Search results for: waste characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4983

Search results for: waste characterization

363 Characterization of Thin Woven Composites Used in Printed Circuit Boards by Combining Numerical and Experimental Approaches

Authors: Gautier Girard, Marion Martiny, Sebastien Mercier, Mohamad Jrad, Mohamed-Slim Bahi, Laurent Bodin, Francois Lechleiter, David Nevo, Sophie Dareys

Abstract:

Reliability of electronic devices has always been of highest interest for Aero-MIL and space applications. In any electronic device, Printed Circuit Board (PCB), providing interconnection between components, is a key for reliability. During the last decades, PCB technologies evolved to sustain and/or fulfill increased original equipment manufacturers requirements and specifications, higher densities and better performances, faster time to market and longer lifetime, newer material and mixed buildups. From the very beginning of the PCB industry up to recently, qualification, experiments and trials, and errors were the most popular methods to assess system (PCB) reliability. Nowadays OEM, PCB manufacturers and scientists are working together in a close relationship in order to develop predictive models for PCB reliability and lifetime. To achieve that goal, it is fundamental to characterize precisely base materials (laminates, electrolytic copper, …), in order to understand failure mechanisms and simulate PCB aging under environmental constraints by means of finite element method for example. The laminates are woven composites and have thus an orthotropic behaviour. The in-plane properties can be measured by combining classical uniaxial testing and digital image correlation. Nevertheless, the out-of-plane properties cannot be evaluated due to the thickness of the laminate (a few hundred of microns). It has to be noted that the knowledge of the out-of-plane properties is fundamental to investigate the lifetime of high density printed circuit boards. A homogenization method combining analytical and numerical approaches has been developed in order to obtain the complete elastic orthotropic behaviour of a woven composite from its precise 3D internal structure and its experimentally measured in-plane elastic properties. Since the mechanical properties of the resin surrounding the fibres are unknown, an inverse method is proposed to estimate it. The methodology has been applied to one laminate used in hyperfrequency spatial applications in order to get its elastic orthotropic behaviour at different temperatures in the range [-55°C; +125°C]. Next; numerical simulations of a plated through hole in a double sided PCB are performed. Results show the major importance of the out-of-plane properties and the temperature dependency of these properties on the lifetime of a printed circuit board. Acknowledgements—The support of the French ANR agency through the Labcom program ANR-14-LAB7-0003-01, support of CNES, Thales Alenia Space and Cimulec is acknowledged.

Keywords: homogenization, orthotropic behaviour, printed circuit board, woven composites

Procedia PDF Downloads 193
362 Aerosol Characterization in a Coastal Urban Area in Rimini, Italy

Authors: Dimitri Bacco, Arianna Trentini, Fabiana Scotto, Flavio Rovere, Daniele Foscoli, Cinzia Para, Paolo Veronesi, Silvia Sandrini, Claudia Zigola, Michela Comandini, Marilena Montalti, Marco Zamagni, Vanes Poluzzi

Abstract:

The Po Valley, in the north of Italy, is one of the most polluted areas in Europe. The air quality of the area is linked not only to anthropic activities but also to its geographical characteristics and stagnant weather conditions with frequent inversions, especially in the cold season. Even the coastal areas present high values of particulate matter (PM10 and PM2.5) because the area closed between the Adriatic Sea and the Apennines does not favor the dispersion of air pollutants. The aim of the present work was to identify the main sources of particulate matter in Rimini, a tourist city in northern Italy. Two sampling campaigns were carried out in 2018, one in winter (60 days) and one in summer (30 days), in 4 sites: an urban background, a city hotspot, a suburban background, and a rural background. The samples are characterized by the concentration of the ionic composition of the particulates and of the main a hydro-sugars, in particular levoglucosan, a marker of the biomass burning, because one of the most important anthropogenic sources in the area, both in the winter and surprisingly even in the summer, is the biomass burning. Furthermore, three sampling points were chosen in order to maximize the contribution of a specific biomass source: a point in a residential area (domestic cooking and domestic heating), a point in the agricultural area (weed fires), and a point in the tourist area (restaurant cooking). In these sites, the analyzes were enriched with the quantification of the carbonaceous component (organic and elemental carbon) and with measurement of the particle number concentration and aerosol size distribution (6 - 600 nm). The results showed a very significant impact of the combustion of biomass due to domestic heating in the winter period, even though many intense peaks were found attributable to episodic wood fires. In the summer season, however, an appreciable signal was measured linked to the combustion of biomass, although much less intense than in winter, attributable to domestic cooking activities. Further interesting results were the verification of the total absence of sea salt's contribution in the particulate with the lower diameter (PM2.5), and while in the PM10, the contribution becomes appreciable only in particular wind conditions (high wind from north, north-east). Finally, it is interesting to note that in a small town, like Rimini, in summer, the traffic source seems to be even more relevant than that measured in a much larger city (Bologna) due to tourism.

Keywords: aerosol, biomass burning, seacoast, urban area

Procedia PDF Downloads 117
361 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis

Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini

Abstract:

Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.

Keywords: adsorption, Brahea edulis, isotherm, yellow Bemacid

Procedia PDF Downloads 167
360 Education for Sustainable Development and the Eco School Initiative in Two Primary Schools in The North East of England

Authors: Athanasia Chatzifotiou, Karen Tait

Abstract:

Eco-school is an international initiative that offers schools the opportunity to develop practices on education for sustainable development (EfSD). Such practices need to focus on nine areas, namely: energy, water, biodiversity, school grounds, healthy living, transport, litter, waste and global citizenship. Acquiring the green flag status is the ultimate stage (silver and bronze are the other two) that is awarded by a committee external to the school and it lasts for two years. Our project focused on two such primary schools that had acquired the green flag status. The aim of our project is to describe the schools’ approach of becoming an eco-school, the practitioners’ role in promoting the values and principles of such endeavors, thus identifying the impact of EfSD. We chose the eco-schools initiative as it gives a clear and straightforward way to identify a school with an interest in EfSD. The project is important because even though EfSD attracts high attention in rhetoric, there is evidence indicating that EfSD may be neglected in practice. This paper presents part of a bigger project that aims to compare how primary schools and early years settings have approached EfSD via the eco-school initiative in the North East of England. This is a qualitative project that used a case study design to focus on the practices of two particular primary schools to gain a green flag status. A semi-structured interview was used with the lead teachers/practitioners of the schools; an audit was also conducted as part of a tour of the schools’ premises highlighting the initiatives, curriculum work, projects undertaken as well as resources available to school. A content analysis of the interview transcripts was conducted with the creation of response categories and response narratives by the two researchers first working individually and then collaboratively; the findings of the project reflected issues that concerned: a) pupils’ cognitive, physical and socio-emotional development, b) the wider community and c) the lead practitioners’ role and status in school. In relation to EfSD, our findings indicated that its impact upon these two eco-schools was rather minimal; a mismatch was identified between the eco-school practices and a holistic understanding of issues that EfSD aims to achieve. This mismatch between eco-school practices and EfSD is discussed with regard to: a) pupils’ understanding of the sustainability dimension in the topics they addressed; and b) teachers’ knowledge of sustainability and willingness to keep on such work in schools.

