Search results for: liquid phase microextraction
1218 Preceramic Polymers Formulations for Potential Additive Manufacturing
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
Three preceramic polymer formulations for potential use in 3D printing technologies were investigated. The polymeric precursors include an allyl hydrido polycarbosilane (SMP-10), SMP-10/1,6-dexanediol diacrylate (HDDA) mixture, and polydimethylsiloxane (PDMS). The rheological property of the polymeric precursors, including the viscosity within a wide shear rate range was compared to determine the applicability in additive manufacturing technology. The structural properties of the polymeric solutions and their photocureability were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were utilized to study polymeric to ceramic conversion for versatile precursors. The prepared precursor resin proved to have outstanding photo-curing properties and the ability to transform to the silicon carbide phase at temperatures as low as 850 °C. The obtained ceramic was fully dense with nearly linear shrinkage and a shiny, smooth surface after pyrolysis. Furthermore, after pyrolysis to 1350 °C and TGA analysis, PDMS polymer showed the highest onset decomposition temperature and the lowest retained weight (52 wt%), while SMP.10/HDDA showed the lowest onset temperature and ceramic yield (71.7 wt%). In terms of crystallography, the ceramic matrix composite appeared to have three coexisting phases, including silicon carbide, and silicon oxycarbide. The results are very promising to fabricate ceramic materials working at high temperatures with complex geometries.Keywords: preceramic polymer, silicon carbide, photocuring, allyl hydrido polycarbosilane, SMP-10
Procedia PDF Downloads 1241217 Collaborative Platform for Learning Basic Programming (Algorinfo)
Authors: Edgar Mauricio Ruiz Osuna, Claudia Yaneth Herrera Bolivar, Sandra Liliana Gomez Vasquez
Abstract:
The increasing needs of professionals with skills in software development in industry are incremental, therefore, the relevance of an educational process in line with the strengthening of these competencies, are part of the responsibilities of universities with careers related to the area of Informatics and Systems. In this sense, it is important to consider that in the National Science, Technology and Innovation Plan for the development of the Electronics, Information Technologies and Communications (2013) sectors, it is established as a weakness in the SWOT Analysis of the Software sector and Services, Deficiencies in training and professional training. Accordingly, UNIMINUTO's Computer Technology Program has addressed the analysis of students' performance in software development, identifying various problems such as dropout in programming subjects, academic averages, as well as deficiencies in strategies and competencies developed in the area of programming. As a result of this analysis, it was determined to design a collaborative learning platform in basic programming using heat maps as a tool to support didactic feedback. The pilot phase allows to evaluate in a programming course the ALGORINFO platform as a didactic resource, through an interactive and collaborative environment where students can develop basic programming practices and in turn, are fed back through the analysis of time patterns and difficulties frequent in certain segments or program cycles, by means of heat maps. The result allows the teacher to have tools to reinforce and advise critical points generated on the map, so that students and graduates improve their skills as software developers.Keywords: collaborative platform, learning, feedback, programming, heat maps
Procedia PDF Downloads 1621216 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers
Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe
Abstract:
Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis
Procedia PDF Downloads 2921215 Surfactant-Modified Chitosan Beads: An Efficient and Cost Effective Material for Adsorptive Removal of Lead from Aqueous Solutions
Authors: Preeti Pal, Anjali Pal
Abstract:
Chitosan is an effective sorbent for removal of contaminants from wastewater. However, the ability of pure chitosan is specific because of its cationic charge. It causes repulsion in the removal process of various cationic charged molecules. The present study has been carried out for the successful removal of Pb²⁺ ions from aqueous solution by modified chitosan beads. Surface modification of chitosan (CS) beads was performed by using the anionic surfactant (AS), sodium dodecyl sulfate (SDS). Micelle aggregation property of SDS has been utilized for the formation of bilayer over the CS beads to produce surfactant modified chitosan (SMCS) beads. Prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) in order to find out their composition and surface morphology. SMCS beads, when compared to the pure CS beads, showed three times higher adsorption. This higher adsorption is believed to be due to the adsolubilization of Pb²⁺ ions on SDS bilayer. This bilayer provides more adsorption sites for quick and effective removal of Pb²⁺ ions from the aqueous phase. Moreover, the kinetic and adsorption isotherm models were employed to the obtained data for the description of the lead adsorption processes. It was found that the removal kinetics follows pseudo-second order model. Adsorption isotherm data fits well to the Langmuir model. The maximum adsorption capacity obtained is 100 mg/g at the dosage of 0.675 g/L for 50 mg/L of Pb²⁺. The adsorption capacity is subject to increase with increasing the Pb²⁺ ions concentration in the solution. The results indicated that the prepared hydrogel beads are efficient adsorbent for removal of Pb²⁺ ions from the aqueous medium.Keywords: adsolubilisation, anionic surfactant, bilayer, chitosan, Pb²⁺
