Search results for: crystallization activation energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9096

Search results for: crystallization activation energy

4446 Effective Water Purification by Impregnated Carbon Nanotubes

Authors: Raviteja Chintala

Abstract:

Water shortage in many areas of the world have predominantly increased the demand for efficient methods involved in the production of drinking water, So purification of water invoking cost effective and efficient methods is a challenging field of research. In this regard, Reverse osmosis membrane desalination of both seawater and inland brackish water is currently being deployed in various locations around the world. In the present work an attempt is made to integrate these existing technologies with novel method, Wherein carbon nanotubes at the lab scale are prepared which further replace activated carbon tubes being used traditionally. This has proven to enhance the efficiency of the water filter, Effectively neutralising most of the organic impurities. Furthermore, This ensures the reduction in TDS. Carbon nanotubes have wide range in scope of applications such as composite reinforcements, Field emitters, Sensors, Energy storage and energy conversion devices and catalysts support phases, Because of their unusual mechanical, Electrical, Thermal and structural properties. In particular, The large specific surface area, as well as the high chemical and thermal stability, Makes carbon nanotube an attractive adsorbent in waste water treatment. Carbon nanotubes are effective in eliminating these harmful media from water as an adsorbent. In this work, Candle soot method has been incorporated for the preparation of carbon nanotubes and mixed with activated charcoal in different compositions. The effect of composition change is monitored by using TDS measuring meter. As the composition of Nano carbon increases, The TDS of the water gradually decreases. In order to enhance the life time for carbon filter, Nano tubes are provided with larger surface area.

Keywords: TDS (Total Dissolved Solids), carbon nanotubes, water, candle soot

Procedia PDF Downloads 316
4445 IL4/IL13 STAT6 Mediated Macrophage Polarization During Acute and Chronic Pancreatitis

Authors: Hager Elsheikh, Juliane Glaubitz, Frank Ulrich Weiss, Matthias Sendler

Abstract:

Aim: Acute pancreatitis (AP) and chronic pancreatitis (CP) are both accompanied by a prominent immune response which influences the course of disease. Whereas during AP the pro-inflammatory immune response dominates, during CP a fibroinflammatory response regulates organ remodeling. The transcription factor signal transducer and activator of transcription 6 (STAT6) is a crucial part of the Type 2 immune response. Here we investigate the role of STAT6 in a mouse model of AP and CP. Material and Methods: AP was induced by hourly repetitive i.p. injections of caerulein (50µg/kg/bodyweight) in C57Bl/6 J and STAT6-/- mice. CP was induced by repetitive caerulein injections 6 times a day, 3 days a week over 4 weeks. Disease severity was evaluated by serum amylase/lipase measurement, H&E staining of pancreas. Pancreatic infiltrate was characterized by immunofluorescent labeling of CD68, CD206, CCR2, CD4 and CD8. Pancreas fibrosis was evaluated by Azan blue staining. qRT-PCR was performed of Arg1, Nos2, Il6, Il1b, Col3a, Socs3 and Ym1. Affymetrix chip array analyses were done to illustrate the IL4/IL13/STAT6 signaling in bone marrow derived macrophages. Results: AP severity is mitigated in STAT6-/- mice, as shown by decreased serum amylase and lipase, as well as histological damage. CP mice surprisingly showed only slightly reduced fibrosis of the pancreas. Also staining of CD206 a classical marker of alternatively activated macrophages showed no decrease of M2-like polarization in the absence of STAT6. In contrast, transcription profile analysis in BMDM showed complete blockade of the IL4/IL13 pathway in STAT6-/- animals. Conclusion: STAT6 signaling pathway is protective during AP and mitigates the pancreatic damage. During chronic pancreatitis the IL4/IL13 – STAT6 axisis involved in organ fibrogenesis. Notably, fibrosis is not dependent on a single signaling pathway, and alternative macrophage activation is also complex and involves different subclasses (M2a, M2b, M2c and M2d) which could be independent of the IL4/IL13 STAT6 axis.

Keywords: chronic pancreatitis, macrophages, IL4/IL13, Type immune response

Procedia PDF Downloads 43
4444 Synthesis of Pyrimidine-Based Polymers Consist of 2-{4-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]-Phenyl}-Thiazolo[5,4-B]Pyridine with Deep HOMO Level for Photovoltaics

Authors: Hyehyeon Lee, Jiwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh

Abstract:

Photovoltaics, which have many advantages in cost, easy processing, and light-weight, have attracted attention. We synthesized pyrimidine-based conjugated polymers with 2-{4-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (pPTP) which have an ability of powerful electron withdrawing and introduced into the PSCs. By Stille polymerization, we designed the conjugated polymers, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI. The HOMO energy levels of four polymers (pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI) were at -5.61 ~ -5.89 eV, their LUMO (Lowest Unoccupied Molecular Orbital) energy levels were at -3.95 ~ -4.09 eV. The device including pPTPBDT-12 and PC71BM (1:2) indicated a V_oc of 0.67 V, a J_sc of 1.33 mA/cm², and a fill factor (FF) of 0.25, giving a power conversion efficiency (PCE) of 0.23%. The device including pPTPBDT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 2.56 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency of 0.56%. The device including pPTPBDTT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 3.61 mA/cm², and a fill factor (FF) of 0.29, giving a power conversion efficiency of 0.74%. The device including pPTPTTI and PC71BM (1:2) indicated a V_oc of 0.83 V, a J_sc of 4.41 mA/cm², and a fill factor (FF) of 0.31, giving a power conversion efficiency of 1.13%. Therefore, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH, and pPTPTTI were synthesized by Stille polymerization. And We find one of the best efficiency for these polymers, called pPTPTTI. Their optical properties were measured and the results show that pyrimidine-based polymers especially like pPTPTTI have a great promise to act as the donor of the active layer.

Keywords: polymer solar cells, pyrimidine-based polymers, photovoltaics, conjugated polymer

Procedia PDF Downloads 182
4443 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 111
4442 Mitigation of Wind Loads on a Building Using Small Wind Turbines

Authors: Arindam Chowdhury, Andres Tremante, Mohammadtaghi Moravej, Bodhisatta Hajra, Ioannis Zisis, Peter Irwin

Abstract:

Extreme wind events, such as hurricanes, have caused significant damage to buildings, resulting in losses worth millions of dollars. The roof of a building is most vulnerable to wind-induced damage due to the high suctions experienced by the roof in extreme wind conditions. Wind turbines fitted to buildings can help generate energy, but to our knowledge, their application to wind load mitigation is not well known. This paper presents results from an experimental study to assess the effect of small wind turbines (developed and patented by the first and second authors) on the wind loads on a low rise building roof. The tests were carried out for an open terrain at the Wall of Wind (WOW) experimental facility at Florida International University (FIU), Miami, Florida, USA, for three cases – bare roof, roof fitted with wind turbines placed closer to the roof edges, and roof with wind turbines placed away from the roof edges. Results clearly indicate that the presence of the wind turbines reduced the mean and peak pressure coefficients (less suction) on the roof when compared to the bare deck case. Furthermore, the peak pressure coefficients were found to be lower (less suction) when the wind turbines were placed closer to the roof, than away from the roof. Flow visualization studies using smoke and gravel clearly showed that the presence of the turbines disrupted the formation of vortices formed by cornering winds, thereby reducing roof suctions and preventing lift off of roof coverings. This study shows that the wind turbines besides generating wind energy, can be used for mitigating wind induced damage to the building roof. Future research must be directed towards understanding the effect of these wind turbines on other roof geometries (e.g. hip/gable) in different terrain conditions.

Keywords: wall of wind, wind loads, wind turbine, building

Procedia PDF Downloads 231
4441 The Multiaxial Load Proportionality Effect on the Fracture Surface Topography of Forged Magnesium Alloys

Authors: Andrew Gryguć, Seyed Behzad Behravesh, Hamid Jahed, Mary Wells, Wojciech Macek, Bruce Williams

Abstract:

This extended abstract investigates the influence of the multiaxial loading on the fatigue behavior of forged magnesium through quantitative analysis of its fracture surface topography and mesoscopic cracking orientation. Fatigue tests were performed on hollow tubular sample geometries extracted from closed-die forged AZ80 Mg components, with three different multiaxial strain paths (axial/shear), proportional, 45° out of phase, and 90° out of phase. Regardless of the strain path, fatigue cracks are initiated at the outer surface of the specimen where the combined stress state is largest. Depending on the salient mode of deformation, distinctive features in the fracture surface manifested themselves with different topographic amplitudes, surface roughness, and mesoscopic cracking orientation in the vicinity of the initiation site. The dominant crack propagation path was in the circumferential direction of the hollow tubular specimen (i.e., cracking transverse to the sample axis, with little to no branching), which is congruent with previous findings of low to moderate shear strain energy density (SED) multiaxial loading. For proportional loading, the initiation zone surface morphology was largely flat and striated, whereas, at phase angles of 45° and 90°, the initiation surface became more faceted and inclined. Overall, both a qualitative and quantitative link was developed between the fracture surface morphology and the level of non-proportionality in the loading providing useful insight into the fracture mechanics of forged magnesium as a relevant focus for future study.

