Search results for: linear eigenvalue analysis
25385 Developing and Evaluating the Impacts of Specialized Health Education Modules on Malaria Prevention for Pregnant Women: A Randomized Controlled Trial
Authors: Ahmed D. Balami, Salmiah Md. Said, Nor Afiah Zulkefli, Norsa’adah Bachok, Bala Audu
Abstract:
The World Health Organization prescribes that women living in malaria-endemic regions sleep under an insecticide-treated net (ITN) and comply with intermittent preventive treatment in pregnancy (IPTp). However, compliance with these measures is generally poor in Nigeria, despite the high burden of malaria and its complications in pregnancy, as well as the proven efficacy of these preventive measures. This study aimed to develop, implement, and evaluate the impacts of information-motivation-behavioral skills-based health education modules (IMB-HEMOD) on malaria prevention among pregnant women in Borno state, Nigeria. A parallel-group randomized controlled trial was conducted, enrolling 372 pregnant women (186 participants each in the intervention or control groups) at an antenatal clinic in Borno state, Nigeria. IMB-HEMOD on malaria prevention was delivered to the intervention group. This comprised four sessions and was conducted over four hours. Session one comprised lectures on malaria causative agents, transmission, symptoms, complications, and prevention. Session two was a facilitated interactive session, where participants brainstormed through the potential barriers to compliance with these preventive measures and collectively developed solutions to them. Sessions three and four entailed practical demonstrations of how to use these preventive measures. Participants in the control group received a dummy intervention in the form of health education on breastfeeding, delivered by the same facilitator, for a similar duration, and using a similar approach as the experimental intervention. Validated questionnaires were used to collect baseline and follow-up data (at two months and four months post-intervention) on the dependent variables – malaria prevention knowledge, motivation, behavioral skills, practices, and clinical outcomes. The generalized linear mixed-models analysis was used to test the effects of the intervention on the dependent variables. The total knowledge, motivation, and behavioral skills scores of the intervention group were significantly higher by 12.8% (95% Confidence Interval [CI]: 9.50 - 16.01), 8.6% (95% CI: 6.74 - 10.36), and 6.4% (95% CI: 4.41 – 8.29) respectively over the control group. The results also showed that 32% (95% CI: 6 – 59) and 37% (95% CI: 26 – 47) of participants in the intervention group slept at least one day more frequently under an insecticide-treated net (ITN), and took one dose more of intermittent preventive treatment in pregnancy (IPTp), compared to the control group. The intervention group also achieved 0.8% (95% CI: 0.53 – 1.07) higher hematocrit levels compared to the control group. Overall, the study results revealed the promising potential of the modules for not only boosting compliance with the prescribed malaria preventive measures but also improving clinical outcomes. It is thus recommended to adopt the modules into routine antenatal care health education. Future research evaluating the cost-effectiveness and feasibility of long-term implementation would help inform policy adoption.Keywords: health education intervention, insecticide-treated net, intermittent preventive treatment, malaria, pregnant women
Procedia PDF Downloads 1225384 Analysis on Financial Status and Operational Performance of Suan Sunandha Rajabhat University in 3 Fiscal Years (2011-2013)
Authors: Anocha Kimkong, Natnichar Kleebbuabarn
Abstract:
This research work has the objective to analyze the financial status and operational performance of Suan Sunandha Rajabhat University (SSRU) in 3 fiscal years (2011-2013). The tool used is a form to record financial statements and balances of the university. The analysis is based on the calculation that regards the figures in the fiscal year of 2011 as the 100% bases to be compared with the same figures in the fiscal years of 2012 and 2013, which are multiplied by 100 and divided by the base figures. The outcomes are the percentages of each year, which can reflect the rising, stable, and falling trends. The results from the analysis reveal that SSRU’s financial status is getting better because the gross assets, debts and accumulated cash are increasing in the fiscal years of 2012 and 2013. Concerning the operational performance, the university’s incomes and expenses are rising from the fiscal year of 2011. This makes the university’s incomes grow higher than expenses.Keywords: financial status, operational performance, Suan Sunandha Rajabhat University, balances