Procedia PDF Downloads 2401214 The Influence of Gender on Itraconazole Pharmacokinetic Parameters in Healthy Adults
Authors: Milijana N. Miljkovic, Viktorija M. Dragojevic-Simic, Nemanja K. Rancic, Vesna M. Jacevic, Snezana B. Djordjevic, Momir M. Mikov, Aleksandra M. Kovacevic
Abstract:
Itraconazole (ITZ) is a weak base and extremely lipophilic compound, with water solubility as a rate-limiting step in its absorption from the gastrointestinal tract. Its absolute bioavailability, about 55%, is maximal when its oral formulation, capsules, are taken immediately after a full meal. Peak plasma concentrations (Cmax) are reached within 2 to 5 hrs after their administration. ITZ undergoes extensive hepatic metabolism by human CYP3A4 isoenzyme and more than 30 different metabolites have been identified. One of the main ones is hydroxyitraconazole (HITZ), in which plasma concentrations are almost twice higher than those of ITZ. Gender differences in drug PK (Pharmacokinetics) have already been recognized, but variations in metabolism are believed to be their major cause. The aim of the study was to investigate the influence of gender on ITZ PK parameters after administration of oral capsule formulation, following 100 mg single dosing in healthy adult volunteers under fed conditions. The single-center, open-label PK study was performed. PK analyses included PK parameters obtained after a single 100 mg dose administration of itraconazole capsules to 48 females and 66 males. Blood samples were collected at pre-dose and up to 72.0 h after administration (1.0, 2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 9.0, 12.0, 24.0, 36.0 and 72.0 hrs). The calculated pharmacokinetic parameters, based on the plasma concentrations of itraconazole and hydroxyitraconazole, were Cmax, AUClast, and AUCtot. Plasma concentrations of ITZ and HITZ were determined using a validated liquid chromatographic method with mass spectrometric detection, while pharmacokinetic parameters were estimated using non-compartmental methods. The pharmacokinetic analyses were performed using Kinetica software version 5.0. The mean value of ITZ Cmaxmen was 74.79 ng/ml, and Cmaxwomen was 51.291 ng/ml (independent samples test; p = 0.005). Hydroxyitraconazole had a mean value of Cmaxmen 106.37 ng/ml, and the mean value Cmaxwomen was 70.05 ng/ml. Women had, on average, lower AUClast and Cmax than men. AUClastmen for ITZ was 736.02 ng/mL*h and AUClastwomen was 566.62 ng/mL*h, while AUClastmen for HITZ was 1154.80 was ng/mL*h and AUClastwomen for HITZ was 708.12 ng/mL*h (independent samples test; p = 0.033). The mean values of ITZ AUCtotmen were 884.73 ng/mL*h and AUCtotwomen was 685.10 ng/mL*h. AUCtotmen for HITZ was 1290.41 ng/mL*h, while AUCtotwomen for HIZT was 788.60 ng/mL*h (p < 0.001). The results could point out to lower oral bioavailability of ITZ in women, since values of Cmax, AUClast, and AUCtot of both ITZ and HITZ were significantly lower in women than in men, respectively. The reason may be higher expression and activity of CYP3A4 in women than in men, but there also may be differences in other PK parameters. High variability of both ITZ and HITZ concentrations in both genders confirmed that ITZ is a highly variable drug. Further examinations of its PK are needed to justify strategies for therapeutic drug monitoring in patients treated by this antifungal agent.Keywords: itraconazole, gender, hydroxyitraconazole, pharmacokinetics
Procedia PDF Downloads 1371213 Anti-Corruption, an Important Challenge for the Construction Industry!
Authors: Ahmed Stifi, Sascha Gentes, Fritz Gehbauer
Abstract:
The construction industry is perhaps one of the oldest industry of the world. The ancient monuments like the egyptian pyramids, the temples of Greeks and Romans like Parthenon and Pantheon, the robust bridges, old Roman theatres, the citadels and many more are the best testament to that. The industry also has a symbiotic relationship with other . Some of the heavy engineering industry provide construction machineries, chemical industry develop innovative construction materials, finance sector provides fund solutions for complex construction projects and many more. Construction Industry is not only mammoth but also very complex in nature. Because of the complexity, construction industry is prone to various tribulations which may have the propensity to hamper its growth. The comparitive study of this industry with other depicts that it is associated with a state of tardiness and delay especially when we focus on the managerial aspects and the study of triple constraint (time, cost and scope). While some institutes says the complexity associated with it as a major reason, others like lean construction, refers to the wastes produced across the construction process as the prime reason. This paper introduces corruption as one of the prime factors for such delays.To support this many international reports and studies are available depicting that construction industry is one of the most corrupt sectors worldwide, and the corruption can take place throught the project cycle comprising project selection, planning, design, funding, pre-qualification, tendering, execution, operation and maintenance, and even through the reconstrction phase. It also happens in many forms such as bribe, fraud, extortion, collusion, embezzlement and conflict of interest and the self-sufficient. As a solution to cope the corruption in construction industry, the paper introduces the integrity as a key factor and build a new integrity framework to develop and implement an integrity management system for construction companies and construction projects.Keywords: corruption, construction industry, integrity, lean construction
