Search results for: continuous speed profile data
25440 Characteristics of Handgrip (Kumi-Kata) Profile of Georgian Elite Judo Athletes
Authors: Belkadi Adel, Beboucha Wahib, Cherara lalia
Abstract:
Objective: The aim of this study was to investigate the characteristics of Kumi-kata in elite judokas and characterize the kinematic and temporal parameters of different types of handgrip (HG). Method: fourteen participated in this study male athlete (23.5±2.61 years; 1.81±0.37 0 m; 87.25±22.75 kg), members of the Georgian Judo team. To characterize the dominance and types of kumi-kata used, videos of international competitions from each athlete were analyzed, and to characterize kinematic and temporal parameters and handgrip, and the volunteers pressed a digital dynamometer with each hand for 30 seconds(s) after a visual signal. Results: The values of 0.26±0.69s and 0.31±0.03s for reaction time were obtained, respectively, in the full grip and pinch grip; 19.62±18.83N/cm/s and 6.17±3.48N/cm/s for the rate of force development; 475,21 ± 101,322N and 494,65±112,73 for the FDR; 1,37 ± 0,521s and 1,45 ± 0,824s for the time between the force onset to the TFP; and 41,27±4,54N/cm/s and 45,16 ± 5,64N/cm/s for the fall index, in the dominant hand. There was no significant difference between hands for any variable, except for the dominance of Kumi-kata (p<0.05) used in combat. Conclusion: The dominance of application of the Kumi-kata is a technical option, as it does not depend on the kinetic-temporal parameters of the handgrip.Keywords: hand grip, judo, athletes, Kumi-Kata
Procedia PDF Downloads 19025439 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data
Authors: Rana Rimawi, Ayman Baklizi
Abstract:
Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation
Procedia PDF Downloads 19825438 New Dynamic Constitutive Model for OFHC Copper Film
Authors: Jin Sung Kim, Hoon Huh
Abstract:
The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.Keywords: rate dependent material properties, dynamic constitutive model, OFHC copper film, strain rate
Procedia PDF Downloads 48625437 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network
Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello
Abstract:
Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.Keywords: Internet of Things, LoRa, LoRaWAN, smart cities
Procedia PDF Downloads 14825436 The Potential of Braking Energy Recuperation in a City Bus Diesel Engine in the Japanese JE05 Emission Test Cycle
Authors: Grzegorz Baranski, Piotr Kacejko, Konrad Pietrykowski, Mariusz Duk
Abstract:
This paper discusses a model of a bus-driving scheme. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the mechanical energy recuperation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass. The research results show that fuel economy is impacted by kinetic energy recuperation.Keywords: heavy duty vehicle, city bus, Japanese JE05 test cycle, kinetic energy, simulations
Procedia PDF Downloads 21425435 Analyzing the Significance of Online Purchase Behavior of Tourists for the Development of Online Travel Bookings
Authors: April C. Abalos, Marmie R. Poquiz, Paul Nigel S. Abalos
Abstract:
With the advent of the fourth industrial revolution, everything is becoming possible with just a single click through the internet. What is more exciting is that through the power of the technological advancements, options are readily available in one’s fingertips. These technological advancements have greatly affected the perspectives of people in almost all human endeavors, even in their purchasing behavior. Hence, this study is conceptualized. This aims to identify the significance of the online purchase behavior of tourists for the development of travel bookings and provide knowledge to sellers and understanding major factors towards the online purchase behavior of tourists. Social media applications in booking online were also identified, as well as the profile and the marketing strategies influencing the behavior of individuals in an online travel booking. This study also sought to determine which behavioral intention should be given more attention to know where to exert more effort in winning the hearts of consumers. This study used a descriptive-survey design using an online survey questionnaire to gather real-time responses from the tourists visiting and/or planning to visit the scenic spots in the province of Pangasinan, which are highly reliable to formulate conclusions as deemed necessary.Keywords: behavior, online purchase, tourists, travel bookings
Procedia PDF Downloads 12825434 Cybervetting and Online Privacy in Job Recruitment – Perspectives on the Current and Future Legislative Framework Within the EU
Authors: Nicole Christiansen, Hanne Marie Motzfeldt
Abstract:
In recent years, more and more HR professionals have been using cyber-vetting in job recruitment in an effort to find the perfect match for the company. These practices are growing rapidly, accessing a vast amount of data from social networks, some of which is privileged and protected information. Thus, there is a risk that the right to privacy is becoming a duty to manage your private data. This paper investigates to which degree a job applicant's fundamental rights are protected adequately in current and future legislation in the EU. This paper argues that current data protection regulations and forthcoming regulations on the use of AI ensure sufficient protection. However, even though the regulation on paper protects employees within the EU, the recruitment sector may not pay sufficient attention to the regulation as it not specifically targeting this area. Therefore, the lack of specific labor and employment regulation is a concern that the social partners should attend to.Keywords: AI, cyber vetting, data protection, job recruitment, online privacy
