Search results for: Information and Communications Technology (ICT)
12071 Sexual and Reproductive Health through a Screen
Authors: Sohayla Khaled El Fakahany
Abstract:
Cultural and structural limitations and conservative social norms have direct effects on the availability of sources of sexual and reproductive health and rights (SRHR) in the Arab Region. Nevertheless, SRHR advocates, healthcare providers, and organizations have created online spaces like websites, blogs, and social media platforms to increase people’s access and ability to share information, experiences, and services. While these efforts help increase the accessibility to information and services, they also create and reflect inequalities based on limited internet access. Furthermore, these emergent ways of sharing and raising awareness online cannot be seen as a substitute for the urgent need for public healthcare systems and services to address SRHR issues in Arab states. This research aims to analyze the impact of the increasing importance of the role of social media platforms and technologies in the dissemination of SRHR-related information online to the youth as well as the associated inequalities of access. It also seeks to assess the effects and inequalities of the dependence on online platforms, which should be complementary to public and private SRHR services. The theoretical framework adopts Asef Bayat’s concept of social non-movements to analyze how collective mobilization around SRHR issues is exercised in repressive and conservative settings in the Arab region. Using digital ethnography of four prominent digital platforms and a qualitative survey of people aged 18-30 years, the research draws attention to the urgent need for better access to knowledge and services around gender, bodily autonomy, and sexual and reproductive health in the Arab region.Keywords: sexual and reproductive health and rights, social non-movements, digital platforms, Arab region
Procedia PDF Downloads 7712070 Customised Wellness Solutions Using Health Technological Platforms: An Exploratory Research Protocol
Authors: Elaine Wong Yee-Sing, Liaw Wee Tong
Abstract:
Rapid transformations in demographic and socioeconomic shifts are leading to a growing global demand for health and beauty products and services that demands holistic concepts of well-being. In addition, technological breakthroughs such as internet of things make it convenient and offer innovative solutions for well-being and engage consumers to track their own health conditions and fitness goals. This 'new health economy' encompasses three key concepts: well-being, well-conditioned and well-shaped; which are shaped by wellness segments and goals that influence purchasing decisions of consumers. The research protocol aims to examine the feasibility, challenges, and capabilities in provision for each customer with an ecosystem, or platform, that organizes data and insights to create an individual health and fitness, nutrition, and beauty profile. Convenience sampling of 100 consumers residing in private housing within five major districts in Singapore will be selected to participate in the study. Statistical Package for Social Science 25 will be used to conduct descriptive statistics for quantitative data while qualitative data results using focus interviews, will be translated and transcribed to identify improvements in provision of these services. Rising income in emerging global markets is fuelling the demand for these general wellbeing products and services. Combined with technological advances, it is imperative to understand how these highly personalized services with integrated technology can be designed better to support consumer preferences; provide greater flexibility and high-quality service, and generate better health awareness among consumers.Keywords: beauty, consumers, health, technology, wellness
Procedia PDF Downloads 12812069 Overview Studies of High Strength Self-Consolidating Concrete
Authors: Raya Harkouss, Bilal Hamad
Abstract:
Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology. At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete. A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure. The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.Keywords: self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams
Procedia PDF Downloads 25112068 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks
Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng
Abstract:
Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.Keywords: biological molecular networks, essential genes, graph theory, network subgraphs
Procedia PDF Downloads 15612067 Building Information Modelling for Construction Delay Management
Authors: Essa Alenazi, Zulfikar Adamu
Abstract:
The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country’s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays. It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management. A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM’s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned.Keywords: building information modelling (BIM), clients perspective, delay management, optimism bias, public sector projects
Procedia PDF Downloads 32312066 Evaluating an Educational Intervention to Reduce Pesticide Exposure Among Farmers in Nigeria
Authors: Gift Udoh, Diane S. Rohlman, Benjamin Sindt
Abstract:
BACKGROUND: There is concern regarding the widespread use of pesticides and impacts on public health. Farmers in Nigeria frequently apply pesticides, including organophosphate pesticides which are known neurotoxicants. They receive little guidance on how much to apply or information about safe handling practices. Pesticide poisoning is one of the major hazards that farmers face in Nigeria. Farmers continue to use highly neurotoxic pesticides for agricultural activities. Because farmers receive little or no information on safe handling and how much to apply, they continue to develop severe and mild illnesses caused by high exposures to pesticides. The project aimed to reduce pesticide exposure among rural farmers in Nigeria by identifying hazards associated with pesticide use and developing and pilot testing training to reduce exposures to pesticides utilizing the hierarchy of controls system. METHODS: Information on pesticide knowledge, behaviors, barriers to safety, and prevention methods was collected from farmers in Nigeria through workplace observations, questionnaires, and interviews. Pre and post-surveys were used to measure farmer’s knowledge before and after the delivery of pesticide safety training. Training topics included the benefits and risks of using pesticides, routes of exposure and health effects, pesticide label activity, use and selection of PPE, ways to prevent exposure and information on local resources. The training was evaluated among farmers and changes in knowledge, attitudes and behaviors were collected prior to and following the training. RESULTS: The training was administered to 60 farmers, a mean age of 35, with a range of farming experience (<1 year to > 50 years). There was an overall increase in knowledge after the training. In addition, farmers perceived a greater immediate risk from exposure to pesticides and their perception of their personal risk increased. For example, farmers believed that pesticide risk is greater to children than to adults, recognized that just because a pesticide is put on the market doesn’t mean it is safe, and they were more confident that they could get advice about handling pesticides. Also, there was greater awareness about behaviors that can increase their exposure (mixing pesticides with bare hands, eating food in the field, not washing hands before eating after applying pesticides, walking in fields recently sprayed, splashing pesticides on their clothes, pesticide storage). CONCLUSION: These results build on existing evidence from a 2022 article highlighting the need for pesticide safety training in Nigeria which suggested that pesticide safety educational programs should focus on community-based, grassroots-style, and involve a family-oriented approach. Educating farmers on agricultural safety while letting them share their experiences with their peers is an effective way of creating awareness on the dangers associated with handling pesticides. Also, for rural communities, especially in Nigeria, pesticide safety pieces of training may not be able to reach some locations, so intentional scouting of rural farming communities and delivering pesticide safety training will improve knowledge of pesticide hazards. There is a need for pesticide information centers to be situated in rural farming communities or agro supply stores, which gives rural farmers information.Keywords: pesticide exposure, pesticide safety, nigeria, rural farming, pesticide education
Procedia PDF Downloads 17712065 The First Japanese-Japanese Dictionary for Non-Japanese Using the Defining Vocabulary
Authors: Minoru Moriguchi
Abstract:
This research introduces the concept of a monolingual Japanese dictionary for non-native speakers of Japanese, whose temporal title is Dictionary of Contemporary Japanese for Advanced Learners (DCJAL). As the language market is very small compared with English, a monolingual Japanese dictionary for non-native speakers, containing sufficient entries, has not been published yet. In such a dictionary environment, Japanese-language learners are using bilingual dictionaries or monolingual Japanese dictionaries for Japanese people. This research started in 2017, as a project team which consists of four Japanese and two non-native speakers, all of whom are linguists of the Japanese language. The team has been trying to propose the concept of a monolingual dictionary for non-native speakers of Japanese and to provide the entry list, the definition samples, the list of defining vocabulary, and the writing manual. As the result of seven-year research, DCJAL has come to have 28,060 head words, 539 entry examples, 4,598-word defining vocabulary, and the writing manual. First, the number of the entry was determined as about 30,000, based on an experimental method using existing six dictionaries. To make the entry list satisfying this number, words suitable for DCJAL were extracted from the Tsukuba corpus of the Japanese language, and later the entry list was adjusted according to the experience as Japanese instructor. Among the head words of the entry list, 539 words were selected and added with lexicographical information such as proficiency level, pronunciation, writing system (hiragana, katakana, kanji, or alphabet), definition, example sentences, idiomatic expression, synonyms, antonyms, grammatical information, sociolinguistic information, and etymology. While writing the definition of the above 539 words, the list of the defining vocabulary was constructed, based on frequent vocabulary used in a Japanese monolingual dictionary. Although the concept of DCJAL has been almost perfected, it may need some more adjustment, and the research is continued.Keywords: monolingual dictionary, the Japanese language, non-native speaker of Japanese, defining vocabulary
Procedia PDF Downloads 3912064 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 16812063 Curriculum Check in Industrial Design, Based on Knowledge Management in Iran Universities
Authors: Maryam Mostafaee, Hassan Sadeghi Naeini, Sara Mostowfi
Abstract:
Today’s Knowledge management (KM), plays an important role in organizations. Basically, knowledge management is in the relation of using it for taking advantage of work forces in an organization for forwarding the goals and demand of that organization used at the most. The purpose of knowledge management is not only to manage existing documentation, information, and Data through an organization, but the most important part of KM is to control most important and key factor of those information and Data. For sure it is to chase the information needed for the employees in the right time of needed to take from genuine source for bringing out the best performance and result then in this matter the performance of organization will be at most of it. There are a lot of definitions over the objective of management released. Management is the science that in force the accurate knowledge with repeating to the organization to shape it and take full advantages for reaching goals and targets in the organization to be used by employees and users, but the definition of Knowledge based on Kalinz dictionary is: Facts, emotions or experiences known by man or group of people is ‘ knowledge ‘: Based on the Merriam Webster Dictionary: the act or skill of controlling and making decision about a business, department, sport team, etc, based on the Oxford Dictionary: Efficient handling of information and resources within a commercial organization, and based on the Oxford Dictionary: The art or process of designing manufactured products: the scale is a beautiful work of industrial design. When knowledge management performed executive in universities, discovery and create a new knowledge be facilitated. Make procedures between different units for knowledge exchange. College's officials and employees understand the importance of knowledge for University's success and will make more efforts to prevent the errors. In this strategy, is explored factors and affective trends and manage of it in University. In this research, Iranian universities for a time being analyzed that over usage of knowledge management, how they are behaving and having understood this matter: 1. Discovery of knowledge management in Iranian Universities, 2. Transferring exciting knowledge between faculties and unites, 3. Participate of employees for getting and using and transferring knowledge, 4.The accessibility of valid sources, 5. Researching over factors and correct processes in the university. We are pointing in some examples that we have already analyzed which is: -Enabling better and faster decision-making, -Making it easy to find relevant information and resources, -Reusing ideas, documents, and expertise, -Avoiding redundant effort. Consequence: It is found that effectiveness of knowledge management in the Industrial design field is low. Based on filled checklist by Education officials and professors in universities, and coefficient of effectiveness Calculate, knowledge management could not get the right place.Keywords: knowledge management, industrial design, educational curriculum, learning performance
Procedia PDF Downloads 37012062 Smart Safari: Safari Guidance Mobile Application
Authors: D. P. Lawrence, T. M. M. D. Ariyarathna, W. N. K. De Silva, M. D. S. C. De Silva, Lasantha Abeysiri, Pradeep Abeygunawardhna
Abstract:
Safari traveling is one of the most famous hobbies all over the world. In Sri Lanka, 'Yala' is the second-largest national park, which is a better place to go for a safari. Many number of local and foreign travelers are coming to go for a safari in 'Yala'. But 'Yala' does not have a mobile application that is made to facilitate the traveler with some important features that the traveler wants to achieve in the safari experience. To overcome these difficulties, the proposed mobile application by adding those identified features to make travelers, guiders, and administration's works easier. The proposed safari traveling guidance mobile application is called 'SMART SAFARI' for the 'Yala' National Park in Sri Lanka. There are four facilities in this mobile application that provide for travelers as well as the guiders. As the first facility, the guider and traveler can view the created map of the park, and the guider can add temporary locations of animals and special locations on the map. This is a Geographic Information System (GIS) to capture, analyze, and display geographical data. And as the second facility is to generate optimal paths according to the travelers' requirements through the park by using machine learning techniques. In the third part, the traveler can get information about animals using an animal identification system by capturing the animal. As in the other facility, the traveler will be facilitated to add reviews and a rate and view those comments under categorized sections and pre-defined score range. With those facilities, this user-friendly mobile application provides the user to get a better experience in safari traveling, and it will probably help to develop tourism culture in Sri Lanka.Keywords: animal identification system, geographic information system, machine learning techniques, pre defined score range
Procedia PDF Downloads 13112061 A Perspective of Digital Formation in the Solar Community as a Prototype for Finding Sustainable Algorithmic Conditions on Earth
Authors: Kunihisa Kakumoto
Abstract:
“Purpose”: Global environmental issues are now being raised in a global dimension. By predicting sprawl phenomena beyond the limits of nature with algorithms, we can expect to protect our social life within the limits of nature. It turns out that the sustainable state of the planet now consists in maintaining a balance between the capabilities of nature and the possibilities of our social life. The amount of water on earth is finite. Sustainability is therefore highly dependent on water capacity. A certain amount of water is stored in the forest by planting and green space, and the amount of water can be considered in relation to the green space. CO2 is also absorbed by green plants. "Possible measurements and methods": The concept of the solar community has been introduced in technical papers on the occasion of many international conferences. The solar community concept is based on data collected from one solar model house. This algorithmic study simulates the amount of water stored by lush green vegetation. In addition, we calculated and compared the amount of CO2 emissions from the Taiyo Community and the amount of CO2 reduction from greening. Based on the trial calculation results of these solar communities, we are simulating the sustainable state of the earth as an algorithm trial calculation result. We believe that we should also consider the composition of this solar community group using digital technology as control technology. "Conclusion": We consider the solar community as a prototype for finding sustainable conditions for the planet. The role of water is very important as the supply capacity of water is limited. However, the circulation of social life