Procedia PDF Downloads 3771212 Exploratory Study to Obtain a Biolubricant Base from Transesterified Oils of Animal Fats (Tallow)
Authors: Carlos Alfredo Camargo Vila, Fredy Augusto Avellaneda Vargas, Debora Alcida Nabarlatz
Abstract:
Due to the current need to implement environmentally friendly technologies, the possibility of using renewable raw materials to produce bioproducts such as biofuels, or in this case, to produce biolubricant bases, from residual oils (tallow), originating has been studied of the bovine industry. Therefore, it is hypothesized that through the study and control of the operating variables involved in the reverse transesterification method, a biolubricant base with high performance is obtained on a laboratory scale using animal fats from the bovine industry as raw materials, as an alternative for material recovery and environmental benefit. To implement this process, esterification of the crude tallow oil must be carried out in the first instance, which allows the acidity index to be decreased ( > 1 mg KOH/g oil), this by means of an acid catalysis with sulfuric acid and methanol, molar ratio 7.5:1 methanol: tallow, 1.75% w/w catalyst at 60°C for 150 minutes. Once the conditioning has been completed, the biodiesel is continued to be obtained from the improved sebum, for which an experimental design for the transesterification method is implemented, thus evaluating the effects of the variables involved in the process such as the methanol molar ratio: improved sebum and catalyst percentage (KOH) over methyl ester content (% FAME). Finding that the highest percentage of FAME (92.5%) is given with a 7.5:1 methanol: improved tallow ratio and 0.75% catalyst at 60°C for 120 minutes. And although the% FAME of the biodiesel produced does not make it suitable for commercialization, it does ( > 90%) for its use as a raw material in obtaining biolubricant bases. Finally, once the biodiesel is obtained, an experimental design is carried out to obtain biolubricant bases using the reverse transesterification method, which allows the study of the effects of the biodiesel: TMP (Trimethylolpropane) molar ratio and the percentage of catalyst on viscosity and yield as response variables. As a result, a biolubricant base is obtained that meets the requirements of ISO VG (Classification for industrial lubricants according to ASTM D 2422) 32 (viscosity and viscosity index) for commercial lubricant bases, using a 4:1 biodiesel molar ratio: TMP and 0.51% catalyst at 120°C, at a pressure of 50 mbar for 180 minutes. It is necessary to highlight that the product obtained consists of two phases, a liquid and a solid one, being the first object of study, and leaving the classification and possible application of the second one incognito. Therefore, it is recommended to carry out studies of the greater depth that allows characterizing both phases, as well as improving the method of obtaining by optimizing the variables involved in the process and thus achieving superior results.Keywords: biolubricant base, bovine tallow, renewable resources, reverse transesterification
Procedia PDF Downloads 1171211 Automatic Detection of Traffic Stop Locations Using GPS Data
Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell
Abstract:
Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data
Procedia PDF Downloads 2751210 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking
Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao
Abstract:
Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.Keywords: dense suspension, instability, self-organization, density wave
Procedia PDF Downloads 881209 Does Pakistan Stock Exchange Offer Diversification Benefits to Regional and International Investors: A Time-Frequency (Wavelets) Analysis
Authors: Syed Jawad Hussain Shahzad, Muhammad Zakaria, Mobeen Ur Rehman, Saniya Khaild
Abstract:
This study examines the co-movement between the Pakistan, Indian, S&P 500 and Nikkei 225 stock markets using weekly data from 1998 to 2013. The time-frequency relationship between the selected stock markets is conducted by using measures of continuous wavelet power spectrum, cross-wavelet transform and cross (squared) wavelet coherency. The empirical evidence suggests strong dependence between Pakistan and Indian stock markets. The co-movement of Pakistani index with U.S and Japanese, the developed markets, varies over time and frequency where the long-run relationship is dominant. The results of cross wavelet and wavelet coherence analysis indicate moderate covariance and correlation between stock indexes and the markets are in phase (i.e. cyclical in nature) over varying durations. Pakistan stock market was lagging during the entire period in relation to Indian stock market, corresponding to the 8~32 and then 64~256 weeks scale. Similar findings are evident for S&P 500 and Nikkei 225 indexes, however, the relationship occurs during the later period of study. All three wavelet indicators suggest strong evidence of higher co-movement during 2008-09 global financial crises. The empirical analysis reveals a strong evidence that the portfolio diversification benefits vary across frequencies and time. This analysis is unique and have several practical implications for regional and international investors while assigning the optimal weightage of different assets in portfolio formulation.Keywords: co-movement, Pakistan stock exchange, S&P 500, Nikkei 225, wavelet analysis
Procedia PDF Downloads 3571208 Determination of Antioxidant Activity in Raphanus raphanistrum L.