Keywords: eco-schools, environment, primary schools, sustainability education

Procedia PDF Downloads 237
359 A Comparative Study of the Physicochemical and Structural Properties of Quinoa Protein Isolate and Yellow Squat Shrimp Byproduct Protein Isolate through pH-Shifting Modification

Authors: María José Bugueño, Natalia Jaime, Cristian Castro, Diego Naranjo, Guido Trautmann, Mario Pérez-Won, Vilbett Briones-Labarca

Abstract:

Proteins play a crucial role in various prepared foods, including dairy products, drinks, emulsions, and ready meals. These food proteins are naturally present in food waste and byproducts. The alkaline extraction and acid precipitation method is commonly used to extract proteins from plants and animals due to its product stability, cost-effectiveness, and ease of use. This study aimed to investigate the impact of pH-shifting storage at two different pH levels on the conformational changes affecting the physicochemical and functional properties of quinoa protein isolate (QPI) and yellow shrimp byproduct protein isolate (YSPI). The QPI and YSPI were extracted using the alkaline extraction-isoelectric precipitation method. The dispersions were adjusted to pH 4 or 12, stirred for 2 hours at 20°C to achieve a uniform dispersion, and then freeze-dried. Various analyses were conducted, including flexibility (F), free sulfhydryl content (Ho), emulsifying activity (EA), emulsifying capacity (EC), water holding capacity (WHC), oil holding capacity (OHC), intrinsic fluorescence, ultraviolet spectroscopy, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) to assess the properties of the protein isolates. pH-shifting at pH 11 and 12 for QPI and YSPI, respectively, significantly improved protein properties, while property modification of the samples treated under acidic conditions was less pronounced. Additionally, the pH 11 and 12 treatments significantly improved F, Ho, EA, WHC, OHC, intrinsic fluorescence, ultraviolet spectroscopy, DSC, and FTIR. The increase in Ho was due to disulfide bond disruption, which produced more protein sub-units than other treatments for both proteins. This study provides theoretical support for comprehensively elucidating the functional properties of protein isolates, promoting the application of plant proteins and marine byproducts. The pH-shifting process effectively improves the emulsifying property and stability of QPI and YSPI, which can be considered potential plant-based or marine byproduct-based emulsifiers for use in the food industry.

Keywords: quinoa protein, yellow shrimp by-product protein, physicochemical properties, structural properties

Procedia PDF Downloads 18
358 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts

Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan

Abstract:

Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.

Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly

Procedia PDF Downloads 122
357 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 106
356 Advanced Separation Process of Hazardous Plastics and Metals from End-Of-Life Vehicles Shredder Residue by Nanoparticle Froth Flotation

Authors: Srinivasa Reddy Mallampati, Min Hee Park, Soo Mim Cho, Sung Hyeon Yoon

Abstract:

One of the issues of End of Life Vehicles (ELVs) recycling promotion is technology for the appropriate treatment of automotive shredder residue (ASR). Owing to its high heterogeneity and variable composition (plastic (23–41%), rubber/elastomers (9–21%), metals (6–13%), glass (10–20%) and dust (soil/sand) etc.), ASR can be classified as ‘hazardous waste’, on the basis of the presence of heavy metals (HMs), PCBs, BFRs, mineral oils, etc. Considering their relevant concentrations, these metals and plastics should be properly recovered for recycling purposes before ASR residues are disposed of. Brominated flame retardant additives in ABS/HIPS and PVC may generate dioxins and furans at elevated temperatures. Moreover, these BFRs additives present in plastic materials may leach into the environment during landfilling operations. ASR thermal process removes some of the organic material but concentrates, the heavy metals and POPs present in the ASR residues. In the present study, Fe/Ca/CaO nanoparticle assisted ozone treatment has been found to selectively hydrophilize the surface of ABS/HIPS and PVC plastics, enhancing its wettability and thereby promoting its separation from ASR plastics by means of froth flotation. The water contact angles, of ABS/HIPS and PVC decreased, about 18.7°, 18.3°, and 17.9° in ASR respectively. Under froth flotation conditions at 50 rpm, about 99.5% and 99.5% of HIPS in ASR samples sank, resulting in a purity of 98% and 99%. Furthermore, at 150 rpm a 100% PVC separation in the settled fraction, with 98% of purity in ASR, respectively. Total recovery of non-ABS/HIPS and PVC plastics reached nearly 100% in the floating fraction. This process improved the quality of recycled ASR plastics by removing surface contaminants or impurities. Further, a hybrid ball-milling and with Fe/Ca/CaO nanoparticle froth flotation process was established for the recovery of HMs from ASR. After ball-milling with Fe/Ca/CaO nanoparticle additives, the flotation efficiency increased to about 55 wt% and the HMs recovery were also increased about 90% for the 0.25 mm size fractions of ASR. Coating with Fe/Ca/CaO nanoparticles associated with subsequent microbubble froth flotation allowed the air bubbles to attach firmly on the HMs. SEM–EDS maps showed that the amounts of HMs were significant on the surface of the floating ASR fraction. This result, along with the low HM concentration in the settled fraction, was confirmed by elemental spectra and semi-quantitative SEM–EDS analysis. Developed hybrid preferential hazardous plastics and metals separation process from ASR is a simple, highly efficient, and sustainable procedure.

Keywords: end of life vehicles shredder residue, hazardous plastics, nanoparticle froth flotation, separation process

Procedia PDF Downloads 265
355 Spectroscopy and Electron Microscopy for the Characterization of CdSxSe1-x Quantum Dots in a Glass Matrix

Authors: C. Fornacelli, P. Colomban, E. Mugnaioli, I. Memmi Turbanti

Abstract:

When semiconductor particles are reduced in scale to nanometer dimension, their optical and electro-optical properties strongly differ from those of bulk crystals of the same composition. Since sampling is often not allowed concerning cultural heritage artefacts, the potentialities of two non-invasive techniques, such as Raman and Fiber Optic Reflectance Spectroscopy (FORS), have been investigated and the results of the analysis on some original glasses of different colours (from yellow to orange and deep red) and periods (from the second decade of the 20th century to present days) are reported in the present study. In order to evaluate the potentialities of the application of non-invasive techniques to the investigation of the structure and distribution of nanoparticles dispersed in a glass matrix, Scanning Electron Microscopy (SEM) and energy-disperse spectroscopy (EDS) mapping, together with Transmission Electron Microscopy (TEM) and Electron Diffraction Tomography (EDT) have also been used. Raman spectroscopy allows a fast and non-destructive measure of the quantum dots composition and size, thanks to the evaluation of the frequencies and the broadening/asymmetry of the LO phonons bands, respectively, though the important role of the compressive strain arising from the glass matrix and the possible diffusion of zinc from the matrix to the nanocrystals should be taken into account when considering the optical-phonons frequency values. The incorporation of Zn has been assumed by an upward shifting of the LO band related to the most abundant anion (S or Se), while the role of the surface phonons as well as the confinement-induced scattering by phonons with a non-zero wavevectors on the Raman peaks broadening has been verified. The optical band gap varies from 2.42 eV (pure CdS) to 1.70 eV (CdSe). For the compositional range between 0.5≤x≤0.2, the presence of two absorption edges has been related to the contribution of both pure CdS and the CdSxSe1-x solid solution; this particular feature is probably due to the presence of unaltered cubic zinc blende structures of CdS that is not taking part to the formation of the solid solution occurring only between hexagonal CdS and CdSe. Moreover, the band edge tailing originating from the disorder due to the formation of weak bonds and characterized by the Urbach edge energy has been studied and, together with the FWHM of the Raman signal, has been assumed as a good parameter to evaluate the degree of topological disorder. SEM-EDS mapping showed a peculiar distribution of the major constituents of the glass matrix (fluxes and stabilizers), especially concerning those samples where a layered structure has been assumed thanks to the spectroscopic study. Finally, TEM-EDS and EDT were used to get high-resolution information about nanocrystals (NCs) and heterogeneous glass layers. The presence of ZnO NCs (< 4 nm) dispersed in the matrix has been verified for most of the samples, while, for those samples where a disorder due to a more complex distribution of the size and/or composition of the NCs has been assumed, the TEM clearly verified most of the assumption made by the spectroscopic techniques.