Procedia PDF Downloads 38625383 Interference among Lambsquarters and Oil Rapeseed Cultivars
Authors: Reza Siyami, Bahram Mirshekari
Abstract:
Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.Keywords: green cover percentage, independent variable, interference, regression
Procedia PDF Downloads 42425382 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method
Authors: Anung Style Bukhori, Ani Dijah Rahajoe
Abstract:
Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.Keywords: poverty, classification, naïve bayes, Indonesia
Procedia PDF Downloads 6525381 Genetic Diversity of Sugar Beet Pollinators
Authors: Ksenija Taški-Ajdukovic, Nevena Nagl, Živko Ćurčić, Dario Danojević
Abstract:
Information about genetic diversity of sugar beet parental populations is of a great importance for hybrid breeding programs. The aim of this research was to evaluate genetic diversity among and within populations and lines of diploid sugar beet pollinators, by using SSR markers. As plant material were used eight pollinators originating from three USDA-ARS breeding programs and four pollinators from Institute of Field and Vegetable Crops, Novi Sad. Depending on the presence of self-fertility gene, the pollinators were divided into three groups: autofertile (inbred lines), autosterile (open-pollinating populations), and group with partial presence of autofertility gene. A total of 40 SSR primers were screened, out of which 34 were selected for the analysis of genetic diversity. A total of 129 different alleles were obtained with mean value 3.2 alleles per SSR primer. According to the results of genetic variability assessment the number and percentage of polymorphic loci was the maximal in pollinators NS1 and tester cms2 while effective number of alleles, expected heterozygosis and Shannon’s index was highest in pollinator EL0204. Analysis of molecular variance (AMOVA) showed that 77.34% of the total genetic variation was attributed to intra-varietal variance. Correspondence analysis results were very similar to grouping by neighbor-joining algorithm. Number of groups was smaller by one, because correspondence analysis merged IFVCNS pollinators with CZ25 into one group. Pollinators FC220, FC221 and C 51 were in the next group, while self-fertile pollinators CR10 and C930-35 from USDA-Salinas were separated. On another branch were self-sterile pollinators ЕL0204 and ЕL53 from USDA-East Lansing. Sterile testers cms1 and cms2 formed separate group. The presented results confirmed that SSR analysis can be successfully used in estimation of genetic diversity within and among sugar beet populations. Since the tested pollinator differed considering the presence of self-fertility gene, their heterozygosity differed as well. It was lower in genotypes with fixed self-fertility genes. Since the most of tested populations were open-pollinated, which rarely self-pollinate, high variability within the populations was expected. Cluster analysis grouped populations according to their origin.Keywords: auto fertility, genetic diversity, pollinator, SSR, sugar beet
Procedia PDF Downloads 46325380 Manufacturing and Characterization of Ni-Matrix Composite Reinforced with Ti3SiC2 and Ti2AlC; and Al-Matrix with Ti2SiC
Authors: M. Hadji, N. Chiker, Y. Hadji, A. Haddad
Abstract:
In this paper, we report for the first time on the synthesis and characterization of novel MAX phases (Ti3SiC2, Ti2AlC) reinforced Ni-matrix and Ti2AlC reinforced Al-matrix. The stability of MAX phases in Al-matrix and Ni-matrix at a temperature of 985°C has been investigated. All the composites were cold pressed and sintered at a temperature of 985°C for 20min in H2 environment, except (Ni/Ti3SiC2) who was sintered at 1100°C for 1h.Microstructure analysis by scanning electron microscopy and phase analysis by X-Ray diffraction confirmed that there was minimal interfacial reaction between MAX particles and Ni, thus Al/MAX samples shown that MAX phases was totally decomposed at 985°C.The Addition of MAX enhanced the Al-matrix and Ni-matrix.Keywords: MAX phase, microstructures, composites, hardness, SEM
Procedia PDF Downloads 35025379 Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia
Authors: Hailekiros Tadesse Tekle, Yemane Tsehaye, Fetien Abay
Abstract:
Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation.Keywords: barley, clustering, genetic advance, heritability, usefulness, variability, yield
Procedia PDF Downloads 9225378 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 19025377 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations
Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn
Abstract:
Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis
Procedia PDF Downloads 45225376 Cultural and Group Understandings of Disability and Sexuality