Procedia PDF Downloads 8625433 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 40125432 Conceptual Design of a Telecommunications Equipment Container for Humanitarian Logistics
Authors: S. Parisi, Ch. Achillas, D. Aidonis, D. Folinas, N. Moussiopoulos
Abstract:
Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC) has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication center in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system.Keywords: telecommunications container, design, case study, humanitarian logistics
Procedia PDF Downloads 45825431 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 25425430 Defect Management Life Cycle Process for Software Quality Improvement
Authors: Aedah Abd Rahman, Nurdatillah Hasim
Abstract:
Software quality issues require special attention especially in view of the demands of quality software product to meet customer satisfaction. Software development projects in most organisations need proper defect management process in order to produce high quality software product and reduce the number of defects. The research question of this study is how to produce high quality software and reducing the number of defects. Therefore, the objective of this paper is to provide a framework for managing software defects by following defined life cycle processes. The methodology starts by reviewing defects, defect models, best practices and standards. A framework for defect management life cycle is proposed. The major contribution of this study is to define a defect management road map in software development. The adoption of an effective defect management process helps to achieve the ultimate goal of producing high quality software products and contributes towards continuous software process improvement.Keywords: defects, defect management, life cycle process, software quality
Procedia PDF Downloads 30625429 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction
Authors: Kyoungjin Kim
Abstract:
Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.Keywords: nanoparticles, thermite reaction, combustion wave, numerical modeling
Procedia PDF Downloads 38025428 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment
Authors: Margarita Belousova
Abstract:
The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment
Procedia PDF Downloads 27625427 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia
Authors: Tim Nedyalkov
Abstract:
A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. They are collecting, managing, and retaining large amounts of data in cloud environments makes information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.Keywords: cloud compliance, cloud security, data governance, privacy protection
Procedia PDF Downloads 11625426 Mobile Phone Text Reminders and Voice Call Follow-ups Improve Attendance for Community Retail Pharmacy Refills; Learnings from Lango Sub-region in Northern Uganda
Authors: Jonathan Ogwal, Louis H. Kamulegeya, John M. Bwanika, Davis Musinguzi
Abstract:
Introduction: Community retail Pharmacy drug distribution points (CRPDDP) were implemented in the Lango sub-region as part of the Ministry of Health’s response to improving access and adherence to antiretroviral treatment (ART). Clients received their ART refills from nearby local pharmacies; as such, the need for continuous engagement through mobile phone appointment reminders and health messages. We share learnings from the implementation of mobile text reminders and voice call follow-ups among ART clients attending the CRPDDP program in northern Uganda. Methods: A retrospective data review of electronic medical records from four pharmacies allocated for CRPDDP in the Lira and Apac districts of the Lango sub-region in Northern Uganda was done from February to August 2022. The process involved collecting phone contacts of eligible clients from the health facility appointment register and uploading them onto a messaging platform customized by Rapid-pro, an open-source software. Client information, including code name, phone number, next appointment date, and the allocated pharmacy for ART refill, was collected and kept confidential. Contacts received appointment reminder messages and other messages on positive living as an ART client. Routine voice call follow-ups were done to ascertain the picking of ART from the refill pharmacy. Findings: In total, 1,354 clients were reached from the four allocated pharmacies found in urban centers. 972 clients received short message service (SMS) appointment reminders, and 382 were followed up through voice calls. The majority (75%) of the clients returned for refills on the appointed date, 20% returned within four days after the appointment date, and the remaining 5% needed follow-up where they reported that they were not in the district by the appointment date due to other engagements. Conclusion: The use of mobile text reminders and voice call follow-ups improves the attendance of community retail pharmacy refills.Keywords: antiretroviral treatment, community retail drug distribution points, mobile text reminders, voice call follow-up