is not constructed according to the mechanism of nature. This simulation trial calculation is explained using the total water supply volume as an example. According to this process, algorithmic calculations consider the total capacity of the water supply and the population and habitable numbers of the area. Green vegetated land is very important to keep enough water. Green vegetation is also very important to maintain CO2 balance. A simulation trial calculation is possible from the relationship between the CO2 emissions of the solar community and the amount of CO2 reduction due to greening. In order to find this total balance and sustainable conditions, the algorithmic simulation calculation takes into account lush vegetation and total water supply. Research to find sustainable conditions is done by simulating an algorithmic model of the solar community as a prototype. In this one prototype example, it's balanced. The activities of our social life must take place within the permissive limits of natural mechanisms. Of course, we aim for a more ideal balance by utilizing auxiliary digital control technology such as AI.Keywords: solar community, sustainability, prototype, algorithmic simulation
Procedia PDF Downloads 5912060 Intelligent Cooperative Integrated System for Road Safety and Road Infrastructure Maintenance
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
This paper presents the architecture of the “Intelligent cooperative integrated system for road safety and road infrastructure maintenance towards 2020” (ODOS2020) advanced infrastructure, which implements a number of cooperative ITS applications based on Internet of Things and Infrastructure-to-Vehicle (V2I) technologies with the purpose to enhance the active road safety level of vehicles through the provision of a fully automated V2I environment. The primary objective of the ODOS2020 project is to contribute to increased road safety but also to the optimization of time for maintenance of road infrastructure. The integrated technological solution presented in this paper addresses all types of vehicles and requires minimum vehicle equipment. Thus, the ODOS2020 comprises a low-cost solution, which is one of its main benefits. The system architecture includes an integrated notification system to transmit personalized information on road, traffic, and environmental conditions, in order for the drivers to receive real-time and reliable alerts concerning upcoming critical situations. The latter include potential dangers on the road, such as obstacles or road works ahead, extreme environmental conditions, etc., but also informative messages, such as information on upcoming tolls and their charging policies. At the core of the system architecture lies an integrated sensorial network embedded in special road infrastructures (strips) that constantly collect and transmit wirelessly information about passing vehicles’ identification, type, speed, moving direction and other traffic information in combination with environmental conditions and road wear monitoring and predictive maintenance data. Data collected from sensors is transmitted by roadside infrastructure, which supports a variety of communication technologies such as ITS-G5 (IEEE-802.11p) wireless network and Internet connectivity through cellular networks (3G, LTE). All information could be forwarded to both vehicles and Traffic Management Centers (TMC) operators, either directly through the ITS-G5 network, or to smart devices with Internet connectivity, through cloud-based services. Therefore, through its functionality, the system could send personalized notifications/information/warnings and recommendations for upcoming events to both road users and TMC operators. In the course of the ODOS2020 project pilot operation has been conducted to allow drivers of both C-ITS equipped and non-equipped vehicles to experience the provided added value services. For non-equipped vehicles, the provided information is transmitted to a smartphone application. Finally, the ODOS2020 system and infrastructure is appropriate for installation on both urban, rural, and highway environments. The paper presents the various parts of the system architecture and concludes by outlining the various challenges that had to be overcome during its design, development, and deployment in a real operational environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: infrastructure to vehicle, intelligent transportation systems, internet of things, road safety
Procedia PDF Downloads 12012059 Implications of Industry 4.0 to Supply Chain Management and Human Resources Management: The State of the Art
Authors: Ayse Begum Kilic, Sevgi Ozkan
Abstract:
Industry 4.0 (I4.0) is a significant and promising research topic that is expected to gain more importance due to its effects on important concepts like cost, resource management, and accessibility. Instead of focusing those effects in only one area, combining different departments, and see the big picture helps to make more realistic predictions about the future. The aim of this paper is to identify the implications of Industry 4.0 for both supply chain management and human resources management by finding out the topics that take place at the intersection of them. Another objective is helping the readers to realize the expected changes in these two areas due to I4.0 in order to take the necessary steps in advance and make recommendations to catch up the latest trends. The expected changes are concluded from the industry reports and related journal papers in the literature. As found in the literature, this study is the first to combine the Industry 4.0, supply chain management and human resources management and urges to lead future works by finding out the intersections of those three areas. Benefits of I4.0 and the amount, research areas and the publication years of papers on I4.0 in the academic journals are mentioned in this paper. One of the main findings of this research is that a change in the labor force qualifications is expected with the advancements in the technology. There will be a need for higher level of skills from the workers. This will directly affect the human resources management in a way of recruiting and managing those people. Another main finding is, as it is explained with an example in the article, the advancements in the technology will change the place of production. For instance, 'dark factories', a popular topic of I4.0, will enable manufacturers to produce in places that close to their marketplace. The supply chains are expected to be influenced by that change.Keywords: human resources management, industry 4.0, logistics, supply chain management