Keywords: CdSxSe1-x, EDT, glass, spectroscopy, TEM-EDS

Procedia PDF Downloads 293
354 Effect of Inoculum Ratio on Dark Fermentative Hydrogen Production

Authors: Zeynep Yilmazer Hitit, Patrick C. Hallenbeck

Abstract:

Fuel reserve requirements due to depletion of fossil fuels have increased interest in biohydrogen since the 1990’s. In fermentative hydrogen production, pure, mixed, and co-cultures can be used to produce hydrogen. Several previous studies have evaluated hydrogen production by pure cultures of Clostridium butyricum or Enterobacter aerogenes. Evaluating hydrogen production by co-culture of these microorganisms is an interestıng approach since E. aerogenes is a facultative microorganism with resistance to oxygen in contrast to the strict anaerobe C. butyricum, and therefore has the ability to maintain anaerobic conditions. It was found that using co-cultures of facultative E. aerogenes (as a reducing agent and H2 producer) and the obligate anaerobe C. butyricum for producing hydrogen increases the yield of hydrogen by about 50% compared to C. butyricum by itself. Also, using different types of microorganisms for hydrogen production eliminates the need to use expensive reducing agents. C. butyricum strain pre-cultured anaerobically at 37 0C for 15h by inoculating 100 mL of GP medium (pH 6.8) consisting of 1% glucose, 2% polypeptone, 0.2% KH2PO4, 0.05% yeast extract, 0.05% MgSO4. 7H2O and E. aerogenes strain was pre-cultured aerobically at 30 0C, 150 rpm for 9 h by inoculating 100 mL of TGY medium (pH 6.8), consisting of 0.1% glucose, 0.5% tryptone, 0.1% K2HPO4, 0.5% yeast extract. All duplicate batch experiments were conducted in 100 mL bottles with different inoculum ratios of Clostridium butyricum and Enterobater aerogenes (C:E) using 5x diluted rich media (GP) consisting of 2 g/L glucose, 4g/L polypeptone, 0.4 g/L KH2PO4, 0.1 g/L yeast extract, 0.1 MgSO4.7H2O. The range of inoculum ratio of C. butyricum to E. aerogenes were 2:1,4:1,8:1, 1:2,1:4, 1:8, 1:0, 0:1. Using glucose as a carbon source aided in the observation of microbial behavior as well as making the effect of inoculum ratio more evident. Nearly all the glucose in the medium was used to produce hydrogen, except at a 1:0 ratio of inoculum (i.e. containing only C. butyricum). Low glucose consumption leads to a higher hydrogen yield due to cumulative hydrogen production and consumption of glucose, but not as much as C:E, 8:1. The lowest hydrogen yield was achieved in 1:8 inoculum ratio of C:E, 71.9 mL, 1.007±0.01 mol H2/mol glucose and the highest cumulative hydrogen, hydrogen yield and dry cell weight were achieved in 8:1 inoculum ratio of C:E, 117.4 mL, 2.035±0.082 mol H2/mol glucose, 0.4 g/L respectively. In this study effect of inoculum ratio on dark fermentative biohydrogen production using C. butyricum and E. aerogenes was investigated. The maximum hydrogen yield of 2.035mol H2/mol glucose was obtained using 2g/L glucose, an initial pH of 6 and an inoculum ratio of C. butyricum to E. aerogenes of 8:1. Results showed that inoculum ratio is an important parameter on hydrogen production due to competition between the two microorganisms in using substrate for growth and production of by-products. The results presented here could be of great significance for further waste management studies using co-culture hydrogen production.

Keywords: biohydrogen, Clostridium butyricum, dark fermentation, Enterobacter aerogenes, inoculum ratio in biohydrogen production

Procedia PDF Downloads 224
353 Effect of Enzymatic Hydrolysis and Ultrasounds Pretreatments on Biogas Production from Corn Cob

Authors: N. Pérez-Rodríguez, D. García-Bernet, A. Torrado-Agrasar, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

World economy is based on non-renewable, fossil fuels such as petroleum and natural gas, which entails its rapid depletion and environmental problems. In EU countries, the objective is that at least 20% of the total energy supplies in 2020 should be derived from renewable resources. Biogas, a product of anaerobic degradation of organic substrates, represents an attractive green alternative for meeting partial energy needs. Nowadays, trend to circular economy model involves efficiently use of residues by its transformation from waste to a new resource. In this sense, characteristics of agricultural residues (that are available in plenty, renewable, as well as eco-friendly) propitiate their valorisation as substrates for biogas production. Corn cob is a by-product obtained from maize processing representing 18 % of total maize mass. Corn cob importance lies in the high production of this cereal (more than 1 x 109 tons in 2014). Due to its lignocellulosic nature, corn cob contains three main polymers: cellulose, hemicellulose and lignin. Crystalline, highly ordered structures of cellulose and lignin hinders microbial attack and subsequent biogas production. For the optimal lignocellulose utilization and to enhance gas production in anaerobic digestion, materials are usually submitted to different pretreatment technologies. In the present work, enzymatic hydrolysis, ultrasounds and combination of both technologies were assayed as pretreatments of corn cob for biogas production. Enzymatic hydrolysis pretreatment was started by adding 0.044 U of Ultraflo® L feruloyl esterase per gram of dry corncob. Hydrolyses were carried out in 50 mM sodium-phosphate buffer pH 6.0 with a solid:liquid proportion of 1:10 (w/v), at 150 rpm, 40 ºC and darkness for 3 hours. Ultrasounds pretreatment was performed subjecting corn cob, in 50 mM sodium-phosphate buffer pH 6.0 with a solid: liquid proportion of 1:10 (w/v), at a power of 750W for 1 minute. In order to observe the effect of the combination of both pretreatments, some samples were initially sonicated and then they were enzymatically hydrolysed. In terms of methane production, anaerobic digestion of the corn cob pretreated by enzymatic hydrolysis was positive achieving 290 L CH4 kg MV-1 (compared with 267 L CH4 kg MV-1 obtained with untreated corn cob). Although the use of ultrasound as the only pretreatment resulted detrimentally (since gas production decreased to 244 L CH4 kg MV-1 after 44 days of anaerobic digestion), its combination with enzymatic hydrolysis was beneficial, reaching the highest value (300.9 L CH4 kg MV-1). Consequently, the combination of both pretreatments improved biogas production from corn cob.