Authors: Luke Galvani
Abstract:
The cultural representations of people with disabilities are frequently biased which can lead to a general misunderstanding of disability. Representations of disabled deviance are especially problematic given that they typify or generally abstract disability as being abnormal, which then begin to take root in the cultural mind. This study utilizes critical discourse analysis to investigate how discourses of disabled sexual deviance are promoted within two major films that portray disabled sexual subjects. The findings indicate that perceptions of disabled sexual deviance are heightened by cinematic representations of sex and disability, which characterize disabled sexual expression as being undesirable due to the ephemeral and abnormal qualities ascribed to it.Keywords: deviance, disability, discourse analysis, sexuality
Procedia PDF Downloads 17225375 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method
Authors: Jiahui You, Kyung Jae Lee
Abstract:
Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.Keywords: reactive-transport , Shale, Kerogen, precipitation
Procedia PDF Downloads 16825374 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 20425373 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran
Authors: Reza Zakerinejad
Abstract:
Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.Keywords: TreeNet model, terrain analysis, Golestan Province, Iran
Procedia PDF Downloads 54025372 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors
Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar
Abstract:
Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.Keywords: electrophoretic deposition (EPD), graphene oxide (GO), electrical conductivity, electro-optical devices
Procedia PDF Downloads 19125371 A Robust Spatial Feature Extraction Method for Facial Expression Recognition
Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda
Abstract:
This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure
Procedia PDF Downloads 42925370 Hidrothermal Alteration Study of Tangkuban Perahu Craters, and Its Implication to Geothermal Conceptual Model
Authors: Afy Syahidan Achmad
Abstract:
Tangkuban Perahu is located in West Java, Indonesia. It is active stratovolcano type and still showing hidrothermal activity. The main purpose of this study is to find correlation between subsurface structure and hidrothermal activity on the surface. Using topographic map, SRTM images, and field observation, geological condition and alteration area was mapped. Alteration sample analyzed trough petrographic analysis and X-Ray Diffraction (XRD) analysis. Altered rock in study area showing white-yellowish white colour, and texture changing variation from softening to hardening because of alteration by sillica and sulphur. Alteration mineral which can be observed in petrographic analysis and XRD analysis consist of crystobalite, anatase, alunite, and pyrite. This mineral assemblage showing advanced argillic alteration type with West-East alteration area orientation. Alteration area have correlation with manifestation occurance such as steam vents, solfatara, and warm to hot pools. Most of manifestation occured in main crater like Ratu Crater and Upas crater, and parasitic crater like Domas Crater and Jarian Crater. This manifestation indicates permeability in subsurface which can be created trough structural process with same orientation. For further study geophysics method such as Magneto Telluric (MT) and resistivity can be required to find permeability zone pattern in Tangkuban Perahu subsurface.Keywords: alteration, advanced argillic, Tangkuban Perahu, XRD, crystobalite, anatase, alunite, pyrite
Procedia PDF Downloads 42425369 The Effect of Emotional Intelligence on Performance and Motivation of Staff: A Case Study of East Azerbaijan Red Crescent
Authors: Bahram Asghari Aghdam, Ali Mahjoub
Abstract:
The purpose of this study is to evaluate the effect of emotional intelligence on the motivation and performance of East Azarbaijan the Red Crescent staff. In this study, EI is determined as the independent variable component of self awareness, self management, social awareness, and relations management, motivation and performance as dependent variables. The research method is descriptive-survey. In this study, simple random sampling method is used and research sample consists of 130 East Azarbaijan the Red Crescent staff that uses Cochran's formula 100 of them were selected and questionnaires were filled by them. Three types of questionnaires were used in this study for emotional intelligence, consisting of the Bradbury Travis and Jane Greaves standard questionnaire; and for motivation and performance a questionnaire is regulated by the researcher with