Procedia PDF Downloads 9925425 Character Strengths and Military Leadership
Authors: Lobna Cherif, Valerie Wood
Abstract:
The importance of both character and resilience for military members has been emphasized at the highest levels of military leadership. Initial research suggests that the presence of character strengths might be relevant in predicting success and well-being for some military populations (e.g., recruits). In this presentation, we will first review our research investigating the perceived importance of character strengths for Canadian military cadet (N = 134) success, the top strengths endorsed by cadets, and, in a subset of cadets (n = 94), the relationships among core strengths and resilience. Participants first completed a survey comprised of a resilience measure and demographic items, then one month later completed a Values in Action (VIA) character strengths profile, questions related to character strengths (their personal top-five character strengths, and strengths they believed were important for military-related stressors and leadership, academic success, resilience, and completion of the military challenge). Findings indicated that military cadets consider (among others), perseverance, judgment, and teamwork to be most critical for bouncing back from stressors. However, the most frequently endorsed strengths that characterized cadets were bravery, honesty, and perseverance. Finally, perseverance, bravery, and humor were positively correlated with cadet resilience, while endorsement of love was negatively correlated with resilience.Keywords: character strengths, leadership, positive psychology, resilience
Procedia PDF Downloads 18925424 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI
Authors: Rutej R. Mehta, Michael A. Chappell
Abstract:
Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.Keywords: arterial spin labelling, dispersion, MRI, perfusion
Procedia PDF Downloads 37225423 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa
Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees
Abstract:
The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.Keywords: solar energy, solar radiation, ERA-5, potential energy
Procedia PDF Downloads 21125422 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data
Authors: Fan Gao, Lior Pachter
Abstract:
The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome
Procedia PDF Downloads 15525421 Media, Myth and Hero: Sacred Political Narrative in Semiotic and Anthropological Analysis
Authors: Guilherme Oliveira
Abstract:
The assimilation of images and their potential symbolism into lived experiences is inherent. It is through this exercise of recognition via imagistic records that the questioning of the origins of a constant narrative stimulated by the media arises. The construction of the "Man" archetype and the reflections of active masculine imagery in the 21st century, when conveyed through media channels, could potentially have detrimental effects. Addressing this systematic behavioral chronology of virile cisgender, permeated imagistically through these means, involves exploring potential resolutions. Thus, an investigation process is initiated into the potential representation of the 'hero' in this media emulation through idols contextualized in the political sphere, with the purpose of elucidating the processes of simulation and emulation of narratives based on mythical, historical, and sacred accounts. In this process of sharing, the narratives contained in the imagistic structuring offered by information dissemination channels seek validation through a process of public acceptance. To achieve this consensus, a visual set adorned with mythological and sacred symbolisms adapted to the intended environment is promoted, thus utilizing sociocultural characteristics in favor of political marketing. Visual recognition, therefore, becomes a direct reflection of a cultural heritage acquired through lived human experience, stimulated by continuous representations throughout history. Echoes of imagery and narratives undergo a constant process of resignification of their concepts, sharpened by their premises, and adapted to the environment in which they seek to establish themselves. Political figures analyzed in this article employ the practice of taking possession of symbolisms, mythological stories, and heroisms and adapt their visual construction through a continuous praxis of emulation. Thus, they utilize iconic mythological narratives to gain credibility through belief. Utilizing iconic mythological narratives for credibility through belief, the idol becomes the very act of release of trauma, offering believers liberation from preconceived concepts and allowing for the attribution of new meanings. To dissolve this issue and highlight the subjectivities within the intention of the image, a linguistic, semiotic, and anthropological methodology is created. Linguistics uses expressions like 'Blaming the Image' to create a mechanism of expressive action in questioning why to blame a construction or visual composition and thus seek answers in the first act. Semiotics and anthropology develop an imagistic atlas of graphic analysis, seeking to make connections, comparisons, and relations between modern and sacred/mystical narratives, emphasizing the different subjective layers of embedded symbolism. Thus, it constitutes a performative act of disarming the image. It creates a disenchantment of the superficial gaze under the constant reproduction of visual content stimulated by virtual networks, enabling a discussion about the acceptance of caricatures characterized by past fables.Keywords: image, heroic narrative, media heroism, virile politics, political, myth, sacred performance, visual mythmaking, characterization dynamics