Keywords: biogas, corn cob, enzymatic hydrolysis, ultrasound

Procedia PDF Downloads 258
352 Production, Characterization and In vitro Evaluation of [223Ra]RaCl2 Nanomicelles for Targeted Alpha Therapy of Osteosarcoma

Authors: Yang Yang, Luciana Magalhães Rebelo Alencar, Martha Sahylí Ortega Pijeira, Beatriz da Silva Batista, Alefe Roger Silva França, Erick Rafael Dias Rates, Ruana Cardoso Lima, Sara Gemini-Piperni, Ralph Santos-Oliveira

Abstract:

Radium-²²³ dichloride ([²²³Rₐ]RₐCl₂) is an alpha particle-emitting radiopharmaceutical currently approved for the treatment of patients with castration-resistant prostate cancer, symptomatic bone metastases, and no known visceral metastatic disease. [²²³Rₐ]RₐCl₂ is bone-seeking calcium mimetic that bonds into the newly formed bone stroma, especially osteoblastic or sclerotic metastases, killing the tumor cells by inducing DNA breaks in a potent and localized manner. Nonetheless, the successful therapy of osteosarcoma as primary bone tumors is still a challenge. Nanomicelles are colloidal nanosystems widely used in drug development to improve blood circulation time, bioavailability, and specificity of therapeutic agents, among other applications. In addition, the enhanced permeability and retention effect of the nanosystems, and the renal excretion of the nanomicelles reported in most cases so far, are very attractive to achieve selective and increased accumulation in tumor site as well as to increase the safety of [²²³Rₐ]RₐCl₂ in the clinical routine. In the present work, [²²³Rₐ]RₐCl₂ nanomicelles were produced, characterized, in vitro evaluated, and compared with pure [²²³Rₐ]RₐCl2 solution using SAOS2 osteosarcoma cells. The [²²³Rₐ]RₐCl₂ nanomicelles were prepared using the amphiphilic copolymer Pluronic F127. The dynamic light scattering analysis of freshly produced [²²³Rₐ]RₐCl₂ nanomicelles demonstrated a mean size of 129.4 nm with a polydispersity index (PDI) of 0.303. After one week stored in the refrigerator, the mean size of the [²²³Rₐ]RₐCl₂ nanomicelles increased to 169.4 with a PDI of 0.381. Atomic force microscopy analysis of [223Rₐ]RₐCl₂ nanomicelles exhibited spherical structures whose heights reach 1 µm, suggesting the filling of 127-Pluronic nanomicelles with [²²³Rₐ]RₐCl₂. The viability assay with [²²³Rₐ]RₐCl₂ nanomicelles displayed a dose-dependent response as it was observed using pure [²²³Rₐ]RₐCl2. However, at the same dose, [²²³Rₐ]RₐCl₂ nanomicelles were 20% higher efficient in killing SAOS2 cells when compared with pure [²²³Rₐ]RₐCl₂. These findings demonstrated the effectiveness of the nanosystem validating the application of nanotechnology in targeted alpha therapy with [²²³Ra]RₐCl₂. In addition, the [²²³Rₐ]RaCl₂nanomicelles may be decorated and incorporated with a great variety of agents and compounds (e.g., monoclonal antibodies, aptamers, peptides) to overcome the limited use of [²²³Ra]RₐCl₂.

Keywords: nanomicelles, osteosarcoma, radium dichloride, targeted alpha therapy

Procedia PDF Downloads 102
351 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis

Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin

Abstract:

Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.

Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer

Procedia PDF Downloads 153
350 Development and Experimental Evaluation of a Semiactive Friction Damper

Authors: Juan S. Mantilla, Peter Thomson

Abstract:

Seismic events may result in discomfort on occupants of the buildings, structural damage or even buildings collapse. Traditional design aims to reduce dynamic response of structures by increasing stiffness, thus increasing the construction costs and the design forces. Structural control systems arise as an alternative to reduce these dynamic responses. A commonly used control systems in buildings are the passive friction dampers, which adds energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Passive friction dampers are usually implemented on the diagonal of braced buildings, but such devices have the disadvantage that are optimal for a range of sliding force and out of that range its efficiency decreases. The above implies that each passive friction damper is designed, built and commercialized for a specific sliding/clamping force, in which the damper shift from a locked state to a slip state, where dissipates energy through friction. The risk of having a variation in the efficiency of the device according to the sliding force is that the dynamic properties of the building can change as result of many factor, even damage caused by a seismic event. In this case the expected forces in the building can change and thus considerably reduce the efficiency of the damper (that is designed for a specific sliding force). It is also evident than when a seismic event occurs the forces in each floor varies in the time what means that the damper's efficiency is not the best at all times. Semi-Active Friction devices adapt its sliding force trying to maintain its motion in the slipping phase as much as possible, because of this, the effectiveness of the device depends on the control strategy used. This paper deals with the development and performance evaluation of a low cost Semiactive Variable Friction Damper (SAVFD) in reduced scale to reduce vibrations of structures subject to earthquakes. The SAVFD consist in a (1) hydraulic brake adapted to (2) a servomotor which is controlled with an (3) Arduino board and acquires accelerations or displacement from (4) sensors in the immediately upper and lower floors and a (5) power supply that can be a pair of common batteries. A test structure, based on a Benchmark structure for structural control, was design and constructed. The SAVFD and the structure are experimentally characterized. A numerical model of the structure and the SAVFD is developed based on the dynamic characterization. Decentralized control algorithms were modeled and later tested experimentally using shaking table test using earthquake and frequency chirp signals. The controlled structure with the SAVFD achieved reductions greater than 80% in relative displacements and accelerations in comparison to the uncontrolled structure.

Keywords: earthquake response, friction damper, semiactive control, shaking table

Procedia PDF Downloads 368
349 Study of the Hydrodynamic of Electrochemical Ion Pumping for Lithium Recovery

Authors: Maria Sofia Palagonia, Doriano Brogioli, Fabio La Mantia

Abstract:

In the last decade, lithium has become an important raw material in various sectors, in particular for rechargeable batteries. Its production is expected to grow more and more in the future, especially for mobile energy storage and electromobility. Until now it is mostly produced by the evaporation of water from salt lakes, which led to a huge water consumption, a large amount of waste produced and a strong environmental impact. A new, clean and faster electrochemical technique to recover lithium has been recently proposed: electrochemical ion pumping. It consists in capturing lithium ions from a feed solution by intercalation in a lithium-selective material, followed by releasing them into a recovery solution; both steps are driven by the passage of a current. In this work, a new configuration of the electrochemical cell is presented, used to study and optimize the process of the intercalation of lithium ions through the hydrodynamic condition. Lithium Manganese Oxide (LiMn₂O₄) was used as a cathode to intercalate lithium ions selectively during the reduction, while Nickel Hexacyano Ferrate (NiHCF), used as an anode, releases positive ion. The effect of hydrodynamics on the process has been studied by conducting the experiments at various fluxes of the electrolyte through the electrodes, in terms of charge circulated through the cell, captured lithium per unit mass of material and overvoltage. The result shows that flowing the electrolyte inside the cell improves the lithium capture, in particular at low lithium concentration. Indeed, in Atacama feed solution, at 40 mM of lithium, the amount of lithium captured does not increase considerably with the flux of the electrolyte. Instead, when the concentration of the lithium ions is 5 mM, the amount of captured lithium in a single capture cycle increases by increasing the flux, thus leading to the conclusion that the slowest step in the process is the transport of the lithium ion in the liquid phase. Furthermore, an influence of the concentration of other cations in solution on the process performance was observed. In particular, the capturing of the lithium using a different concentration of NaCl together with 5 mM of LiCl was performed, and the results show that the presence of NaCl limits the amount of the captured lithium. Further studies can be performed in order to understand why the full capacity of the material is not reached at the highest flow rate. This is probably due to the porous structure of the material since the liquid phase is likely not affected by the convection flow inside the pores. This work proves that electrochemical ion pumping, with a suitable hydrodynamic design, enables the recovery of lithium from feed solutions at the lower concentration than the sources that are currently exploited, down to 1 mM.