Authors: Esma Hande Alıcı, Gülnur Arabacı
Abstract:
Antioxidants are compounds or systems that can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged. The anti-oxidative effectiveness of these compounds depends on their chemical characteristics and physical location within a food (proximity to membrane phospholipids, emulsion interfaces, or in the aqueous phase). Antioxidants (e.g., flavonoids, phenolic acids, tannins, vitamin C, vitamin E) have diverse biological properties, such as antiinflammatory, anti-carcinogenic and anti-atherosclerotic effects, reduce the incidence of coronary diseases and contribute to the maintenance of gut health by the modulation of the gut microbial balance. Plants are excellent sources of antioxidants especially with their high content of phenolic compounds. Raphanus raphanistrum L., the wild radish, is a flowering plant in the family Brassicaceae. It grows in Asia and Mediterranean region. It has been introduced into most parts of the world. It spreads rapidly, and is often found growing on roadsides or in other places where the ground has been disturbed. It is an edible plant, in Turkey its fresh aerial parts are mostly consumed as a salad with olive oil and lemon juice after boiled. The leaves of the plant are also used as anti-rheumatic in traditional medicine. In this study, we determined the antioxidant capacity of two different solvent fractions (methanol and ethyl acetate) obtained from Raphanus raphanistrum L. plant leaves. Antioxidant capacity of the plant was introduced by using three different methods: DPPH radical scavenging activity, CUPRAC (Cupric Ion Reducing Antioxidant Capacity) activity and Reducing power activity.Keywords: antioxidant activity, antioxidant capacity, Raphanis raphanistrum L., wild radish
Procedia PDF Downloads 2761207 Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna
Authors: Babatunde Olatujoye, Binbin Yang
Abstract:
Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain.Keywords: back propagation, microwave imaging, monostatic, vivialdi antenna, ultra wideband
Procedia PDF Downloads 191206 In-Fun-Mation: Putting the Fun in Information Retrieval at the Linnaeus University, Sweden
Authors: Aagesson, Ekstrand, Persson, Sallander
Abstract:
A description of how a team of librarians at Linnaeus University Library in Sweden utilizes a pedagogical approach to deliver engaging digital workshops on information retrieval. The team consists of four librarians supporting three different faculties. The paper discusses the challenges faced in engaging students who may perceive information retrieval as a boring and difficult subject. The paper emphasizes the importance of motivation, inclusivity, constructive feedback, and collaborative learning in enhancing student engagement. By employing a two-librarian teaching model, maintaining a lighthearted approach, and relating information retrieval to everyday experiences, the team aimed to create an enjoyable and meaningful learning experience. The authors describe their approach to increase student engagement and learning outcomes through a three-phase workshop structure: before, during, and after the workshops. The "flipped classroom" method was used, where students were provided with pre-workshop materials, including a short film on information search and encouraged to reflect on the topic using a digital collaboration tool. During the workshops, interactive elements such as quizzes, live demonstrations, and practical training were incorporated, along with opportunities for students to ask questions and provide feedback. The paper concludes by highlighting the benefits of the flipped classroom approach and the extended learning opportunities provided by the before and after workshop phases. The authors believe that their approach offers a sustainable alternative for enhancing information retrieval knowledge among students at Linnaeus University.Keywords: digital workshop, flipped classroom, information retrieval, interactivity, LIS practitioner, student engagement
Procedia PDF Downloads 661205 Isolation and Selection of Strains Perspective for Sewage Sludge Processing
Authors: A. Zh. Aupova, A. Ulankyzy, A. Sarsenova, A. Kussayin, Sh. Turarbek, N. Moldagulova, A. Kurmanbayev
Abstract:
One of the methods of organic waste bioconversion into environmentally-friendly fertilizer is composting. Microorganisms that produce hydrolytic enzymes play a significant role in accelerating the process of organic waste composting. We studied the enzymatic potential (amylase, protease, cellulase, lipase, urease activity) of bacteria isolated from the sewage sludge of Nur-Sultan, Rudny, and Fort-Shevchenko cities, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha for processing organic waste and identifying active strains. Microorganism isolation was carried out by the cultures enrichment method on liquid nutrient media, followed by inoculating on different solid media to isolate individual colonies. As a result, sixty-one microorganisms were isolated, three of which were thermophiles (DS1, DS2, and DS3). The highest number of isolates, twenty-one and eighteen, were isolated from sewage sludge of Nur-Sultan and Rudny cities, respectively. Ten isolates were isolated from the wastewater of the sewage treatment plant in Fort-Shevchenko. From the dacha soil of Nur-Sultan city and freshly cut grass - 9 and 5 isolates were revealed, respectively. The lipolytic, proteolytic, amylolytic, cellulolytic, ureolytic, and oil-oxidizing activities of isolates were studied. According to the results of experiments, starch hydrolysis (amylolytic activity) was found in 2 isolates - CB2/2, and CB2/1. Three isolates - CB2, CB2/1, and CB1/1 were selected for the highest ability to break down casein. Among isolated 61 bacterial cultures, three isolates could break down fats - CB3, CBG1/1, and IL3. Seven strains had cellulolytic activity - DS1, DS2, IL3, IL5, P2, P5, and P3. Six isolates rapidly decomposed urea. Isolate P1 could break down casein and cellulose. Isolate DS3 was a thermophile and had cellulolytic activity. Thus, based on the conducted studies, 15 isolates were selected as a potential for sewage sludge composting - CB2, CB3, CB1/1, CB2/2, CBG1/1, CB2/1, DS1, DS2, DS3, IL3, IL5, P1, P2, P5, P3. Selected strains were identified on a mass spectrometer (Maldi-TOF). The isolate - CB 3 was referred to the genus Rhodococcus rhodochrous; two isolates CB2 and CB1 / 1 - to Bacillus cereus, CB 2/2 - to Cryseobacterium arachidis, CBG 1/1 - to Pseudoxanthomonas sp., CB2/1 - to Bacillus megaterium, DS1 - to Pediococcus acidilactici, DS2 - to Paenibacillus residui, DS3 - to Brevibacillus invocatus, three strains IL3, P5, P3 - to Enterobacter cloacae, two strains IL5, P2 - to Ochrobactrum intermedium, and P1 - Bacillus lichenoformis. Hence, 60 isolates were isolated from the wastewater of the cities of Nur-Sultan, Rudny, Fort-Shevchenko, the dacha soil of Nur-Sultan city, and freshly cut grass from the dacha. Based on the highest enzymatic activity, 15 active isolates were selected and identified. These strains may become the candidates for bio preparation for sewage sludge processing.Keywords: sewage sludge, composting, bacteria, enzymatic activity