help of professionals and experts in this field that consists of 33 questions about the motivation and 15 questions about performance and content validity were used to obtain the necessary credit. Reliability by using the Cronbach's alpha coefficient /948 was approved. Also, in this study to test the hypothesis of the Spearman correlation coefficient and linear regressions and determine fitness of variables' of structural equation modeling is used. The results show that emotional intelligence with coefficient /865, motivation and performance of in East Azerbaijan the Red Crescent employees has a positive effect. Based on Friedman Test ranking the most influence in motivation and performance of staff in respondents' opinion is in order of self-awareness, relations management, social awareness and self-management.Keywords: emotional intelligence, self-awareness, self-management, social awareness, relations management, motivation, performance
Procedia PDF Downloads 49325368 Catalytic Thermodynamics of Nanocluster Adsorbates from Informational Statistical Mechanics
Authors: Forrest Kaatz, Adhemar Bultheel
Abstract:
We use an informational statistical mechanics approach to study the catalytic thermodynamics of platinum and palladium cuboctahedral nanoclusters. Nanoclusters and their adatoms are viewed as chemical graphs with a nearest neighbor adjacency matrix. We use the Morse potential to determine bond energies between cluster atoms in a coordination type calculation. We use adsorbate energies calculated from density functional theory (DFT) to study the adatom effects on the thermodynamic quantities, which are derived from a Hamiltonian. Oxygen radical and molecular adsorbates are studied on platinum clusters and hydrogen on palladium clusters. We calculate the entropy, free energy, and total energy as the coverage of adsorbates increases from bridge and hollow sites on the surface. Thermodynamic behavior versus adatom coverage is related to the structural distribution of adatoms on the nanocluster surfaces. The thermodynamic functions are characterized using a simple adsorption model, with linear trends as the coverage of adatoms increases. The data exhibits size effects for the measured thermodynamic properties with cluster diameters between 2 and 5 nm. Entropy and enthalpy calculations of Pt-O2 compare well with previous theoretical data for Pt(111)-O2, and our Pd-H results show similar trends as experimental measurements for Pd-H2 nanoclusters. Our methods are general and may be applied to wide variety of nanocluster adsorbate systems.Keywords: catalytic thermodynamics, palladium nanocluster absorbates, platinum nanocluster absorbates, statistical mechanics
Procedia PDF Downloads 16925367 The Norm, Singular Value and Condition Number Analysis for the Hadamard Matrices
Authors: Emine Tuğba Akyüz
Abstract:
In this study, the analysis of Hadamard matrices, which is a special type of matrix, was made under three headings: norms, singular values, condition number. Six norm types was applied to Hadamard matrices and the relationship between the results and the size of the matrix has been studied. As a result of the investigation when 2-norm was used on the problem Hx =f, the equation ‖x‖_2= ‖f‖_2/√n was shown (H is n-dimensional Hadamard matrix). Related with this, the relationship between the the singular value of H and 2-norm and eigenvalues was shown. Then, the evaluation of condition number for Hx =f was made.Keywords: condition number, Hadamard matrix, norm, singular value
Procedia PDF Downloads 34725366 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 30725365 The Functions of Music in Animated Short Films: Analysing the Scores of the Skeleton Dance, Fox and the Whale and la Vieille Dame et les Pigeons
Authors: Shally Pais
Abstract:
Film music holds a special relationship with the narrative systems and dramaturgical operations in animation. Though the roles of cartoon music closely resemble those fulfilled by traditional film scores, which have been extensively studied, there is a large knowledge gap regarding non-mainstream or non-Hollywood animation music. This paper is an investigation of the understudied compositional materials and narrative contexts in three distinct films by exploring the main narrative and dramaturgical effects of music in The Skeleton Dance, Fox and The Whale, and La Vieille Dame et les Pigeons. The study uses a Neoformalist approach towards qualitative analysis of the music in these films to document ways in which music can be made to function differently depending on the individual films’ contexts and the desired effects to be had on the audience. Consequently, the paper highlights these factors’ influence on the films’ narratives and aims to widen the discourse on composition for animation film scores, suggesting the further study of non-mainstream film music.Keywords: animation film music, film score analysis, Fox and The Whale, La Vieille Dame et les Pigeons, Neoformalist analysis, The Skeleton Dance