Procedia PDF Downloads 15812058 Delivery of Patient-Directed Wound Care Via Mobile Application-Based Qualitative Analysis
Authors: Amulya Srivatsa, Gayatri Prakash, Deeksha Sarda, Varshni Nandakumar, Duncan Salmon
Abstract:
Delivery of Patient-Directed Wound Care Via Mobile Application-Based Qualitative Analysis Chronic wounds are difficult for patients to manage at-home due to their unpredictable healing process. These wounds are associated with increased morbidity and negatively affect physical and mental health. The solution is a mobile application that will have an algorithm-based checklist to determine the state of the wound based on different factors that vary from person to person. Once this information is gathered, the application will recommend a plan of care to the user and subsequent steps to be taken. The mobile application will allow users to perform a digital scan of the wound to extract quantitative information regarding wound width, length, and depth, which will then be uploaded to the EHR to notify the patient’s provider. This scan utilizes a photo taken by the user, who is prompted appropriately. Furthermore, users will enter demographic information and answer multiple choice and drop-down menus describing the wound state. The proposed solution can save patients from unnecessary trips to the hospital for chronic wound care. The next iteration of the application can incorporate AI to allow users to perform a digital scan of the wound to extract quantitative information regarding wound width, length, and depth, which can be shared with the patient’s provider to allow for more efficient treatment. Ultimately, this product can provide immediate and economical medical advice for patients that suffer from chronic wounds. Research Objectives: The application should be capable of qualitative analysis of a wound and recommend a plan of care to the user. Additionally, the results of the wound analysis should automatically upload to the patient’s EMR. Research Methodologies: The app has two components: the first is a checklist with tabs for varying factors that assists users in the assessment of their skin. Subsequently, the algorithm will create an at-home regimen for patients to follow to manage their wounds. Research Contributions: The app aims to return autonomy back to the patient and reduce the number of visits to a physician for chronic wound care. The app also serves to educate the patient on how best to care for their wounds.Keywords: wound, app, qualitative, analysis, home, chronic
Procedia PDF Downloads 6412057 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks
Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev
Abstract:
One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.Keywords: channel estimation, inter-cell interference, pilot contamination attacks, wireless communications
Procedia PDF Downloads 21412056 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.Keywords: feature generation, feature learning, genetic algorithm, music information retrieval
Procedia PDF Downloads 43312055 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines
Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma
Abstract:
Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)
Procedia PDF Downloads 27212054 Forest Fire Risk Mapping Using Analytic Hierarchy Process and GIS-Based Application: A Case Study in Hua Sai District, Thailand
Authors: Narissara Nuthammachot, Dimitris Stratoulias
Abstract:
Fire is one of the main causes of environmental and ecosystem change. Therefore, it is a challenging task for fire risk assessment fire potential mapping. The study area is Hua Sai district, Nakorn Sri Thammarat province, which covers in a part of peat swamp forest areas. 55 fire points in peat swamp areas were reported from 2012 to 2016. Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) methods were selected for this study. The risk fire area map was arranged on these factors; elevation, slope, aspect, precipitation, distance from the river, distance from town, and land use. The results showed that the predicted fire risk areas are found to be in appreciable reliability with past fire events. The fire risk map can be used for the planning and management of fire areas in the future.Keywords: analytic hierarchy process, fire risk assessment, geographic information system, peat swamp forest
Procedia PDF Downloads 20812053 Web-Based Decision Support Systems and Intelligent Decision-Making: A Systematic Analysis
Authors: Serhat Tüzün, Tufan Demirel
Abstract:
Decision Support Systems (DSS) have been investigated by researchers and technologists for more than 35 years. This paper analyses the developments in the architecture and software of these systems, provides a systematic analysis for different Web-based DSS approaches and Intelligent Decision-making Technologies (IDT), with the suggestion for future studies. Decision Support Systems literature begins with building model-oriented DSS in the late 1960s, theory developments in the 1970s, and the implementation of financial planning systems and Group DSS in the early and mid-80s. Then it documents the origins of Executive Information Systems, online analytic processing (OLAP) and Business Intelligence. The implementation of Web-based DSS occurred in the mid-1990s. With the beginning of the new millennia, intelligence is the main focus on DSS studies. Web-based technologies are having a major impact on design, development and implementation processes for all types of DSS. Web technologies are being utilized for the development of DSS tools by leading developers of decision support