Keywords: desalination battery, electrochemical ion pumping, hydrodynamic, lithium

Procedia PDF Downloads 198
348 Optimization of Adsorptive Removal of Common Used Pesticides Water Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid, Nabil Anwar, Mahmoud Rushdi

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use traded activated charcoal with gold nitrate solution; for removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption, forming a complex with the gold metal immobilized on activated carbon surfaces. In addition, the gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups, were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 59
347 Genetic Diversity of Termite (Isoptera) Fauna of Western Ghats of India

Authors: A. S. Vidyashree, C. M. Kalleshwaraswamy, R. Asokan, H. M. Mahadevaswamy

Abstract:

Termites are very vital ecological thespians in tropical ecosystem, having been designated as “ecosystem engineers”, due to their significant role in providing soil ecosystem services. Despite their importance, our understanding of a number of their basic biological processes in termites is extremely limited. Developing a better understanding of termite biology is closely dependent upon consistent species identification. At present, identification of termites is relied on soldier castes. But for many species, soldier caste is not reported, that creates confusion in identification. The use of molecular markers may be helpful in estimating phylogenetic relatedness between the termite species and estimating genetic differentiation among local populations within each species. To understand this, termites samples were collected from various places of Western Ghats covering four states namely Karnataka, Kerala, Tamil Nadu, Maharashtra during 2013-15. Termite samples were identified based on their morphological characteristics, molecular characteristics, or both. Survey on the termite fauna in Karnataka, Kerala, Maharashtra and Tamil Nadu indicated the presence of a 16 species belongs to 4 subfamilies under two families viz., Rhinotermitidae and Termitidae. Termititidae was the dominant family which was belonging to 4 genera and four subfamilies viz., Macrotermitinae, Amitermitinae, Nasutitermitinae and Termitinae. Amitermitinae had three species namely, Microcerotermes fletcheri, M. pakistanicus and Speculitermes sinhalensis. Macrotermitinae had the highest number of species belonging two genera, namely Microtermes and Odontotermes. Microtermes genus was with only one species i.e., Microtermes obesi. The genus Odontotermes was represented by the highest number of species (07), namely, O. obesus was the dominant (41 per cent) and the most widely distributed species in Karnataka, Karala, Maharashtra and Tamil nadu followed by O. feae (19 per cent), O.assmuthi (11 per cent) and others like O. bellahunisensis O. horni O. redemanni, O. yadevi. Nasutitermitinae was represented by two genera namely Nasutitermes anamalaiensis and Trinervitermes biformis. Termitinae subfamily was represented by Labiocapritermes distortus. Rhinotermitidae was represented by single subfamily Heterotermetinae. In Heterotermetinae, two species namely Heterotermes balwanthi and H. malabaricus were recorded. Genetic relationship among termites collected from various locations of Western Ghats of India was characterized based on mitochondrial DNA sequences (12S, 16S, and COII). Sequence analysis and divergence among the species was assessed. These results suggest that the use of both molecular and morphological approaches is crucial in ensuring accurate species identification. Efforts were made to understand their evolution and to address the ambiguities in morphological taxonomy. The implication of the study in revising the taxonomy of Indian termites, their characterization and molecular comparisons between the sequences are discussed.

Keywords: isoptera, mitochondrial DNA sequences, rhinotermitidae, termitidae, Western ghats

Procedia PDF Downloads 256
346 Destruction of Colon Cells by Nanocontainers of Ferromagnetic

Authors: Lukasz Szymanski, Zbigniew Kolacinski, Grzegorz Raniszewski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza, Karolina Przybylowska-Sygut, Ireneusz Majsterek, Zbigniew Kaminski, Justyna Fraczyk, Malgorzata Walczak, Beata Kolasinska, Adam Bednarek, Joanna Konka

Abstract:

The aim of this work is to investigate the influence of electromagnetic field from the range of radio frequencies on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon - ferromagnetic nanocontainers (FNCs) includes: The synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Pristine ferromagnetic carbon nanotubes are not suitable for application in medicine and biotechnology. Appropriate functionalization of ferromagnetic carbon nanotubes allows to receiving materials useful in medicine. Finally, a product contains folic acids on the surface of FNCs. The folic acid is a ligand of folate receptors – α which is overexpressed on the surface of epithelial tumours cells. It is expected that folic acids will be recognized and selectively bound by receptors presented on the surface of tumour cells. In our research, FNCs were covalently functionalized in a multi-step procedure. Ferromagnetic carbon nanotubes were oxidated using different oxidative agents. For this purpose, strong acids such as HNO3, or mixture HNO3 and H2SO4 were used. Reactive carbonyl and carboxyl groups were formed on the open sides and at the defects on the sidewalls of FNCs. These groups allow further modification of FNCs as a reaction of amidation, reaction of introduction appropriate linkers which separate solid surface of FNCs and ligand (folic acid). In our studies, amino acid and peptide have been applied as ligands. The last step of chemical modification was reaction-condensation with folic acid. In all reaction as coupling reagents were used derivatives of 1,3,5-triazine. The first trials in the device for hyperthermal RF generator have been done. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz. Obtained functionalized nanoparticles enabled to reach the temperature of denaturation tumor cells in given frequencies.