Procedia PDF Downloads 16725364 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit
Authors: Naheem Olakunle Adesina
Abstract:
The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator
Procedia PDF Downloads 19225363 Physico-Chemical Characterization of the Essential Oil of Daucus carota
Authors: Nassima Behidj-Benyounes, Thoraya Dahmene, Khaled Benyounes Nadjiba Chebouti1and F/Zohra Bissaad
Abstract:
Essential oils have a significant antimicrobial activity. These oils can successfully replace the antibiotics. So, the microorganisms show their inefficiencies resistant for the antibiotics. For this reason, we study the physicochemical analysis and antimicrobial activity of the essential oil of Daucus carota. The extraction is done by steam distillation of water which brought us a very significant return of 4.65%. The analysis of the essential oil is performed by GC/MS and has allowed us to identify 32 compounds in the oil of D. carota flowering tops of Bouira. Three of which are in the majority are the α-pinene (22.3%), the carotol (21.7%) and the limonene (15.8%).Keywords: Daucus carota, essential oil, α-pinene, carotol, limonene
Procedia PDF Downloads 39225362 Investigation of Influence of Maize Stover Components and Urea Treatment on Dry Matter Digestibility and Fermentation Kinetics Using in vitro Gas Techniques
Authors: Anon Paserakung, Chaloemphon Muangyen, Suban Foiklang, Yanin Opatpatanakit
Abstract:
Improving nutritive values and digestibility of maize stover is an alternative way to increase their utilization in ruminant and reduce air pollution from open burning of maize stover in the northern Thailand. The present study, 2x3 factorial arrangements in completely randomized design was conducted to investigate the effect of maize stover components (whole and upper stover; cut above 5th node). Urea treatment at levels 0, 3, and 6% DM on dry matter digestibility and fermentation kinetics of maize stover using in vitro gas production. After 21 days of urea treatment, results illustrated that there was no interaction between maize stover components and urea treatment on 48h in vitro dry matter digestibility (IVDMD). IVDMD was unaffected by maize stover components (P > 0.05), average IVDMD was 55%. However, using whole maize stover gave higher cumulative gas and gas kinetic parameters than those of upper stover (P<0.05). Treating maize stover by ensiling with urea resulted in a significant linear increase in IVDMD (P<0.05). IVDMD increased from 42.6% to 53.9% when increased urea concentration from 0 to 3% and maximum IVDMD (65.1%) was observed when maize stover was ensiled with 6% urea. Maize stover treated with urea at levels of 0, 3, and 6% linearly increased cumulative gas production at 96h (31.1 vs 50.5 and 59.1 ml, respectively) and all gas kinetic parameters excepted the gas production from the immediately soluble fraction (P<0.50). The results indicate that maize stover treated with 6% urea enhance in vitro dry matter digestibility and fermentation kinetics. This study provides a practical approach to increasing utilization of maize stover in feeding ruminant animals.Keywords: maize stover, urea treatment, ruminant feed, gas production
Procedia PDF Downloads 22825361 Adherence to Dietary Approaches to Stop Hypertension-Style Diet and Risk of Mortality from Cancer: A Systematic Review and Meta-Analysis of Cohort Studies
Authors: Roohallah Fallah-Moshkani, Mohammad Ali Mohsenpour, Reza Ghiasvand, Hossein Khosravi-Boroujeni, Seyed Mehdi Ahmadi, Paula Brauer, Amin Salehi-Abargouei
Abstract:
Purpose: Several investigations have proposed the protective association between dietary approaches to stop hypertension (DASH) style diet and risk of cancers; however, they have led to inconsistent results. The present study aimed to systematically review the prospective cohort studies conducted in this regard and, if possible, to quantify the overall effect of using meta-analysis. Methods: PubMed, EMBASE, Scopus, and Google Scholar were searched for cohort studies published up to December 2017. Relative risks (RRs) which were reported for fully adjusted models and their confidence intervals were extracted for meta-analysis. Random effects model was incorporated to combine the RRs. Results: Sixteen studies were eligible to be included in the systematic review from which 8 reports were conducted on the effect of DASH on the risk of mortality from all cancer types, four on the risk of colorectal cancer, and three on the risk of colon and rectal cancer. Four studies