Procedia PDF Downloads 5025420 Design of Jumping Structure of Spherical Robot Based on Archimedes' Helix
Authors: Zhang Zijian
Abstract:
Nowadays, spherical robots have played an important role in many fields, but the insufficient ability of obstacle surmounting limits their wider application fields. To solve this problem, a jumping system of a spherical robot is designed based on Archimedes helix. The jumping system of the robot utilizes the characteristics of Archimedes helix and isovelocity helix to achieve constant speed and stable contraction, which ensures the stability of the system. Also, the jumping action of the robot is realized by instantaneous release of elastic potential energy. In order to verify the effectiveness of the jumping system, we designed a spherical robot and its jumping system. The experimental results show that the jumping system has the advantages of light weight, small size, high energy conversion efficiency, and can realize the spherical jumping function.Keywords: hopping mechanism, Archimedes' Helix, hopping robot, spherical robot
Procedia PDF Downloads 13525419 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning
Authors: Michael A. Sprayberry, Vincent C. Paquit
Abstract:
Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization
Procedia PDF Downloads 9125418 The Strength and Metallography of a Bimetallic Friction Stir Bonded Joint between AA6061 and High Hardness Steel
Authors: Richard E. Miller
Abstract:
12.7-mm thick plates of 6061-T6511 aluminum alloy and high hardness steel (528 HV) were successfully joined by a friction stir bonding process using a tungsten-rhenium stir tool. Process parameter variation experiments, which included tool design geometry, plunge and traverse rates, tool offset, spindle tilt, and rotation speed, were conducted to develop a parameter set which yielded a defect free joint. Laboratory tensile tests exhibited yield stresses which exceed the strengths of comparable AA6061-to-AA6061 fusion and friction stir weld joints. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis also show atomic diffusion at the material interface region.Keywords: dissimilar materials, friction stir, welding, materials science
Procedia PDF Downloads 26925417 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 14025416 Memetic Algorithm for Solving the One-To-One Shortest Path Problem
Authors: Omar Dib, Alexandre Caminada, Marie-Ange Manier
Abstract:
The purpose of this study is to introduce a novel approach to solve the one-to-one shortest path problem. A directed connected graph is assumed in which all edges’ weights are positive. Our method is based on a memetic algorithm in which we combine a genetic algorithm (GA) and a variable neighborhood search method (VNS). We compare our approximate method with two exact algorithms Dijkstra and Integer Programming (IP). We made experimentations using random generated, complete and real graph instances. In most case studies, numerical results show that our method outperforms exact methods with 5% average gap to the optimality. Our algorithm’s average speed is 20-times faster than Dijkstra and more than 1000-times compared to IP. The details of the experimental results are also discussed and presented in the paper.Keywords: shortest path problem, Dijkstra’s algorithm, integer programming, memetic algorithm
Procedia PDF Downloads 46725415 Two-Dimensional Dynamics Motion Simulations of F1 Rare Wing-Flap
Authors: Chaitanya H. Acharya, Pavan Kumar P., Gopalakrishna Narayana
Abstract:
In the realm of aerodynamics, numerous vehicles incorporate moving components to enhance their performance. For instance, airliners deploy hydraulically operated flaps and ailerons during take-off and landing, while Formula 1 racing cars utilize hydraulic tubes and actuators for various components, including the Drag Reduction System (DRS). The DRS, consisting of a rear wing and adjustable flaps, plays a crucial role in overtaking manoeuvres. The DRS has two positions: the default position with the flaps down, providing high downforce, and the lifted position, which reduces drag, allowing for increased speed and aiding in overtaking. Swift deployment of the DRS during races is essential for overtaking competitors. The fluid flow over the rear wing flap becomes intricate during deployment, involving flow reversal and operational changes, leading to unsteady flow physics that significantly influence aerodynamic characteristics. Understanding the drag and downforce during DRS deployment is crucial for determining race outcomes. While experiments can yield accurate aerodynamic data, they can be expensive and challenging to conduct across varying speeds. Computational Fluid Dynamics (CFD) emerges as a cost-effective solution to predict drag and downforce across a range of speeds, especially with the rapid deployment of the DRS. This study employs the finite volume-based solver Ansys Fluent, incorporating dynamic mesh motions and a turbulent model to capture the complex flow phenomena associated with the moving rear wing flap. A dedicated section for the rare wing-flap