Keywords: fatigue, fracture, magnesium, forging, fractography, anisotropy, strain energy density, asymmetry, multiaxial fatigue

Procedia PDF Downloads 66
4440 Ionic Liquid and Chemical Denaturants Effects on the Fluorescence Properties of the Laccase

Authors: Othman Saoudi

Abstract:

In this work, we have interested in the investigation of the chemical denaturants and synthesized ionic liquids effects on the fluorescence properties of the laccase from Trametes versicolor. The fluorescence properties of the laccase result from the presence of Tryptophan, which has an aromatic core responsible for the absorption in ultra violet domain and the emission of the photons of fluorescence. The effect Pyrrolidinuim Formate ([pyrr][F]) and Morpholinium Formate ([morph][F]) ionic liquids on the laccase behavior for various volumetric fractions are studied. We have shown that the fluorescence spectrum relative to the [pyrr][F] presents a single band with a maximum around 340 nm and a secondary peak at 361 nm for a volumetric fraction of 20% v/v. For concentration superiors to 40%, the fluorescence intensity decreases and a displacement of the peaks toward higher wavelengths has occurred. For the [morph][F], the fluorescence spectrum showed a single band around 340 nm. The intensity of the principal peak decreases for concentration superiors to 20% v/v. From the plot representing the variation of the λₘₐₓ versus the volumetric concentration, we have determined the concentration of the half-transitions C1/2. These concentrations are equal to 42.62% and 40.91% v/v in the presence of [pyrr][F] and [morph][F] respectively. For the chemical denaturation, we have shown that the fluorescence intensity decreases with increasing denaturant concentrations where the maximum of the wavelength of emission shifts toward the higher wavelengths. We have also determined from the spectrum relative to the urea and GdmCl, the unfolding energy, ∆GD. The results show that the variation of the unfolding energy as a function of the denaturant concentrations varies according to the linear regression model. We have demonstrated also that the half-transitions C1/2 have occurred for urea and GdmCl denaturants concentrations around 3.06 and 3.17 M respectively.

Keywords: laccase, fluorescence, ionic liquids, chemical denaturants

Procedia PDF Downloads 489
4439 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate

Procedia PDF Downloads 343
4438 Comparison of Safety and Efficacy between Thulium Fibre Laser and Holmium YAG Laser for Retrograde Intrarenal Surgery

Authors: Sujeet Poudyal

Abstract:

Introduction: After Holmium:yttrium-aluminum-garnet (Ho: YAG) laser has revolutionized the management of urolithiasis, the introduction of Thulium fibre laser (TFL) has already challenged Ho:YAG laser due to its multiple commendable properties. Nevertheless, there are only few studies comparing TFL and holmium laser in Retrograde Intrarenal Surgery(RIRS). Therefore, this study was carried out to compare the efficacy and safety of thulium fiber laser (TFL) and holmium laser in RIRS. Methods: This prospective comparative study, which included all patients undergoing laser lithotripsy (RIRS) for proximal ureteric calculus and nephrolithiasis from March 2022 to March 2023, consisted of 63 patients in Ho:YAG laser group and 65 patients in TFL group. Stone free rate, operative time, laser utilization time, energy used, and complications were analysed between the two groups. Results: Mean stone size was comparable in TFL (14.23±4.1 mm) and Ho:YAG (13.88±3.28 mm) group, p-0.48. Similarly, mean stone density in TFL (1269±262 HU) was comparable to Ho:YAG (1189±212 HU), p-0.48. There was significant difference in lasing time between TFL (12.69±7.41 mins) and Ho:YAG (20.44±14 mins), p-0.012). TFL group had operative time of 43.47± 16.8 mins which was shorter than Ho:YAG group (58±26.3 mins),p-0.005. Both TFL and Ho:YAG groups had comparable total energy used(11.4±6.2 vs 12±8 respectively, p-0.758). Stone free rate was 87%for TFL, whereas it was 79.5% for Ho:YAG, p-0.25). Two cases of sepsis and one ureteric stricture were encountered in TFL, whereas three cases suffered from sepsis apart from one ureteric stricture in Ho:YAG group, p-0.62). Conclusion: Thulium Fibre Laser has similar efficacy as Holmium: YAG Laser in terms of safety and stone free rate. However, due to better stone ablation rate in TFL, it can become the game changer in management of urolithiasis in the coming days.