Keywords: cancer colon cells, carbon nanotubes, hyperthermia, ligands

Procedia PDF Downloads 301
345 A Conceptual Framework of Integrated Evaluation Methodology for Aquaculture Lakes

Authors: Robby Y. Tallar, Nikodemus L., Yuri S., Jian P. Suen

Abstract:

Research in the subject of ecological water resources management is full of trivial questions addressed and it seems, today to be one branch of science that can strongly contribute to the study of complexity (physical, biological, ecological, socio-economic, environmental, and other aspects). Existing literature available on different facets of these studies, much of it is technical and targeted for specific users. This study offered the combination all aspects in evaluation methodology for aquaculture lakes with its paradigm refer to hierarchical theory and to the effects of spatial specific arrangement of an object into a space or local area. Therefore, the process in developing a conceptual framework represents the more integrated and related applicable concept from the grounded theory. A design of integrated evaluation methodology for aquaculture lakes is presented. The method is based on the identification of a series of attributes which can be used to describe status of aquaculture lakes using certain indicators from aquaculture water quality index (AWQI), aesthetic aquaculture lake index (AALI) and rapid appraisal for fisheries index (RAPFISH). The preliminary preparation could be accomplished as follows: first, the characterization of study area was undertaken at different spatial scales. Second, an inventory data as a core resource such as city master plan, water quality reports from environmental agency, and related government regulations. Third, ground-checking survey should be completed to validate the on-site condition of study area. In order to design an integrated evaluation methodology for aquaculture lakes, finally we integrated and developed rating scores system which called Integrated Aquaculture Lake Index (IALI).The development of IALI are reflecting a compromise all aspects and it responds the needs of concise information about the current status of aquaculture lakes by the comprehensive approach. IALI was elaborated as a decision aid tool for stakeholders to evaluate the impact and contribution of anthropogenic activities on the aquaculture lake’s environment. The conclusion was while there is no denying the fact that the aquaculture lakes are under great threat from the pressure of the increasing human activities, one must realize that no evaluation methodology for aquaculture lakes can succeed by keeping the pristine condition. The IALI developed in this work can be used as an effective, low-cost evaluation methodology of aquaculture lakes for developing countries. Because IALI emphasizes the simplicity and understandability as it must communicate to decision makers and the experts. Moreover, stakeholders need to be helped to perceive their lakes so that sites can be accepted and valued by local people. For this site of lake development, accessibility and planning designation of the site is of decisive importance: the local people want to know whether the lake condition is safe or whether it can be used.

Keywords: aesthetic value, AHP, aquaculture lakes, integrated lakes, RAPFISH

Procedia PDF Downloads 225
344 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 87
343 Effect of Formulated Insect Enriched Sprouted Soybean /Millet Based Food on Gut Health Markers in Albino Wistar Rats

Authors: Gadanya, A.M., Ponfa, S., Jibril, M.M., Abubakar, S. M.

Abstract:

Background: Edible insects such as grasshopper are important sources of food for humans, and have been consumed as traditional foods by many indigenous communities especially in Africa, Asia, and Latin America. These communities have developed their skills and techniques in harvesting, preparing, consuming, and preserving edible insects, widely contributing to the role played by the use of insects in human nutrition. Aim/ objective: This study was aimed at determining the effect of insect enriched sprouted soyabean /millet based food on some gut health markers in albino rats. Methods. Four different formulations of Complementary foods (i.e Complementary Food B (CFB): sprouted millet (SM), Complementary Food C (CFC): sprouted soyabean (SSB), Complementary Food D (CFD): sprouted soybean and millet (SSBM) in a ratio of (50:50) and Complementary Food E (CFE): insect (grasshopper) enriched sprouted soybean and millet (SSBMI) in a ratio of (50:25:25)) were prepared. Proximate composition and short chain fatty acid contents were determined. Thirty albino rats were divided into5 groups of six rats each. Group 1(CDA) were fed with basal diet and served as a control group, while groups 2,3,4 and 5 were fed with the corresponding complimentary foods CFB, CFC, CFD and CFE respectively daily for four weeks. Concentrations of fecal protein, serum total carotenoids and nitric oxide were determined. DNA extraction for molecular isolation and characterization were carried out followed by PCR, the use of mega 11 software and NCBI blast for construction of the phylogenetic tree and organism identification respectively. Results: Significant increase (P<0.05) in percentage ash, fat, protein and moisture contents, as well as short chain fatty acid (acetate, butyrate and propionate) concentrations were recorded in the insect enriched sprouted composite food (CFE) when compared with the CFA, CFB, CFC and CFD composite food. Faecal protein, carotenoid and nitric oxide concentrations were significantly lower (P>0.05) in group 5 in comparison to groups 1to 4. Ruminococcus bromii and Bacteroidetes were molecularly isolated and characterized by 16s rRNA from the sprouted millet/sprouted soybean and the insect enriched sprouted soybean/sprouted millet based food respectively. The presence of these bacterial strains in the feaces of the treated rats is an indication that the gut of the treated rats is colonized by good gut bacteria, hence, an improved gut health. Conclusion: Insect enriched sprouted soya bean/sprouted millet based complementary diet showed a high composition of ash, fat, protein and fiber. Thus, could increase the availability of short chain fatty acids whose role to the host organism cannot be overemphasized. It was also found to have decrease the level of faecal protein, carotenoid and nitric oxide in the serum which is an indication of an improvement in the immune system function.

Keywords: gut-health, insect, millet, soybean, sprouted

Procedia PDF Downloads 52
342 A webGIS Methodology to Support Sediments Management in Wallonia

Authors: Nathalie Stephenne, Mathieu Veschkens, Stéphane Palm, Christophe Charlemagne, Jacques Defoux

Abstract:

According to Europe’s first River basin Management Plans (RBMPs), 56% of European rivers failed to achieve the good status targets of the Water Framework Directive WFD. In Central European countries such as Belgium, even more than 80% of rivers failed to achieve the WFD quality targets. Although the RBMP’s should reduce the stressors and improve water body status, their potential to address multiple stress situations is limited due to insufficient knowledge on combined effects, multi-stress, prioritization of measures, impact on ecology and implementation effects. This paper describes a webGis prototype developed for the Walloon administration to improve the communication and the management of sediment dredging actions carried out in rivers and lakes in the frame of RBMPs. A large number of stakeholders are involved in the management of rivers and lakes in Wallonia. They are in charge of technical aspects (client and dredging operators, organizations involved in the treatment of waste…), management (managers involved in WFD implementation at communal, provincial or regional level) or policy making (people responsible for policy compliance or legislation revision). These different kinds of stakeholders need different information and data to cover their duties but have to interact closely at different levels. Moreover, information has to be shared between them to improve the management quality of dredging operations within the ecological system. In the Walloon legislation, leveling dredged sediments on banks requires an official authorization from the administration. This request refers to spatial information such as the official land use map, the cadastral map, the distance to potential pollution sources. The production of a collective geodatabase can facilitate the management of these authorizations from both sides. The proposed internet system integrates documents, data input, integration of data from disparate sources, map representation, database queries, analysis of monitoring data, presentation of results and cartographic visualization. A prototype of web application using the API geoviewer chosen by the Geomatic department of the SPW has been developed and discussed with some potential users to facilitate the communication, the management and the quality of the data. The structure of the paper states the why, what, who and how of this communication tool.