examined the association with other cancers (breast, hepatic, endometrial, and lung cancer). Meta-analysis showed that high concordance with DASH significantly decreases the risk of all cancer types (RR=0.83, 95% confidence interval (95%CI):0.80-0.85); furthermore participants who highly adhered to the DASH had lower risk of developing colorectal (RR=0.79, 95%CI: 0.75-0.83), colon (RR=0.81, 95%CI: 0.74-0.87) and rectal (RR=0.79, 95%CI: 0.63-0.98) cancer compared to those with the lowest adherence. Conclusions: DASH-style diet should be suggested as a healthy approach to protect from cancer in the community. Prospective studies exploring the effect on other cancer types and from regions other than the United States are highly recommended.Keywords: cancer, DASH-style diet, dietary patterns, meta-analysis, systematic review
Procedia PDF Downloads 19125360 Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations
Authors: Ogunrinde Roseline Bosede
Abstract:
This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.Keywords: differential equations, numerical, polynomial, initial value problem, differential equation
Procedia PDF Downloads 45125359 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).Keywords: chemometrics, chromatography, pesticides, sum of ranking differences
Procedia PDF Downloads 37725358 Molecular Characterization and Phylogenetic Analysis of Capripoxviruses from Outbreak in Iran 2021
Authors: Maryam Torabi, Habibi, Abdolahi, Mohammadi, Hassanzadeh, Darban Maghami, Baghi
Abstract:
Sheeppox Virus (SPPV) and goatpox virus (GTPV) are considerable diseases of sheep, and goats, caused by viruses of the Capripoxvirus (CaPV) genus. They are responsible for economic losses. Animal mortality, morbidity, cost of vaccinations, and restrictions in animal products’ trade are the reasons of economic losses. Control and eradication of CaPV depend on early detection of outbreaks so that molecular detection and genetic analysis could be effective to this aim. This study was undertaken to molecularly characterize SPPV and GTPV strains that have been circulating in Iran. 120 skin papules and nodule biopsies were collected from different regions of Iran and were examined for SPPV, GTPV viruses using TaqMan Real -Time PCR. Some of these amplified genes were sequenced, and phylogenetic trees were constructed. Out of the 120 samples analysed, 98 were positive for CaPV by Real- Time PCR (81.6%), and most of them wereSPPV. then 10 positive samples were sequenced and characterized by amplifying the ORF 103CaPV gene. sequencing and phylogenetic analysis for these positive samples revealed a high percentage of identity with SPPV isolated from different countries in Middle East. In conclusions, molecular characterization revealed nearly complete identity with all recent SPPVs strains in local countries that requires further studies to monitor the virus evolution and transmission pathways to better understand the virus pathobiology that will help for SPPV control.Keywords: molecular epidemiology, Real-Time PCR, phylogenetic analysis, capripoxviruses
Procedia PDF Downloads 15225357 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis
Authors: Iannick Gagnon, Alain April
Abstract:
The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis
Procedia PDF Downloads 15825356 Numerical Analysis of Internal Cooled Turbine Blade Using Conjugate Heat Transfer
Authors: Bhavesh N. Bhatt, Zozimus D. Labana
Abstract:
This work is mainly focused on the analysis of heat transfer of blade by using internal cooling method. By using conjugate heat transfer technology we can effectively compute the cooling and heat transfer analysis of blade. Here blade temperature is limited by materials melting temperature. By using CFD code, we will analyze the blade cooling with the help of CHT method. There are two types of CHT methods. In the first method, we apply coupled CHT method in which all three domains modeled at once, and in the second method, we will first model external domain and then, internal domain of cooling channel. Ten circular cooling channels are used as a cooling method with different mass flow rate and temperature value. This numerical simulation is applied on NASA C3X turbine blade, and results are computed. Here results are showing good agreement with experimental results. Temperature and pressure are high at the leading edge of the blade on stagnation point due to its first faces the flow. On pressure side, shock wave is formed which also make a sudden change in HTC and other parameters. After applying internal cooling, we are succeeded in reducing the metal temperature of blade by some extends.Keywords: gas turbine, conjugate heat transfer, NASA C3X Blade, circular film cooling channel
Procedia PDF Downloads 339