Keywords: retrograde intrarenal surgery, thulium fibre laser, holmium:yttrium-aluminum-garnet (ho:yag) laser, nephrolithiasis

Procedia PDF Downloads 54
4437 Factors Affecting Context of Innovation: A Case Study of a Farming-as-a-Service Company

Authors: Kunal Mankodi, Sudhir Pandey

Abstract:

This study aims to assess the factors that play a role in setting up and running a social enterprise driven towards sustainability at the intersection of energy, environment, and poverty alleviation. According to the theory of sustainability-oriented innovation (SOI), conventional organisations adapt their processes to focus on sustainability-oriented innovations. On the other hand, social enterprises that are purpose-driven are also influenced by the context of innovation, which need due attention. This paper presents an account of innovation at Oorja - an Indian social enterprise operating with a farming-as-a-service business model. It aims to illustrate the contexts in which the innovative solutions were developed to work at an intersection between agriculture and clean energy, thereby allowing small farmers access to efficient solutions in the agriculture cycle. Primary data was collected through in-depth interviews, and secondary data was collected from company sources. The study finds that in the case of a social enterprise, the definition of innovation assumes a wider scope by going beyond the introduction of a new product/service. The context of innovation for social enterprise is affected by organisational factors such as organisation’s philosophical mindset, behaviour towards innovation, organisation’s capabilities, regulatory environment, and customer receptiveness. Additionally, the study also finds that the context of innovation for a social enterprise is affected by its organizational structure. A majority of these organizational factors are, in turn, affected by individual (Founder’s) factors such as the founder’s formative years, education, direct exposure to relevant issues, complementary skills of co-founders, and a common calling.

Keywords: context of innovation, social enterprise, sustainability oriented innovations, emerging markets, agriculture

Procedia PDF Downloads 117
4436 Anti-Obesity Effects of Pteryxin in Peucedanum japonicum Thunb Leaves through Different Pathways of Adipogenesis In-Vitro

Authors: Ruwani N. Nugara, Masashi Inafuku, Kensaku Takara, Hironori Iwasaki, Hirosuke Oku

Abstract:

Pteryxin from the partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as the active compound related to anti-obesity. Thus, in this study we investigated the mechanisms related to anti-obesity activity in-vitro. The HP was fractionated, and effect on the triglyceride (TG) content was evaluated in 3T3-L1 and HepG2 cells. Comprehensive spectroscopic analyses were used to identify the structure of the active compound. The dose dependent effect of active constituent on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis and lipogenesis (20 μg/mL) were examined in-vitro. Furthermore, higher dosage of pteryxin (50μg/mL) was tested against 20μg/mL in 3T3-L1 adipocytes. The mRNA were subjected to SOLiD next generation sequencer and the obtained data were analyzed by Ingenuity Pathway Analysis (IPA). The active constituent was identified as pteryxin, a known compound in PJT. However, its biological activities against obesity have not been reported previously. Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes and HepG2 hepatocytes (P < 0.05). Sterol regulatory element-binding protein-1 (SREBP1 c), Fatty acid synthase (FASN), and acetyl-CoA carboxylase-1 (ACC1) were downregulated in pteryxin-treated adipocytes (by 18.0, 36.1 and 38.2%; P < 0.05, respectively) and hepatocytes (by 72.3, 62.9 and 38.8%, respectively; P < 0.05) indicating its suppressive effects on fatty acid synthesis. The hormone-sensitive lipase (HSL), a lipid catabolising gene was upregulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes suggesting improved lipolysis. Concordantly, the adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was downregulated (by 42.8%; P < 0.05), further accelerating the lipolytic activity. The upregulated trend of uncoupling protein 2 (UCP2; by 77.5%; P < 0.05) reflected the improved energy expenditure due to pteryxin. The 50μg/mL dosage of pteryxin completely suppressed PPARγ, MEST, SREBP 1C, HSL, Adiponectin, Fatty Acid Binding Protein (FABP) 4, and UCP’s in 3T3-L1 adipocytes. The IPA suggested that pteryxin at 20μg/mL and 50μg/mL suppress obesity in two different pathways, whereas the WNT signaling pathway play a key role in the higher dose of pteryxin in preadipocyte stage. Pteryxin in PJT play the key role in regulating lipid metabolism related gene network and improving energy production in vitro. Thus, the results suggests pteryxin as a new natural compound to be used as an anti-obesity drug in pharmaceutical industry.

Keywords: obesity, peucedanum japonicum thunb, pteryxin, food science

Procedia PDF Downloads 436
4435 Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Authors: M. Areekijseree, W. Pongsawat, M. Pumipaiboon, C. Thepsithar, S. Sengsai, T. Chuen-Im

Abstract:

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by zona pellucida with layer of cumulus cells ranging between 59.29-202.14 µm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 µg/mL porcine follicle-stimulating hormone, 1 µg/mL LH, 1µg/mL estradiol with ethanol, and 50 µg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Keywords: cumulus cells, electron microscopy, in vitro, porcine oocyte

Procedia PDF Downloads 367
4434 Transpersonal Model of an Individual's Creative Experiencef

Authors: Anatoliy Kharkhurin

Abstract:

Modifications that the prefix ‘trans-‘ refers to start within a person. This presentation focuses on the transpersonal that goes beyond the individual (trans-personal) to encompass wider aspects of humanities, specifically peak experience as a culminating stage of the creative act. It proposes a model according to which the peak experience results from a harmonious vibration of four spheres, which transcend an individual’s capacities and bring one to a qualitatively different level of experience. Each sphere represents an aspect of creative activity: superconscious, intellectual, emotive and active. Each sphere corresponds to one of four creative functions: authenticity, novelty, aesthetics, and utility, respectively. The creative act starts in the superconscious sphere: the supreme pleasure of Creation is reflected in creative pleasure, which is realized in creative will. These three instances serve as a source of force axes, which penetrate other spheres, and in place of infiltration establish restrictive, expansive, and integrative principles, respectively; the latter balances the other two and ensures a harmonious vibration within a sphere. This Hegelian-like triad is realized within each sphere in the form of creative capacities. The intellectual sphere nurtures capacities to invent and to elaborate, which are integrated by capacity to conceptualize. The emotive sphere nurtures satiation and restrictive capacities integrated by capacity to balance. The active sphere nurtures goal orientation and stabilization capacities integrated by capacity for self-expression. All four spheres vibrate within each other – the superconscious sphere being in the core of the structure followed by intellectual, emotive, and active spheres, respectively – thereby reflecting the path of creative production. If the spheres vibrate in-phase, their amplitudes amplify the creative energy; if in antiphase – the amplitudes reduce the creative energy. Thus, creative act is perceived as continuum with perfectly harmonious vibration within and between the spheres on one side and perfectly disharmonious vibration on the other.

Keywords: creativity, model, transpersonal, peak experience

Procedia PDF Downloads 331
4433 Analysis of Anti-Tuberculosis Immune Response Induced in Lungs by Intranasal Immunization with Mycobacterium indicus pranii

Authors: Ananya Gupta, Sangeeta Bhaskar

Abstract:

Mycobacterium indicus pranii (MIP) is a saprophytic mycobacterium. It is a predecessor of M. avium complex (MAC). Whole genome analysis and growth kinetics studies have placed MIP in between pathogenic and non-pathogenic species. It shares significant antigenic repertoire with M. tuberculosis and have unique immunomodulatory properties. MIP provides better protection than BCG against pulmonary tuberculosis in animal models. Immunization with MIP by aerosol route provides significantly higher protection as compared to immunization by subcutaneous (s.c.) route. However, mechanism behind differential protection has not been studied. In this study, using mice model we have evaluated and compared the M.tb specific immune response in lung compartments (airway lumen / lung interstitium) as well as spleen following MIP immunization via nasal (i.n.) and s.c. route. MIP i.n. vaccination resulted in increased seeding of memory T cells (CD4+ and CD8+ T-cells) in the airway lumen. Frequency of CD4+ T cells expressing Th1 migratory marker (CXCR3) and activation marker (CD69) were also high in airway lumen of MIP i.n. group. Significantly high ex vivo secretion of cytokines- IFN-, IL-12, IL-17 and TNF- from cells of airway luminal spaces provides evidence of antigen-specific lung immune response, besides generating systemic immunity comparable to MIP s.c. group. Analysis of T cell response on per cell basis revealed that antigen specific T-cells of MIP i.n. group were functionally superior as higher percentage of these cells simultaneously secreted IFN-gamma, IL-2 and TNF-alpha cytokines as compared to MIP s.c. group. T-cells secreting more than one of the cytokines simultaneously are believed to have robust effector response and crucial for protection, compared with single cytokine secreting T-cells. Adoptive transfer of airway luminal T-cells from MIP i.n. group into trachea of naive B6 mice revealed that MIP induced CD8 T-cells play crucial role in providing long term protection. Thus the study demonstrates that MIP intranasal vaccination induces M.tb specific memory T-cells in the airway lumen that results in an early and robust recall response against M.tb infection.

Keywords: airway lumen, Mycobacterium indicus pranii, Th1 migratory markers, vaccination

Procedia PDF Downloads 173
4432 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development

Procedia PDF Downloads 361
4431 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico

Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez

Abstract:

Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.

Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes

Procedia PDF Downloads 112
4430 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fin height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fin height has greater impact on performance factor than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer and pressure drop up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-finned tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 102
4429 Determinants of Rural Household Effective Demand for Biogas Technology in Southern Ethiopia

Authors: Mesfin Nigussie

Abstract:

The objectives of the study were to identify factors affecting rural households’ willingness to install biogas plant and amount willingness to pay in order to examine determinants of effective demand for biogas technology. A multistage sampling technique was employed to select 120 respondents for the study. The binary probit regression model was employed to identify factors affecting rural households’ decision to install biogas technology. The probit model result revealed that household size, total household income, access to extension services related to biogas, access to credit service, proximity to water sources, perception of households about the quality of biogas, perception index about attributes of biogas, perception of households about installation cost of biogas and availability of energy source were statistically significant in determining household’s decision to install biogas. Tobit model was employed to examine determinants of rural household’s amount of willingness to pay. Based on the model result, age of the household head, total annual income of the household, access to extension service and availability of other energy source were significant variables that influence willingness to pay. Providing due considerations for extension services, availability of credit or subsidy, improving the quality of biogas technology design and minimizing cost of installation by using locally available materials are the main suggestions of this research that help to create effective demand for biogas technology.

Keywords: biogas technology, effective demand, probit model, tobit model, willingnes to pay

Procedia PDF Downloads 122
4428 Comparative Study of Electronic and Optical Properties of Ammonium and Potassium Dinitramide Salts through Ab-Initio Calculations

Authors: J. Prathap Kumar, G. Vaitheeswaran

Abstract:

The present study investigates the role of ammonium and potassium ion in the electronic, bonding and optical properties of dinitramide salts due to their stability and non-toxic nature. A detailed analysis of bonding between NH₄ and K with dinitramide, optical transitions from the valence band to the conduction band, absorption spectra, refractive indices, reflectivity, loss function are reported. These materials are well known as oxidizers in solid rocket propellants. In the present work, we use full potential linear augmented plane wave (FP-LAPW) method which is implemented in the Wien2k package within the framework of density functional theory. The standard DFT functional local density approximation (LDA) and generalized gradient approximation (GGA) always underestimate the band gap by 30-40% due to the lack of derivative discontinuities of the exchange-correlation potential with respect to an occupation number. In order to get reliable results, one must use hybrid functional (HSE-PBE), GW calculations and Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. It is very well known that hybrid functionals GW calculations are very expensive, the later methods are computationally cheap. The new developed TB-mBJ functionals use information kinetic energy density along with the charge density employed in DFT. The TB-mBJ functionals cannot be used for total energy calculations but instead yield very much improved band gap. The obtained electronic band gap at gamma point for both the ammonium dinitramide and potassium dinitramide are found to be 2.78 eV and 3.014 eV with GGA functional, respectively. After the inclusion of TB-mBJ, the band gap improved by 4.162 eV for potassium dinitramide and 4.378 eV for ammonium dinitramide. The nature of the band gap is direct in ADN and indirect in KDN. The optical constants such as dielectric constant, absorption, and refractive indices, birefringence values are presented. Overall as there are no experimental studies we present the improved band gap with TB-mBJ functional following with optical properties.

Keywords: ammonium dinitramide, potassium dinitramide, DFT, propellants

Procedia PDF Downloads 138
4427 The Impact of Ultrasonicator on the Vertical and Horizontal Mixing Profile of Petrol-Bioethanol

Authors: D. Nkazi, S. E. Iyuke, J. Mulopo

Abstract:

Increasing global energy demand as well as air quality concerns have in recent years led to the search for alternative clean fuels to replace fossil fuels. One such alternative is the blending of petrol with ethanol, which has numerous advantages such ethanol’s ability to act as oxygenate thus reducing the carbon monoxide emissions from the exhaust of internal combustion engines of vehicles. However, the hygroscopic nature of ethanol is a major concern in obtaining a perfectly homogenized petrol-ethanol fuel. This problem has led to the study of ways of homogenizing the petrol-ethanol mixtures. During the blending process, volumes fraction of ethanol and petrol were studied with respect to the depth within the storage container to confirm homogenization of the blend and time of storage. The results reveal that the density of the mixture was constant. The binodal curve of the ternary diagram shows an increase of homogeneous region, indicating an improved of interaction between water and petrol. The concentration distribution in the reactor showed proof of cavitation formation since in both directions, the variation of concentration with both time and distance was found to be oscillatory. On comparing the profiles in both directions, the concentration gradient, diffusion flux, and energy and diffusion rates were found to be higher in the vertical direction compared to the horizontal direction. It was therefore concluded that ultrasonication creates cavitation in the mixture which enhances mass transfer and mixing of ethanol and petrol. The horizontal direction was found to be the diffusion rate limiting step which proposed that the blender should have a larger height to diameter ratio. It is, however, recommended that further studies be done on the rate-limiting step so as to have actual dimensions of the reactor.

Keywords: ultrasonication, petrol, ethanol, concentration

Procedia PDF Downloads 353
4426 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana

Authors: Ayesha Sanjana Kawser Parsha

Abstract:

S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.

Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score

Procedia PDF Downloads 56
4425 Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas

Authors: J. Szolomicki, H. Golasz-Szolomicka

Abstract:

The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping.