Keywords: sediments, web application, GIS, rivers management

Procedia PDF Downloads 398
341 Exploration Tools for Tantalum-Bearing Pegmatites along Kibara Belt, Central and Southwestern Uganda

Authors: Sadat Sembatya

Abstract:

Tantalum metal is used in addressing capacitance challenge in the 21st-century technology growth. Tantalum is rarely found in its elemental form. Hence it’s often found with niobium and the radioactive elements of thorium and uranium. Industrial processes are required to extract pure tantalum. Its deposits are mainly oxide associated and exist in Ta-Nb oxides such as tapiolite, wodginite, ixiolite, rutile and pyrochlore-supergroup minerals are of minor importance. The stability and chemical inertness of tantalum makes it a valuable substance for laboratory equipment and a substitute for platinum. Each period of Tantalum ore formation is characterized by specific mineralogical and geochemical features. Compositions of Columbite-Group Minerals (CGM) are variable: Fe-rich types predominate in the Man Shield (Sierra Leone), the Congo Craton (DR Congo), the Kamativi Belt (Zimbabwe) and the Jos Plateau (Nigeria). Mn-rich columbite-tantalite is typical of the Alto Ligonha Province (Mozambique), the Arabian-Nubian Shield (Egypt, Ethiopia) and the Tantalite Valley pegmatites (southern Namibia). There are large compositional variations through Fe-Mn fractionation, followed by Nb-Ta fractionation. These are typical for pegmatites usually associated with very coarse quartz-feldspar-mica granites. They are young granitic systems of the Kibara Belt of Central Africa and the Older Granites of Nigeria. Unlike ‘simple’ Be-pegmatites, most Ta-Nb rich pegmatites have the most complex zoning. Hence we need systematic exploration tools to find and rapidly assess the potential of different pegmatites. The pegmatites exist as known deposits (e.g., abandoned mines) and the exposed or buried pegmatites. We investigate rocks and minerals to trace for the possibility of the effect of hydrothermal alteration mainly for exposed pegmatites, do mineralogical study to prove evidence of gradual replacement and geochemistry to report the availability of trace elements which are good indicators of mineralisation. Pegmatites are not good geophysical responders resulting to the exclusion of the geophysics option. As for more advanced prospecting, we bulk samples from different zones first to establish their grades and characteristics, then make a pilot test plant because of big samples to aid in the quantitative characterization of zones, and then drill to reveal distribution and extent of different zones but not necessarily grade due to nugget effect. Rapid assessment tools are needed to assess grade and degree of fractionation in order to ‘rule in’ or ‘rule out’ a given pegmatite for future work. Pegmatite exploration is also unique, high risk and expensive hence right traceability system and certification for 3Ts are highly needed.

Keywords: exploration, mineralogy, pegmatites, tantalum

Procedia PDF Downloads 132
340 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique

Authors: Malory Jonata

Abstract:

Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 62
339 Repurposing Dairy Manure Solids as a Non- Polluting Fertilizer and the Effects on Nutrient Recovery in Tomatoes (Solanum Lycopersicum)

Authors: Devon Simpson

Abstract:

Recycled Manure Solids (RMS), attained via centrifugation from Canadian dairy farms, were synthesized into a non-polluting fertilizer by bonding micronutrients (Fe, Zn, and Mn) to cellulose fibers and then assessed for the effectiveness of nutrient recovery in tomatoes. Manure management technology is critical for improving the sustainability of agroecosystems and has the capacity to offer a truly circular economy. The ability to add value to manure byproducts offers an opportunity for economic benefits while generating tenable solutions to livestock waste. The dairy industry is under increasing pressure from new environmental protections such as government restrictions on manure applications, limitations on herd size as well as increased product demand from a growing population. Current systems use RMS as bedding, so there is a lack of data pertaining to RMS use as a fertilizer. This is because of nutrient distribution, where most nutrients are retained in the liquid effluent of the solid-liquid separation. A literature review on the physical and chemical properties of dairy manure further revealed more data for raw manure than centrifuged solids. This research offers an innovative perspective and a new avenue of exploration in the use of RMS. Manure solids in this study were obtained directly from dairy farms in Salmon Arm and Abbotsford, British Columbia, and underwent physical, chemical, and biological characterizations pre- and post-synthesis processing. Samples were sent to A&L labs Canada for analysis. Once characterized and bonded to micronutrients, the effect of synthesized RMS on nutrient recovery in tomatoes was studied in a greenhouse environment. The agricultural research package ‘agricolae’ for R was used for experimental design and data analysis. The growth trials consisted of a randomized complete block design (RCBD) that allowed for analysis of variance (ANOVA). The primary outcome was to measure nutrient uptake, and this was done using an Inductively Coupled Plasma Mass Spectrometer (IC-PMS) to analyze the micronutrient content of both the tissue and fruit of the tomatoes. It was found that treatments containing bonded dairy manure solids had an increased micronutrient concentration. Treatments with bonded dairy manure solids also saw an increase in yield, and a brix analysis showed higher sugar content than the untreated control and a grower standard.

Keywords: aoecosystems, dairy manure, micronutrient fertilizer, manure management, nutrient recovery, nutrient recycling, recycled manure solids, regenerative agricugrlture, sustainable farming

Procedia PDF Downloads 175
338 Development of 3D Printed Natural Fiber Reinforced Composite Scaffolds for Maxillofacial Reconstruction

Authors: Sri Sai Ramya Bojedla, Falguni Pati

Abstract:

Nature provides the best of solutions to humans. One such incredible gift to regenerative medicine is silk. The literature has publicized a long appreciation for silk owing to its incredible physical and biological assets. Its bioactive nature, unique mechanical strength, and processing flexibility make us curious to explore further to apply it in the clinics for the welfare of mankind. In this study, Antheraea mylitta and Bombyx mori silk fibroin microfibers are developed by two economical and straightforward steps via degumming and hydrolysis for the first time, and a bioactive composite is manufactured by mixing silk fibroin microfibers at various concentrations with polycaprolactone (PCL), a biocompatible, aliphatic semi-crystalline synthetic polymer. Reconstructive surgery in any part of the body except for the maxillofacial region deals with replacing its function. But answering both the aesthetics and function is of utmost importance when it comes to facial reconstruction as it plays a critical role in the psychological and social well-being of the patient. The main concern in developing adequate bone graft substitutes or a scaffold is the noteworthy variation in each patient's bone anatomy. Additionally, the anatomical shape and size will vary based on the type of defect. The advent of additive manufacturing (AM) or 3D printing techniques to bone tissue engineering has facilitated overcoming many of the restraints of conventional fabrication techniques. The acquired patient's CT data is converted into a stereolithographic (STL)-file which is further utilized by the 3D printer to create a 3D scaffold structure in an interconnected layer-by-layer fashion. This study aims to address the limitations of currently available materials and fabrication technologies and develop a customized biomaterial implant via 3D printing technology to reconstruct complex form, function, and aesthetics of the facial anatomy. These composite scaffolds underwent structural and mechanical characterization. Atomic force microscopic (AFM) and field emission scanning electron microscopic (FESEM) images showed the uniform dispersion of the silk fibroin microfibers in the PCL matrix. With the addition of silk, there is improvement in the compressive strength of the hybrid scaffolds. The scaffolds with Antheraea mylitta silk revealed higher compressive modulus than that of Bombyx mori silk. The above results of PCL-silk scaffolds strongly recommend their utilization in bone regenerative applications. Successful completion of this research will provide a great weapon in the maxillofacial reconstructive armamentarium.