technologies. Major companies are encouraging its customers to port their DSS applications, such as data mining, customer relationship management (CRM) and OLAP systems, to a web-based environment. Similarly, real-time data fed from manufacturing plants are now helping floor managers make decisions regarding production adjustment to ensure that high-quality products are produced and delivered. Web-based DSS are being employed by organizations as decision aids for employees as well as customers. A common usage of Web-based DSS has been to assist customers configure product and service according to their needs. These systems allow individual customers to design their own products by choosing from a menu of attributes, components, prices and delivery options. The Intelligent Decision-making Technologies (IDT) domain is a fast growing area of research that integrates various aspects of computer science and information systems. This includes intelligent systems, intelligent technology, intelligent agents, artificial intelligence, fuzzy logic, neural networks, machine learning, knowledge discovery, computational intelligence, data science, big data analytics, inference engines, recommender systems or engines, and a variety of related disciplines. Innovative applications that emerge using IDT often have a significant impact on decision-making processes in government, industry, business, and academia in general. This is particularly pronounced in finance, accounting, healthcare, computer networks, real-time safety monitoring and crisis response systems. Similarly, IDT is commonly used in military decision-making systems, security, marketing, stock market prediction, and robotics. Even though lots of research studies have been conducted on Decision Support Systems, a systematic analysis on the subject is still missing. Because of this necessity, this paper has been prepared to search recent articles about the DSS. The literature has been deeply reviewed and by classifying previous studies according to their preferences, taxonomy for DSS has been prepared. With the aid of the taxonomic review and the recent developments over the subject, this study aims to analyze the future trends in decision support systems.Keywords: decision support systems, intelligent decision-making, systematic analysis, taxonomic review
Procedia PDF Downloads 27912052 The Shannon Entropy and Multifractional Markets
Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese
Abstract:
Introduced by Shannon in 1948 in the field of information theory as the average rate at which information is produced by a stochastic set of data, the concept of entropy has gained much attention as a measure of uncertainty and unpredictability associated with a dynamical system, eventually depicted by a stochastic process. In particular, the Shannon entropy measures the degree of order/disorder of a given signal and provides useful information about the underlying dynamical process. It has found widespread application in a variety of fields, such as, for example, cryptography, statistical physics and finance. In this regard, many contributions have employed different measures of entropy in an attempt to characterize the financial time series in terms of market efficiency, market crashes and/or financial crises. The Shannon entropy has also been considered as a measure of the risk of a portfolio or as a tool in asset pricing. This work investigates the theoretical link between the Shannon entropy and the multifractional Brownian motion (mBm), stochastic process which recently is the focus of a renewed interest in finance as a driving model of stochastic volatility. In particular, after exploring the current state of research in this area and highlighting some of the key results and open questions that remain, we show a well-defined relationship between the Shannon (log)entropy and the memory function H(t) of the mBm. In details, we allow both the length of time series and time scale to change over analysis to study how the relation modify itself. On the one hand, applications are developed after generating surrogates of mBm trajectories based on different memory functions; on the other hand, an empirical analysis of several international stock indexes, which confirms the previous results, concludes the work.Keywords: Shannon entropy, multifractional Brownian motion, Hurst–Holder exponent, stock indexes
Procedia PDF Downloads 11012051 Measuring Parliamentarian: Towards Analysing Members of Parliaments in Malaysia
Authors: Rosyidah Muhamad
Abstract:
Democracies are premised on the idea that citizens can hold their leaders accountable for their actions by voting for or against them in regular elections. However, in order this ideal to be realized, citizens must possess a minimum amount of information about their leaders’ performance. Citizens should be made aware of the performance of their elected representatives. This study seeks to analyse this critical information with special reference to Malaysian Parliamentarians (MPs). We adopted several existence Parliamentary Performance model with special reference to their performance inside the parliament. Among indicators used by the Scholastic for analysing this performance are the number of bills proposed by parliamentarian, the number of proposals that would benefit their constituency, the number of speeches made by the parliamentarian during plenary and the percentage of laws passed among the proposals made by certain parliamentary. The broad goals of the study include the analysis of the capacity of a representative body to accommodate the diverse claims and demands that are made on it. We find that overall performances of MPs are average. This is due to not only the background characteristic of individuals MPs but also the limitation of the mechanism provides in the Parliament itself.Keywords: member of parliament, democracy, evaluation, Malaysia
Procedia PDF Downloads 22212050 Plantar Neuro-Receptor Activation in Total Knee Arthroplasty Patients: Impact on Clinical Function, Pain, and Stiffness - A Randomized Controlled Trial
Authors: Woolfrey K., Woolfrey M., Bolton C. L., Warchuk D.