Procedia PDF Downloads 1021204 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory
Authors: Peter Thissen
Abstract:
In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction
Procedia PDF Downloads 3631203 A Study on the Effect of Cod to Sulphate Ratio on Performance of Lab Scale Upflow Anaerobic Sludge Blanket Reactor
Authors: Neeraj Sahu, Ahmad Saadiq
Abstract:
Anaerobic sulphate reduction has the potential for being effective and economically viable over conventional treatment methods for the treatment of sulphate-rich wastewater. However, a major challenge in anaerobic sulphate reduction is the diversion of a fraction of organic carbon towards methane production and some minor problem such as odour problems, corrosion, and increase of effluent chemical oxygen demand. A high-rate anaerobic technology has encouraged researchers to extend its application to the treatment of complex wastewaters with relatively low cost and energy consumption compared to physicochemical methods. Therefore, the aim of this study was to investigate the effects of COD/SO₄²⁻ ratio on the performance of lab scale UASB reactor. A lab-scale upflow anaerobic sludge blanket (UASB) reactor was operated for 170 days. In which first 60 days, for successful start-up with acclimation under methanogenesis and sulphidogenesis at COD/SO₄²⁻ of 18 and were operated at COD/SO₄²⁻ ratios of 12, 8, 4 and 1 to evaluate the effects of the presence of sulfate on the reactor performance. The reactor achieved maximum COD removal efficiency and biogas evolution at the end of acclimation (control). This phase lasted 53 days with 89.5% efficiency. The biogas was 0.6 L/d at (OLR) of 1.0 kg COD/m³d when it was treating synthetic wastewater with effective volume of reactor as 2.8 L. When COD/SO₄²⁻ ratio changed from 12 to 1, slight decrease in COD removal efficiencies (76.8–87.4%) was observed, biogas production decreased from 0.58 to 0.32 L/d, while the sulfate removal efficiency increased from 42.5% to 72.7%.Keywords: anaerobic, chemical oxygen demand, organic loading rate, sulphate, up-flow anaerobic sludge blanket reactor
Procedia PDF Downloads 2181202 The Documentation of Modernisation Processes in Spain Based on the Residential Architecture of the 1960s. A Patrimonial Perspective on El Plantinar Neighbourhood in Seville
Authors: Julia Rey-Pérez, Julia Díaz Borrego
Abstract:
The modernisation process of the city of Sevilla in Spain and the transformation of the city took place through national and local government initiatives from the 1960s onwards. Part of these actions was the execution of numerous residential neighbourhoodsthat prepared Sevilla for the change of era. This process was possible thanks to the implementation of public policies that showed the imminent need for new architectural programmes, as well as for high-rise architecture built in reinforced concrete. However, very little is known to this day about the modernisation process in Sevilla and the development of these neighbourhoods, which were designed to house a large number of people and are today a key reference point in the Historic Urban Landscape of the city of Seville. Therefore, the present research aims to learn and reflect upon the urban transformation of the city at this time andto deepen the heritage uniqueness of these neighbourhoods, as is the case of ElPlantinarneighbourhood.The methodology proposed for this research is structured in three phases, where in the first stage, a general study of the El Plantinarneighbourhood was carried out on three scales: urban, object-typological and perceptive. In the second stage, the cultural attributes and values of the urban complex in question were identified in order to determine whether the case study is truly representative of the beginnings of modernity in Spain and whether it needs a heritage approach. Finally, a third phase is proposed in which criteria will be defined on how to intervene in this neighbourhood to guarantee its presence in the urban landscape of the city of Seville. The expected results will help to understand the process of modernisation that the city has undergone, as well as the heritage value of this architecture in the construction of the collective memory.Keywords: modern heritage, urban obsolescence, methodology, develop
Procedia PDF Downloads 1491201 Study of the Non-isothermal Crystallization Kinetics of Polypropylene Homopolymer/Impact Copolymer Composites
Authors: Pixiang Wang, Shaoyang Liu, Yucheng Peng
Abstract:
Polypropylene (PP) is an essential material of numerous applications in different industrial sectors, including packaging, construction, and automotive. Because the application of homopolypropylene (HPP) is limited by its relatively low impact strength and high embrittlement temperature, various types of impact copolymer PP (ICPP) that incorporate elastomers/rubbers into HPP to increase impact strength have been successfully commercialized. Crystallization kinetics of an isotactic HPP, an ICPP, and their composites were studied in this work understand the composites’ behaviors better. The Avrami-Jeziorny model was used to describe the crystallization process. For most samples, the Avrami exponent, n, was greater than 3, indicating the crystal grew in three dimensions with spherical geometry. However, the n value could drop below 3 when the ICPP content was 80 wt.% or higher and the cooling rate was 7.5°C/min or lower, implying that the crystals could grow in two dimensions and some lamella structures could be formed under those conditions. The nucleation activity increased with the increase of the ICPP content, demonstrating that the rubber phase in the ICPP acted as a nucleation agent and facilitated the nucleation process. The decrease in crystallization rate after the ICPP content exceeded 60 wt.% might be caused by the excessive amount of crystal nuclei induced by the high ICPP content, which caused strong crystal-crystal interactions and limited the crystal growth space. The nucleation activity and the n value showed high correlations to the mechanical and thermal properties of the materials. The quantitative study of the kinetics of crystallization in this work could be a helpful reference for manufacturing ICPP and HPP/ICPP mixtures.Keywords: polypropylene, crystallization kinetics, Avrami-Jeziorny model, crystallization activation energy, Nucleation activity