is considered in the present simulations, and the aerodynamics of these sections closely resemble S1223 aerofoils. Before delving into the simulations of the rare wing-flap aerofoil, numerical results undergo validation using experimental data from an NLR flap aerofoil case, encompassing different flap angles at two distinct angles of attack was carried out. The increase in flap angle as increase in lift and drag is observed for a given angle of attack. The simulation methodology for the rare-wing-flap aerofoil case involves specific time durations before lifting the flap. During this period, drag and downforce values are determined as 330 N and 1800N, respectively. Following the flap lift, a noteworthy reduction in drag to 55 % and a decrease in downforce to 17 % are observed. This understanding is critical for making instantaneous decisions regarding the deployment of the Drag Reduction System (DRS) at specific speeds, thereby influencing the overall performance of the Formula 1 racing car. Hence, this work emphasizes the utilization of dynamic mesh motion methodology to predict the aerodynamic characteristics during the deployment of the DRS in a Formula 1 racing car.Keywords: DRS, CFD, drag, downforce, dynamics mesh motion
Procedia PDF Downloads 9425414 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 16225413 System Security Impact on the Dynamic Characteristics of Measurement Sensors in Smart Grids
Authors: Yiyang Su, Jörg Neumann, Jan Wetzlich, Florian Thiel
Abstract:
Smart grid is a term used to describe the next generation power grid. New challenges such as integration of renewable and decentralized energy sources, the requirement for continuous grid estimation and optimization, as well as the use of two-way flows of energy have been brought to the power gird. In order to achieve efficient, reliable, sustainable, as well as secure delivery of electric power more and more information and communication technologies are used for the monitoring and the control of power grids. Consequently, the need for cybersecurity is dramatically increased and has converged into several standards which will be presented here. These standards for the smart grid must be designed to satisfy both performance and reliability requirements. An in depth investigation of the effect of retrospectively embedded security in existing grids on it’s dynamic behavior is required. Therefore, a retrofitting plan for existing meters is offered, and it’s performance in a test low voltage microgrid is investigated. As a result of this, integration of security measures into measurement architectures of smart grids at the design phase is strongly recommended.Keywords: cyber security, performance, protocols, security standards, smart grid
Procedia PDF Downloads 32425412 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh
Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter
Abstract:
Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.Keywords: land cover change, land surface temperature, normalized difference vegetation index, urban heat island
Procedia PDF Downloads 27225411 Exploring Emerging Viruses From a Protected Reserve
Authors: Nemat Sokhandan Bashir
Abstract:
Threats from viruses to agricultural crops could be even larger than the losses caused by the other pathogens because, in many cases, the viral infection is latent but crucial from an epidemic point of view. Wild vegetation can be a source of many viruses that eventually find their destiny in crop plants. Although often asymptomatic in wild plants due to adaptation, they can potentially cause serious losses in crops. Therefore, exploring viruses in wild vegetation is very important. Recently, omics have been quite useful for exploring plant viruses from various plant sources, especially wild vegetation. For instance, we have discovered viruses such as Ambrossia asymptomatic virus I (AAV-1) through the application of metagenomics from Oklahoma Prairie Reserve. Accordingly, extracts from randomly-sampled plants are subjected to high speed and ultracentrifugation to separated virus-like particles (VLP), then nucleic acids in the form of DNA or RNA are extracted from such VLPs by treatment with phenol—chloroform and subsequent precipitation by ethanol. The nucleic acid preparations are separately treated with RNAse or DNAse in order to determine the genome component of VLPs. In the case of RNAs, the complementary cDNAs are synthesized before submitting to DNA sequencing. However, for VLPs with DNA contents, the procedure would be relatively straightforward without making cDNA. Because the length of the nucleic acid content of VPLs can be different, various strategies are employed to achieve sequencing. Techniques similar to so-called "chromosome walking" may be used to achieve sequences of long segments. When the nucleotide sequence data were obtained, they were subjected to BLAST analysis to determine the most related previously reported virus sequences. In one case, we determined that the novel virus was AAV-l because the sequence comparison and analysis revealed that the reads were the closest to the Indian citrus ringspot virus (ICRSV). AAV—l had an RNA genome with 7408 nucleotides in length and contained six open reading frames (ORFs). Based on phylogenies inferred from the replicase and coat protein ORFs of the virus, it was placed in the genus Mandarivirus.Keywords: wild, plant, novel, metagenomics
Procedia PDF Downloads 80