Keywords: compressive modulus, 3d printing, maxillofacial reconstruction, natural fiber reinforced composites, silk fibroin microfibers

Procedia PDF Downloads 178
337 Knowledge, Attitude and Practice on Swimming Pool Hygiene and Assessment of Microbial Contamination in Educational Institution in Selangor

Authors: Zarini Ismail, Mas Ayu Arina Mohd Anuwar, Ling Chai Ying, Tengku Zetty Maztura Tengku Jamaluddin, Nurul Azmawati Mohamed, Nadeeya Ayn Umaisara Mohamad Nor

Abstract:

The transmission of infectious diseases can occur anywhere, including in the swimming pools. A large number of swimmers turnover and poor hygienic behaviours will increase the occurrence of direct and indirect water contamination. A wide variety of infections such as the gastrointestinal illnesses, skin rash, eye infections, ear infections and respiratory illnesses had been reported following the exposure to the contaminated water. Understanding the importance of pool hygiene with a healthy practice will reduce the risk of infection. The aims of the study are to investigate the knowledge, attitude and practices on pool hygiene among swimming pool users and to determine the microbial contaminants in swimming pools. A cross-sectional study was conducted using self-administered questionnaires to 600 swimming pool users from four swimming pools belong to the three educational institutions in Selangor. Data was analyzed using SPSS Statistics version 22.0 for Windows. The knowledge, attitude and practice of the study participants were analyzed using the sum score based on Bloom’s cut-off point (80%). Having a score above the cut-off point was classified as having high levels of knowledge, positive attitude and good practice. The association between socio-demographic characteristics, knowledge and attitude with practice on pool hygiene was determined by Chi-Square test. The physicochemical parameters and the microbial contamination were determined using a standard method for examination of waste and wastewater. Of the 600 respondents, 465 (77.5%) were females with the mean age of 21 years old. Most of the respondents are the students (98.8%) which belong to the three educational institutions in Selangor. Overall, the majority of the respondents (89.2%) had low knowledge on pool hygiene, but had positive attitudes (91.3%). Whereas only half of the respondents (50%) practice good hygiene while using the swimming pools. There was a significant association between practice level on pool hygiene with knowledge (p < 0.001) and also the attitude (p < 0.001). The measurements of the physicochemical parameters showed that all 4 swimming pools had low levels of pH and two had low levels of free chlorine. However, all the water samples tested were negative for Escherichia coli. The findings of this study suggested that high knowledge and positive attitude towards pool hygiene ensure a good practice among swimming pool users. Thus, it is recommended that educational interventions should be given to the swimming pool users to increase their knowledge regarding the pool hygiene and this will prevent the unnecessary outbreak of infectious diseases related to swimming pool.

Keywords: attitude, knowledge, pool hygiene, practice

Procedia PDF Downloads 280
336 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation

Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras

Abstract:

The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.

Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure

Procedia PDF Downloads 216
335 Tailorability of Poly(Aspartic Acid)/BSA Complex by Self-Assembling in Aqueous Solutions

Authors: Loredana E. Nita, Aurica P. Chiriac, Elena Stoleru, Alina Diaconu, Tudorachi Nita

Abstract:

Self-assembly processes are an attractive method to form new and complex structures between macromolecular compounds to be used for specific applications. In this context, intramolecular and intermolecular bonds play a key role during self-assembling processes in preparation of carrier systems of bioactive substances. Polyelectrolyte complexes (PECs) are formed through electrostatic interactions, and though they are significantly below of the covalent linkages in their strength, these complexes are sufficiently stable owing to the association processes. The relative ease way of PECs formation makes from them a versatile tool for preparation of various materials, with properties that can be tuned by adjusting several parameters, such as the chemical composition and structure of polyelectrolytes, pH and ionic strength of solutions, temperature and post-treatment procedures. For example, protein-polyelectrolyte complexes (PPCs) are playing an important role in various chemical and biological processes, such as protein separation, enzyme stabilization and polymer drug delivery systems. The present investigation is focused on evaluation of the PPC formation between a synthetic polypeptide (poly(aspartic acid) – PAS) and a natural protein (bovine serum albumin - BSA). The PPC obtained from PAS and BSA in different ratio was investigated by corroboration of various techniques of characterization as: spectroscopy, microscopy, thermo-gravimetric analysis, DLS and zeta potential determination, measurements which were performed in static and/or dynamic conditions. The static contact angle of the sample films was also determined in order to evaluate the changes brought upon surface free energy of the prepared PPCs in interdependence with the complexes composition. The evolution of hydrodynamic diameter and zeta potential of the PPC, recorded in situ, confirm changes of both co-partners conformation, a 1/1 ratio between protein and polyelectrolyte being benefit for the preparation of a stable PPC. Also, the study evidenced the dependence of PPC formation on the temperature of preparation. Thus, at low temperatures the PPC is formed with compact structure, small dimension and hydrodynamic diameter, close to those of BSA. The behavior at thermal treatment of the prepared PPCs is in agreement with the composition of the complexes. From the contact angle determination results the increase of the PPC films cohesion, which is higher than that of BSA films. Also, a higher hydrophobicity corresponds to the new PPC films denoting a good adhesion of the red blood cells onto the surface of PSA/BSA interpenetrated systems. The SEM investigation evidenced as well the specific internal structure of PPC concretized in phases with different size and shape in interdependence with the interpolymer mixture composition.

Keywords: polyelectrolyte – protein complex, bovine serum albumin, poly(aspartic acid), self-assembly

Procedia PDF Downloads 229
334 Profile of the Renal Failure Patients under Haemodialysis at B. P. Koirala Institute of Health Sciences Nepal

Authors: Ram Sharan Mehta, Sanjeev Sharma

Abstract:

Introduction: Haemodialysis (HD) is a mechanical process of removing waste products from the blood and replacing essential substances in patients with renal failure. First artificial kidney developed in Netherlands in 1943 AD First successful treatment of CRF reported in 1960AD, life-saving treatment begins for CRF in 1972 AD. In 1973 AD Medicare took over financial responsibility for many clients and after that method become popular. BP Koirala institute of health science is the only center outside the Kathmandu, where HD service is available. In BPKIHS PD started in Jan.1998, HD started in August 2002 till September 2003 about 278 patients received HD. Day by day the number of HD patients is increasing in BPKIHS as with institutional growth. No such type of study was conducted in past hence there is lack of valid & reliable baseline data. Hence, the investigators were interested to conduct the study on " Profile of the Renal Failure patients under Haemodialysis at B.P. Koirala Institute of Health Sciences Nepal". Objectives: The objectives of the study were: to find out the Socio-demographic characteristics of the patients, to explore the knowledge of the patients regarding disease process and Haemodialysis and to identify the problems encountered by the patients. Methods: It is a hospital-based exploratory study. The population of the study was the clients under HD and the sampling method was purposive. Fifty-four patients undergone HD during the period of 17 July 2012 to 16 July 2013 of complete one year were included in the study. Structured interview schedule was used for collect data after obtaining validity and reliability. Results: Total 54 subjects had undergone for HD, having age range of 5-75 years and majority of them were male (74%) and Hindu (93 %). Thirty-one percent illiterate, 28% had agriculture their occupation, 80% of them were from very poor community, and about 30% subjects were unaware about the disease they suffering. Majority of subjects reported that they had no complications during dialysis (61%), where as 20% reported nausea and vomiting, 9% Hypotension, 4% headache and 2%chest pain during dialysis. Conclusions: CRF leading to HD is a long battle for patients, required to make major and continuous adjustment, both physiologically and psychologically. The study suggests that non-compliance with HD regimen were common. The socio-demographic and knowledge profile will help in the management and early prevention of disease and evaluate aspects that will influence care and patients can select mode of treatment themselves properly.

Keywords: profile, haemodialysis, Nepal, patients, treatment

Procedia PDF Downloads 369