was a prime object. The study is devided into analytical and numerical part. The analytical part served as an initial step into the design process of composite beam samples, in which optimal dimensions and specific levels of utilization in individual stress states were taken into account. The numerical part covered description of imposed structural issue in a form of a finite element model (FEM) using strut and shell elements accounting for material non-linearities. As an outcome, a number of conclusions were drawn describing and explaining an effect of web opening presence on the structural performance of composite beams.Keywords: composite beam, web opening, steel flange, totalstrain, finite element analysis
Procedia PDF Downloads 743197 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1073196 Reconstructability Analysis for Landslide Prediction
Authors: David Percy
Abstract:
Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.Keywords: reconstructability analysis, machine learning, landslides, raster analysis
Procedia PDF Downloads 733195 Reducing the Chemical Activity of Ceramic Casting Molds for Producing Decorated Glass Moulds
Authors: Nilgun Kuskonmaz
Abstract:
Ceramic molding can produce castings with fine detail, smooth surface and high degree of dimensional accuracy. All these features are the key factors for producing decorated glass moulds. In the ceramic mold casting process, the fundamental parameters affecting the mold-metal reactions are the composition and the properties of the refractory materials used in the production of ceramic mold. As a result of the reactions taking place between the liquid metal and mold surface, it is not possible to achieve a perfect surface quality, a fine surface detail and maintain a high standard dimensional tolerances. The present research examines the effects of the binder composition on the structural and physical properties of the zircon ceramic mold. In the experiment, the ceramic slurry was prepared by mixing the refractory powders (zircon(ZrSiO4), mullit(3Al2O32SiO2) and alumina (Al2O3)) with the low alkaline silica (ethyl silicate (C8H20O4Si)) and acidic type gelling material suitable binder and gelling agent. This was followed by pouring that ceramic slurry on to a silicon pattern. After being gelled, the mold was removed from the silicon pattern and dried. Then, the ceramic mold was subjected to the reaction sintering at 1600°C for 2 hours in the furnace. The stainless steel (SS) was cast into the sintered ceramic mold. At the end of this process it was observed that the surface quality of decorated glass mold.Keywords: ceramic mold, stainless steel casting, decorated glass mold
Procedia PDF Downloads 2653194 Chronic and Sub-Acute Lumbosacral Radiculopathies Behave Differently to Repeated Back Extension Exercises
Authors: Sami Alabdulwahab
Abstract:
Background: Repeated back extension exercises (RBEEs) are among the management options for symptoms associated with lumbosacral radiculopathy (LSR). RBEEs have been reported to cause changes in the distribution and intensity of radicular symptoms caused by possible compression/decompression of the compromised nerve root. Purpose: The purpose of this study was to investigate the effects of the RBEEs on the neurophysiology of the compromised nerve root and on standing mobility and pain intensity in patients with sub-acute and chronic LSR. Methods: A total of 40 patients with unilateral sub-acute/chronic lumbosacral radiculopathy voluntarily participated in the study; the patients performed 3 sets of 10 RBEEs in the prone position with 1 min of rest between the sets. The soleus H-reflex, standing mobility and pain intensity were recorded before and after the RBEEs. Results: The results of the study showed that the RBEEs significantly improved the H-reflex, standing mobility and pain intensity in patients with sub-acute LSR (p<0.01); there was not a significant improvement in the patients with chronic LSR (p<0.61). Conclusion: RBEEs in prone position is recommended for improving the neurophysiological function of the compromised nerve root and standing mobility in patients with sub-acute LSR. Implication: Sub-acute and chronic LSR responded differently to RBEEs. Sub-acute LSR appear to have flexible and movable disc structures, which could be managed with RBEEs.Keywords: h-reflex, back extension, lumbosacral radiculopathy, pain
Procedia PDF Downloads 4803193 Strategies for Success: Strategic Thinking’s Critical Role in Entrepreneurial
Authors: Silvia Rahmita
Abstract:
Entrepreneurial success is crucial for economic growth, competitiveness, and job creation, yet many entrepreneurs face failure due to various challenges. This paper explores the critical role of strategic thinking in mitigating entrepreneurial failure. Entrepreneurial competencies—encompassing knowledge, skills, and traits—are essential for creating and growing ventures. Despite these competencies, numerous entrepreneurs fail due to poor management, inadequate support, and ineffective policies. The paper categorizes entrepreneurial failures into financial, operational, market, product or service, strategic, leadership, legal, human capital, technological, and environmental failures. Each failure type can be addressed through strategic thinking, which involves foresight, balancing short-term and long-term goals, and hypothesis-driven processes. By integrating strategic thinking into their approach, entrepreneurs can enhance risk management, adapt to market changes, and sustain growth. This process involves setting clear goals, innovating products, and maintaining a competitive edge. Ultimately, strategic thinking provides a framework for proactive planning, adaptation, and continuous improvement, reducing the likelihood of failure and ensuring long-term success. Entrepreneurs who prioritize strategic thinking are better equipped to navigate the complexities of the business environment and achieve sustainable growth.Keywords: entrepreneurial failure, strategic thinking, risk management, business failure
Procedia PDF Downloads 473192 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria
Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter
Abstract:
Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis
Procedia PDF Downloads 833191 Extraction of Compound Words in Malay Sentences Using Linguistic and Statistical Approaches
Authors: Zamri Abu Bakar Zamri, Normaly Kamal Ismail Normaly, Mohd Izani Mohamed Rawi Izani
Abstract:
Malay noun compound are phrases that consist of two or more nouns. The key characteristic behind noun compounds lies on its frequent occurrences within the text. Therefore, extracting these noun compounds is essential for several domains of research such as Information Retrieval, Sentiment Analysis and Question Answering. Many research efforts have been proposed in terms of extracting Malay noun compounds using linguistic and statistical approaches. Most of the existing methods have concentrated on the extraction of bi-gram noun+noun compound. However, extracting noun+verb, noun+adjective and noun+prepositional is challenging due to the difficulty of selecting an appropriate method with effective results. Thus, there is still room for improvement in terms of enhancing the effectiveness of compound word extraction. Therefore, this study proposed a combination of linguistic approach and statistical measures in order to enhance the extraction of compound words. Several preprocessing steps are involved including normalization, tokenization, and stemming. The linguistic approach that has been used in this study is Part-of-Speech (POS) tagging. In addition, a new linguistic pattern for named entities has been utilized using a list of Malays named entities in order to enhance the linguistic approach in terms of noun compound recognition. The proposed statistical measures consists of NC-value, NTC-value and NLC value.Keywords: Compound Word, Noun Compound, Linguistic Approach, Statistical Approach
Procedia PDF Downloads 3533190 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn, N. Prathengjit
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 5243189 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production
Authors: N. Laosiripojana, P. Tepamatr
Abstract:
The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.Keywords: bismuth, platinum, water gas shift, ceria
Procedia PDF Downloads 351