Keywords: core structures, damping system, high-rise building, seismic zone

Procedia PDF Downloads 154
4424 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing

Authors: John Eric C. Bargas, Ma. Cecilia M. Marcos

Abstract:

One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.

Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing

Procedia PDF Downloads 11
4423 Acoustic Characteristics of Ultrasonic Vocalizations in Rat Pups Prenatally Exposed to Ethanol

Authors: Mohd. Ashik Shahrier, Hiromi Wada

Abstract:

Prenatal ethanol exposure has potential to induce difficulties in the social behavior of rats and can alter pup-dam communication suggesting that deficits in pups could result in altered dam behavior, which in turn could result in more aberrant behavior in the pup. Ultrasonic vocalization (USV) is a sensitive tool for investigating social behavior between rat pups and their dam. Rat pups produce USVs on separation from their dam. This signals the dam to locate her pups and retrieve them back to the nest. In this study, it was predicted that prenatal ethanol exposure cause alterations on the acoustic characteristics of USVs in rat pups. Thirteen pregnant rats were purchased and randomly assigned into three groups: high-ethanol (n = 4), low-ethanol (n = 5), and control (n = 4) groups. Laboratory ethanol (purity = 99.5%) was dissolved in tap water and administered to the high- and low-ethanol groups as drinking water from gestational days (GD) 8-20. Ethanol-containing water was administered to the animals in three stages by gradually increasing the concentration between GDs 8–20. From GDs 8–10, 10% and 5%, from GDs 11–13, 20% and 10%, and from GDs 14–20, 30% and 15% ethanol-containing water (v/v) was administered to the high- and low-ethanol groups, respectively. Tap water without ethanol was given to the control group throughout the experiment. The day of birth of the pups was designated as postnatal day (PND) 0. On PND 4, each litter was culled to four male and four female pups. For the present study, two male and two female pups were randomly sampled from each litter as subjects. Thus, eight male and eight female pups from the high-ethanol and control groups and another 10 male and 10 female pups from the low-ethanol group, were sampled. An ultrasonic microphone and the Sonotrack system version 2.4.0 (Metris, Hoofddorp, The Netherlands) were used to record and analyze USVs of the pups. On postnatal days 4, 8, 12 and 16, the resultant pups were individually isolated from their dams and littermates, and USVs were recorded for 5 min in a sound-proof box. Pups in the high-ethanol group produced greater number of USVs compared with that in both low-ethanol and control groups on PND 12. Rat pups in the high-ethanol group also produced higher mean, minimum, and maximum fundamental frequencies of USVs compared with that in both low-ethanol and control groups. Male pups in the high-ethanol group had higher USV amplitudes than in those in low-ethanol and control groups on PND 12. These results suggest that pups in the high-ethanol group relatively experienced more negative emotionality due to the ethanol-induced neuronal activation in the core limbic system and tegmental structures and accordingly, produced altered USVs as distress calls.

Keywords: emotionality, ethanol, maternal separation, ultrasonic vocalization

Procedia PDF Downloads 111
4422 Cardiorespiratory Fitness and the Cardiometabolic Profile in Inactive Obese Postmenopausal Women: A MONET Study

Authors: Ahmed Ghachem, Johann Colomba, Denis Prud'homme, Martin Brochu

Abstract:

Background: Inactive obese postmenopausal women, are at greater risk for metabolic complications. On the other hand, high levels of cardiorespiratory fitness (CRF) are associated with a lower risk of metabolic complications. Objective: To compare inactive obese postmenopausal women displaying ‘lower’ vs ‘higher’ levels of CRF for body composition, metabolic profile, inflammatory profile and measures of energy expenditure. Methods: 132 women (age: 57.6 ± 4.8 yrs; BMI: 32.3 ± 4.6 kg/m2; Peak VO2: 17.81 ± 3.02 ml O2•kg-1•min-1) were studied. They were first divided into tertiles based on their CRF. Then, women in the first (< 16.51 ml O2•min-1•kg-1) and second tertiles (16.51 to 19.22 ml O2•min-1•kg-1) were combined (N= 88), and compared with those in the third tertile (> 19.22 ml O2•min-1•kg-1) (N= 44). Variables of interest were: Peak VO2 (stationary bike), body composition (DXA), body fat distribution (CT scan), glucose homeostasis (fasting state and euglycemic/ hyperinsulinemic clamp), fasting lipids, resting blood pressure, inflammatory profile and energy expenditure (DLW). Results: Both CRF groups (lower= 16.0 ± 2.0 ml O2•kg-1•min-1 vs higher= 21.2 ± 1.7 ml O2•kg-1•min-1; p < 0.001) were similar for age. Significant differences were observed between groups for body composition; with lower values for body weight, BMI, fat mass and visceral fat in women with higher CRF (p between 0.001 and 0.005). Also, women with higher CRF had lower values for fasting insulin (13.4 ± 4.5 vs 15.6 ± 6.6 μU/ml; p = 0.03) and CRP levels (2.31 ± 1.97 vs 3.83 ± 3.24 mg/liter; p = 0.001); and higher values for glucose disposal (6.71 ± 1.78 vs 5.92 ± 1.67 mg/kg/min; p = 0.01). However, these differences were no longer significant after controlling for visceral adipose tissue accumulations. Finally, no significant difference was observed between groups for the other variables of interest. Conclusion: Our results suggest that, among inactive overweight/obese postmenopausal women, those with higher CRF levels have a better metabolic profile; which is caused by lower visceral fat accumulations.