Procedia PDF Downloads 861200 Fed-Batch Mixotrophic Cultivation of Microalgae Scenedesmus sp., Using Airlift Photobioreactor
Authors: Lakshmidevi Rajendran, Bharathidasan Kanniappan, Gopi Raja, Muthukumar Karuppan
Abstract:
This study investigates the feasibility of fed-batch mixotrophic cultivation of microalgae Scenedesmus sp. in a 3-litre airlift photobioreactor under standard operating conditions. The results of this study suggest the algae species may serve as an excellent feed for aquatic species using organic byproducts. Microalgae Scenedesmus sp., was cultured using a synthetic wastewater by stepwise addition of crude glycerol concentration ranging from 2-10g/l under fed-batch mixotrophic mode for a period of 15 days. The attempts were made with the stepwise addition of crude glycerol as a carbon source in the initial growth phase to evade the inhibitory nature of high glycerol concentration on the growth of Scenedesmus sp. Crude glycerol was chosen since it is readily accessible as byproduct from biodiesel production sectors. Highest biomass concentration was achieved to be 2.43 g/l at the crude glycerol concentration of 6g/l after 10 days which is 3 fold times the increase in the biomass concentration compared with the control medium without the addition of glycerol. Biomass growth data obtained for the microalgae Scenedesmus sp. was fitted well with the modified Logistic equation. Substrate utilization kinetics was also employed to model the biomass productivity with respect to the various crude glycerol concentration. The results indicated that the supplement of crude glycerol to the mixotrophic culture of Scenedesmus sp., enhances the biomass concentration, chlorophyll and lutein productivity. Thus the application of fed-batch mixotrophic cultivation with stepwise addition of crude glycerol to Scenedesmus sp., provides a subtle way to reduce the production cost and improvisation in the large-scale cultivation along with biochemical compound synthesis.Keywords: airlift photobioreactor, crude glycerol, microalgae Scenedesmus sp., mixotrophic cultivation, lutein production
Procedia PDF Downloads 1871199 Cold Spray High Entropy Alloy Coating Surface Microstructural Characterization and Mechanical Testing
Authors: Raffaella Sesana, Nazanin Sheibanian, Luca Corsaro, Sedat Özbilen, Rocco Lupoi, Francesco Artusio
Abstract:
High Entropy Alloy (HEA) coatings of Al0.1-0.5CoCrCuFeNi and MnCoCrCuFeNi on Mg substrates were prepared from mechanically alloyed HEA powder feedstocks and at three different Cold Spray (CS) process gas (N2) temperatures (650, 750 and 850°C). Mechanically alloyed and cold-sprayed HEA coatings were characterized by macro photography, OM, SEM+EDS study, micro-hardness testing, roughness, and porosity measurements. As a result of mechanical alloying (MA), harder particles are deformed and fractured. The particles in the Cu-rich region were coarser and more globular than those in the A1 phase, which is relatively soft and ductile. In addition to the A1 particles, there were some separate Cu-rich regions. Due to the brittle nature of the powder and the acicular shape, Mn-HEA powder exhibited a different trend with smaller particle sizes. It is observed that MA results in a loose structure characterized by many gaps, cracks, signs of plastic deformation, and small particles attached to the surface of the particle. Considering the experimental results obtained, it is not possible to conclude that the chemical composition of the high entropy alloy influences the roughness of the coating. It has been observed that the deposited volume increases with temperature only in the case of Al0.1 and Mg-based HEA, while for the rest of the Al-based HEA, there are no noticeable changes. There is a direct correlation between micro-hardness and the chemical composition of a coating: the micro-hardness of a coating increases as the percentage of aluminum increases in the sample. Compared to the substrate, the coating has a much higher hardness, and the hardness measured at the interface is intermediate.Keywords: characterisation, cold spraying, HEA coatings, SEM+EDS
Procedia PDF Downloads 641198 Music Tourism for Identity and Cultural Communication in Qualitative Analysis with MAXQDA
Authors: Yixuan Peng
Abstract:
Music tourism is the phenomenon of people visiting a place because of their association with music, as well as the process of creating an emotional attachment to a place through the connection between people and music. Music offers people the opportunity to immerse themselves in the local culture. Music tourism is increasingly recognized as an industry with economic and social impacts. People often come together for a common purpose of music at a certain time and place, such as concert, opera, or music workshop. This is very similar to the act of pilgrimage: the process of participation evokes strong emotions; it takes time and money to get to the destination; the gathering, and the emotional co-frequency. This study conducted further qualitative research using MAXQDA by applying the musical topophilia model with East Asians as interview subjects. There are three steps to traveling: before, during and after the trip. To date, 53 individuals living in East Asia have been interviewed one-on-one (online/offline) about their travel experiences. This part of the interview is limited to the two stages that are before and after travel. Based on the results of the interviews above, and as Europe has the most representative music industry and the richest variety of music genres. The " during the trip" phase of the observations and interviews were conducted in Europe and involved on-site music in Salzburg and London, including musical theater, street music, and musical pilgrimages. Interviews with 24 people were conducted in English, Chinese and Japanese. This study will use data to demonstrate the followings: the irreplaceability of music in faraway places; the identity and sense of belonging that music brings; the ethnic barriers that music crosses; and the cultural communication that music enables.Keywords: belongingness, gathering, modern pilgrimage, anthropology of music, sociology of music