Abstract:
Objectives: Osteoarthritis is the most common joint disease of adults worldwide. Despite total knee arthroplasty (TKA) demonstrating high levels of success, 20% of patients report dissatisfaction with their result. VOXX Wellness Stasis Socks are embedded with a proprietary pattern of neuro-receptor activation points that have been proven to activate a precise neuro-response, according to the pattern theory of haptic perception, which stimulates improvements in pain and function. The use of this technology in TKA patients may prove beneficial as an adjunct to recovery as many patients suffer from deficits to their proprioceptive system caused by ligamentous damage and alterations to mechanoreceptors during the procedure. We hypothesized that VOXX Wellness Stasis Socks are a safe, cost-effective, and easily scalable strategy to support TKA patients through their recovery. Design: Double-blinded, placebo-controlled randomized trial. Participants: Patients scheduled to receive TKA were considered eligible for inclusion in the trial. Interventions: Intervention group (I): VOXX Wellness Stasis socks containing receptor point-activation technology. Control group (C): VOXX Wellness Stasis socks without receptor point-activation technology. Sock use during the waking hours x 6 weeks. Main Outcome Measures: Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) questionnaire completed at baseline, 2 weeks, and 6 weeks to assess pain, stiffness, and physical function. Results: Data analysis using SPSS software. P-values, effect sizes, and confidence intervals are reported to assess clinical relevance of the finding. Physical status classifications were compared using t-test. Within-subject and between-subject differences in the mean WOMAC were analyzed by ANOVA. Effect size was analyzed using Cramer’s V. Consistent improvement in WOMAC scores for pain and stiffness at 2 weeks post op in the I over the C group. The womac scores assessing physical function showed a consistent improvement at both 2 and 6 weeks post op in the I group compared to C group. Conclusions: VOXX proved to be a low cost, safe intervention in TKA to help patients improve with regard to pain, stiffness, and physical function. Disclosures: NoneKeywords: osteoarthritis, RCT, pain management, total knee arthroplasty
Procedia PDF Downloads 53112049 Corporate Governance and Corporate Sustainability: Evidence from a Developing Country
Authors: Edmund Gyimah
Abstract:
Using data from 146 annual reports of listed firms in Ghana for the period 2013-2020, this study presents indicative findings which inspire practical actions and future research. Firms which prepared and presented sustainability reports were excluded from this study for a coverage of corporate sustainability disclosures centred on annual reports. Also, corporate sustainability disclosures of the firms on corporate websites were not included in the study considering the tendency of updates which cannot easily be traced. The corporate sustainability disclosures in the annual reports since the commencement of the G4 Guidelines in 2013 have been below average for all the dimensions of sustainability and the general sustainability disclosures. Few traditional elements of the board composition such as board size and board independence could affect the corporate sustainability disclosures in the annual reports as well as the age of the firm, firm size, and industry classification of the firm. Sustainability disclosures are greater in sustainability reports than in annual reports, however, firms without sustainability reports should have a considerable amount of sustainability disclosures in their annual reports. Also, because of the essence of sustainability, this study suggests to firms to have sustainability committee perhaps, they could make a difference in disclosing the enough sustainability information even when they do not present sustainability information in stand-alone reports.Keywords: disclosures, sustainability, board, reports
Procedia PDF Downloads 18612048 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images
Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi
Abstract:
Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.Keywords: hyperspectral, PolSAR, feature selection, SVM
Procedia PDF Downloads 41612047 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data
Authors: Chi-Lun Liu
Abstract:
Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.Keywords: knowledge representation, reasoning, ontology, class diagram, software engineering
Procedia PDF Downloads 24112046 Ethical Implications of Gaps in the Implementation Process of the Circular Economy: Special Focus on Underdeveloped Countries
Authors: Sujith Gunawardhana
Abstract:
The circular economy is a system in which resources and energy are derived from renewable sources, utilized efficiently, recycled, and reused to reduce waste, reduce nonrenewable resource consumption, and mitigate negative environmental impacts. However, it poses moral questions about sustainability, the environment, and societal issues. Many societies face challenges when implementing the circular economy, as the concept is still young. The equitable distribution of the advantages and costs of circularity should be ensured during implementation, as some communities, particularly disadvantaged or marginalized ones, may suffer unfairly disproportionately from the harmful effects of production and recycling facilities. Prioritizing the health and safety of workers, communities, and the environment is essential, and strict rules must be implemented to guard against harm. However, most underdeveloped countries need a legal safeguard for this situation. The ultimate objective of the circular economy is to improve social, environmental, and economic performance, but its implementation also requires consideration of the ethics of care and non-epistemic values. Those are often hindered in underdeveloped countries, as the availability of infrastructure and technology, affordability, and legislative framework are poor. To achieve long-term success in the circular economy, evaluating implementation steps and considering health, safety, environmental, and social risks is crucial. To implement the circular economy, respect ethics of care and non-epistemic values. Adopt Kantian Ethics and control technology design to ensure equal benefits for all involved. Ethical gaps may lead underdeveloped countries to generate social pressure against the circular economy.Keywords: circular economy, ethics, values, sustainability
Procedia PDF Downloads 10612045 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses
Authors: Laura Rodriguez Amaya
Abstract:
Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.Keywords: engineering education, geospatial technology, geovisualization, STEM
Procedia PDF Downloads 25012044 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning
Procedia PDF Downloads 54912043 Relationship of Internal Communication Channels Effecting to Job Satisfaction of Company Employees: in Rayong Province
Authors: Nititorn Ounpipat
Abstract:
The objective of this study was to find the relationship between internal communication and job satisfaction, and to find out the best communication channel to contact employees for a quality working within the operation or organizational rules. The sample size of 100% who were working as a shop floor level employee in the company. The study used the quantitative research method by distributing a structured questionnaire to collect data from 150 employees as the sample size. Inferential statistics and forward multiple regression analysis were used to analyze the results of this research. The result shows that communication channel correlated with job satisfaction. Each channel has a correlation with the satisfaction of working with the Department Board Information and All Employee / Weekly Meeting Relevance high. Since there is a correlation coefficient equal. 851 and. 840, respectively. Company Board Information, Memo, Letter, Leader, Supervisor, Friends and Email Relevance moderate as well.Keywords: internal communication channels, job satisfaction, personal feedback, Rayong province
Procedia PDF Downloads 22112042 Analysis of Tourism Development Level and Research on Improvement Strategies- Take Chongqing as an Example
Abstract:
As a member of the tertiary industry, tourism is an important driving factor for urban economic development. As a well-known tourist city in China, according to statistics, the added value of tourism and related industries in 2022 will reach 106.326 billion yuan, a year-on-year increase of 1.2%, accounting for 3.7% of the city's GDP. However, the overall tourism development level of Chongqing is seriously unbalanced, and the tourism strength of the main urban area is much higher than that of the southeast Chongqing, northeast Chongqing and the surrounding city tourism area, and the overall tourism strength of the other three regions is relatively balanced. Based on the estimation of tourism development level and the geographic detector method, this paper finds that the important factors affecting the tourism development level of non-main urban areas in Chongqing are A-level tourist attractions. Through GIS geospatial analysis technology and SPSS data correlation research method, the spatial distribution characteristics and influencing factors of A-level tourist attractions in Chongqing were quantitatively analyzed by using data such as geospatial data cloud, relevant documents of Chongqing Municipal Commission of Culture and Tourism Development, planning cloud, and relevant statistical yearbooks. The results show that: (1) The spatial distribution of tourist attractions in non-main urban areas of Chongqing is agglomeration and uneven. (2) The spatial distribution of A-level tourist attractions in non-main urban areas of Chongqing is affected by ecological factors, and the degree of influence is in the order of water factors> topographic factors > green space factors.Keywords: tourist attractions, geographic detectors, quantitative research, ecological factors, GIS technology, SPSS analysis
Procedia PDF Downloads 5