Keywords: cardiorespiratory fitness, metabolic profile, menopause, obesity

Procedia PDF Downloads 249
4421 Rheological Assessment of Oil Well Cement Paste Dosed with Cellulose Nanocrystal (CNC)

Authors: Mohammad Reza Dousti, Yaman Boluk, Vivek Bindiganavile

Abstract:

During the past few decades, oil and natural gas consumption have increased significantly. The limited amount of hydrocarbon resources on earth has led to a stronger desire towards efficient drilling, well completion and extracting, with the least time, energy and money wasted. Well cementing is one of the most crucial and important steps in any well completion, to fill the annulus between the casing string and the well bore. However, since it takes place at the end of the drilling process, a satisfying and acceptable job is rarely done. Hence, a large and significant amount of time and energy is then spent in order to do the required corrections or retrofitting the well in some cases. Oil well cement paste needs to be pumped during the cementing process, therefore the rheological and flow behavior of the paste is of great importance. This study examines the use of innovative cellulose-based nanomaterials on the flow properties of the resulting cementitious system. The cementitious paste developed in this research is composed of water, class G oil well cement, bentonite and cellulose nanocrystals (CNC). Bentonite is used as a cross contamination component. Initially, the influence of CNC on the flow and rheological behavior of CNC and bentonite suspensions was assessed. Furthermore, the rheological behavior of oil well cement pastes dosed with CNC was studied using a steady shear parallel-plate rheometer and the results were compared to the rheological behavior of a neat oil well cement paste with no CNC. The parameters assessed were the yield shear stress and the viscosity. Significant changes in yield shear stress and viscosity were observed due to the addition of the CNC. Based on the findings in this study, the addition of a very small dosage of CNC to the oil well cement paste results in a more viscous cement slurry with a higher yield stress, demonstrating a shear thinning behavior.

Keywords: cellulose nanocrystal, flow behavior, oil well cement, rheology

Procedia PDF Downloads 205
4420 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel

Authors: Binyam Teferi

Abstract:

In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.

Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction

Procedia PDF Downloads 72
4419 Off-Shore Wind Turbines: The Issue of Soil Plugging during Pile Installation

Authors: Mauro Iannazzone, Carmine D'Agostino

Abstract:

Off-shore wind turbines are currently considered as a reliable source of renewable energy Worldwide and especially in the UK. Most of the operational off-shore wind turbines located in shallow waters (i.e. < 30 m) are supported on monopiles. Monopiles are open-ended steel tubes with diameter ranging between 4 to 6 m. It is expected that future off-shore wind farms will be located in water depths as high as 70 m. Therefore, alternative foundation arrangements are needed. Foundations for off-shore structures normally consist of open-ended piles driven into the soil by means of impact hammers. During pile installation, the soil inside the pile may be mobilized by the increasing shear strength such as to prevent more soil from entering the pile. This phenomenon is known as soil plugging, and represents an important issue as it may change significantly the driving resistance of open-ended piles. In fact, if the plugging formation is unexpected, the installation may require more powerful and more expensive hammers. Engineers need to estimate whether the driven pile will be installed in a plugged or unplugged mode. As a consequence, a prediction of the degree of soil plugging is required in order to correctly predict the drivability of the pile. This work presents a brief review of the state-of-the-art of pile driving and approaches used to predict formation of soil plugs. In addition, a novel analytical approach is proposed, which is based on the vertical equilibrium of a plugged pile. Differently from previous studies, this research takes into account the enhancement of the stress within the soil plug. Finally, the work presents and discusses a series of experimental tests, which are carried out on small-scale models piles to validate the analytical solution.

Keywords: off-shore wind turbines, pile installation, soil plugging, wind energy

Procedia PDF Downloads 297
4418 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 70
4417 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI

Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal

Abstract:

Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.

Keywords: fMRI, functional connectivity, task-based, beta series correlation

Procedia PDF Downloads 254