Procedia PDF Downloads 811197 Application of Numerical Modeling and Field Investigations for Groundwater Recharge Characterization at Abydos Archeological Site, Sohag, Egypt
Authors: Sherif A. Abu El-Magd, Ahmed M. Sefelnasr, Ahmed M. Masoud
Abstract:
Groundwater modeling is the way and tool for assessing and managing groundwater resources efficiently. The present work was carried out in the ancient Egyptian archeological site (Abydos) fromDynastyIandII.Theareaislocated about 13km west of the River Nilecourse, Upper Egypt. The main problem in this context is that the ground water level rise threatens and damages fragile carvings and paintings of the ancient buildings. The main objective of the present work is to identify the sources of the groundwater recharge in the site, further more, equally important there is to control the ground water level rise. Numerical modeling combined with field water level measurements was implemented to understand the ground water recharge sources. However, building a conceptual model was an important step in the groundwater modeling to phase to satisfy the modeling objectives. Therefore, boreholes, crosssections, and a high-resolution digital elevation model were used to construct the conceptual model. To understand the hydrological system in the site, the model was run under both steady state and transient conditions. Then, the model was calibrated agains the observation of the water level measurements. Finally, the results based on the modeling indicated that the groundwater recharge is originating from an indirect flow path mainly from the southeast. Besides, there is a hydraulic connection between the surface water and groundwater in the study site. The decision-makers and archeologyists could consider the present work to understand the behavior of groundwater recharge and water table level rise.Keywords: numerical modeling, archeological site, groundwater recharge, egypt
Procedia PDF Downloads 1231196 Improving Tower Grounding and Insulation Level vs. Line Surge Arresters for Protection of Subtransmission Lines
Authors: Navid Eghtedarpour, Mohammad Reza Hasani
Abstract:
Since renewable wind power plants are usually installed in mountain regions and high-level lands, they are often prone to lightning strikes and their hazardous effects. Although the transmission line is protected using guard wires in order to prevent the lightning surges to strike the phase conductors, the back-flashover may also occur due to tower footing resistance. A combination of back-flashover corrective methods, tower-footing resistance reduction, insulation level improvement, and line arrester installation, are analyzed in this paper for back-flashover rate reduction of a double-circuit 63 kV line in the south region of Fars province. The line crosses a mountain region in some sections with a moderate keraunic level, whereas tower-footing resistance is substantially high at some towers. Consequently, an exceptionally high back-flashover rate is recorded. A new method for insulation improvement is studied and employed in the current study. The method consists of using a composite-type creepage extender in the string. The effectiveness of this method for insulation improvement of the string is evaluated through the experimental test. Simulation results besides monitoring the one-year operation of the 63-kV line show that due to technical, practical, and economic restrictions in operated sub-transmission lines, a combination of corrective methods can lead to an effective solution for the protection of transmission lines against lightning.Keywords: lightning protection, BF rate, grounding system, insulation level, line surge arrester
Procedia PDF Downloads 1301195 Structural and Optical Characterization of Rice-Husk-Derived SiO₂ Crystals-reinforced PVA Composites
Authors: Suminar Pratapa, Agus Riyanto, Silmi Machmudah, Sri Yani Purwaningsih
Abstract:
The objective of this study was to investigate the optical properties of polyvinyl alcohol (PVA) and its prospective applications by adding crystalline silica which is usually used as a reinforcing agent. To do this, we synthesized and evaluated PVA-based composites reinforced with silica crystals, namely cristobalite, derived from rice husk. The experimental procedure involved the production of SiO2 particles using rice husk precursors, which were subsequently subjected to calcination at a rate of 10 °C/min for a duration of 3 hours. This process primarily resulted in the formation of SiO2 crystals in the cristobalite phase, according to X-ray diffraction (XRD). Following this, the crystals were incorporated into polyvinyl alcohol (PVA) via a casting technique, resulting in the formation of composite sheets. The SiO2 contents in the composites were 0, 2.5, 5.0, and 10.%. XRD and Fourier-transform infrared spectroscopy (FTIR) techniques provided confirmation of the composites' successful synthesis, i.e., it did not yield any indications of chemical bonding between polyvinyl alcohol (PVA) and silicon dioxide (SiO2), indicating that the interaction was limited to interfacial reactions. The incorporation of SiO2 crystals resulted in a notable enhancement in UV-vis light absorption and a decrease in the optical band gap. Addition of 2.5, 5.0, and 10.% SiO2, for example, decreases the direct optical band gap of the composites form 5.37, 5.19, and 5.02 eV respectively, while the indirect band gaps of the samples were 4.44, 4.84, and 4.48 eV, correspondingly. These findings emphasize the efficacy of rice husk-derived SiO2 crystals as both reinforcement agents and modifiers of optical properties in the polymer composites, showcasing their significant potential to modify the composite's structural and optical characteristics.Keywords: rice husk, cristaline SiO₂, PVA-based composites, structural characteristics, optical properties.
Procedia PDF Downloads 461194 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology
Authors: Mouhamadou Diop, Mohamed I. Hassan
Abstract:
Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field
Procedia PDF Downloads 2451193 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System
Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer
Abstract:
The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling
Procedia PDF Downloads 2461192 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics
Authors: Nidhi Adhlakha, K. L. Yadav
Abstract:
Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.Keywords: composite, X-ray diffraction, dielectric properties, optical properties
Procedia PDF Downloads 3081191 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy
Authors: Yasam Palguna, Rajesh Korla
Abstract:
The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures
Procedia PDF Downloads 1651190 3D Medical Printing the Key Component in Future of Medical Applications
Authors: Zahra Asgharpour, Eric Renteria, Sebastian De Boodt
Abstract:
There is a growing trend towards personalization of medical care, as evidenced by the emphasis on outcomes based medicine, the latest developments in CT and MR imaging and personalized treatment in a variety of surgical disciplines. 3D Printing has been introduced and applied in the medical field since 2000. The first applications were in the field of dental implants and custom prosthetics. According to recent publications, 3D printing in the medical field has been used in a wide range of applications which can be organized into several categories including implants, prosthetics, anatomical models and tissue bioprinting. Some of these categories are still in their infancy stage of the concept of proof while others are in application phase such as the design and manufacturing of customized implants and prosthesis. The approach of 3D printing in this category has been successfully used in the health care sector to make both standard and complex implants within a reasonable amount of time. In this study, some of the clinical applications of 3D printing in design and manufacturing of a patient-specific hip implant would be explained. In cases where patients have complex bone geometries or are undergoing a complex revision on hip replacement, the traditional surgical methods are not efficient, and hence these patients require patient-specific approaches. There are major advantages in using this new technology for medical applications, however, in order to get this technology widely accepted in medical device industry, there is a need for gaining more acceptance from the medical device regulatory offices. This is a challenge that is moving onward and will help the technology find its way at the end as an accepted manufacturing method for medical device industry in an international scale. The discussion will conclude with some examples describing the future directions of 3D Medical Printing.Keywords: CT/MRI, image processing, 3D printing, medical devices, patient specific implants
Procedia PDF Downloads 2981189 Sustainable Development and Modern Challenges of Higher Educational Institutions in the Regions of Georgia
Authors: Natia Tsiklashvili, Tamari Poladashvili
Abstract:
Education is one of the fundamental factors of economic prosperity in all respects. It is impossible to talk about the sustainable economic development of the country without substantial investments in human capital and investment into higher educational institutions. Education improves the standard of living of the population and expands the opportunities to receive more benefits, which will be equally important for both the individual and the society as a whole. There are growing initiatives among educated people such as entrepreneurship, technological development, etc. At the same time, the distribution of income between population groups is improving. The given paper discusses the scientific literature in the field of sustainable development through higher educational institutions. Scholars of economic theory emphasize a few major aspects that show the role of higher education in economic growth: a) Alongside education, human capital gradually increases which leads to increased competitiveness of the labor force, not only in the national but also in the international labor market (Neoclassical growth theory), b) The high level of education can increase the efficiency of the economy, investment in human capital, innovation, and knowledge are significant contributors to economic growth. Hence, it focuses on positive externalities and spillover effects of a knowledge-based economy which leads to economic development (endogenous growth theory), c) Education can facilitate the diffusion and transfer of knowledge. Hence, it supports macroeconomic sustainability and microeconomic conditions of individuals. While discussing the economic importance of education, we consider education as the spiritual development of the human that advances general skills, acquires a profession, and improves living conditions. Scholars agree that human capital is not only money but liquid assets, stocks, and competitive knowledge. The last one is the main lever in the context of increasing human competitiveness and high productivity. To address the local issues, the present article researched ten educational institutions across Georgia, including state and private HEIs. Qualitative research was done by analyzing in-depth interweaves of representatives from each institution, and respondents were rectors/vice-rectors/heads of quality assurance service at the institute. The result shows that there is a number of challenges that institution face in order to maintain sustainable development and be the strong links to education and the labor market. Mostly it’s contacted with bureaucracy, insufficient finances they receive, and local challenges that differ across the regions.Keywords: higher education, higher educational institutions, sustainable development, regions, Georgia
Procedia PDF Downloads 85