Search results for: EB thermal processing
2441 Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar
Authors: Adrian Keith Caamino, Sina Shakibania, Lena Sunqvist-Öqvist, Jan Rosenkranz, Yousef Ghorbani
Abstract:
Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery proceduresKeywords: K-feldspar, grinding, automated mineralogy, impurity, leaching
Procedia PDF Downloads 782440 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes
Authors: Kanit Aroonrat, Somchai Wongwises
Abstract:
A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.Keywords: condensation, dimpled tube, heat transfer, pressure drop
Procedia PDF Downloads 2162439 The Corrosion Resistance of P/M Alumix 431D Compacts
Authors: J. Kazior, A. Szewczyk-Nykiel, T. Pieczonka, M. Laska
Abstract:
Aluminium alloys are an important class of engineering materials for structural applications. This is due to the fact that these alloys have many interesting properties, namely, low density, high ratio of strength to density, good thermal and electrical conductivity, good corrosion resistance as well as extensive capabilities for shaping processes. In case of classical PM technology a particular attention should be paid to the selection of appropriate parameters of compacting and sintering processes and to keeping them. The latter need arises from the high sensitivity of aluminium based alloy powders on any fluctuation of technological parameters, in particular those related to the temperature-time profile and gas flow. Only then the desired sintered compacts with residual porosity may be produced. Except high mechanical properties, the other profitable properties of almost fully dense sintered components could be expected. Among them is corrosion resistance, rarely investigated on PM aluminium alloys. Thus, in the current study the Alumix 431/D commercial, press-ready grade powder was used for this purpose. Sintered compacts made of it in different conditions (isothermal sintering temperature, gas flow rate) were subjected to corrosion experiments in 0,1 M and 0,5 M NaCl solutions. The potentiodynamic curves were used to establish parameters characterising the corrosion resistance of sintered Alumix 431/D powder, namely, the corrosion potential, the corrosion current density, the polarization resistance, the breakdown potential. The highest value of polarization resistance, the lowest value of corrosion current density and the most positive corrosion potential was obtained for Alumix431/D powder sintered at 600°C and for highest protective gas flow rate.Keywords: aluminium alloys, sintering, corrosion resistance, industry
Procedia PDF Downloads 3482438 Uncertainty Assessment in Building Energy Performance
Authors: Fally Titikpina, Abderafi Charki, Antoine Caucheteux, David Bigaud
Abstract:
The building sector is one of the largest energy consumer with about 40% of the final energy consumption in the European Union. Ensuring building energy performance is of scientific, technological and sociological matter. To assess a building energy performance, the consumption being predicted or estimated during the design stage is compared with the measured consumption when the building is operational. When valuing this performance, many buildings show significant differences between the calculated and measured consumption. In order to assess the performance accurately and ensure the thermal efficiency of the building, it is necessary to evaluate the uncertainties involved not only in measurement but also those induced by the propagation of dynamic and static input data in the model being used. The evaluation of measurement uncertainty is based on both the knowledge about the measurement process and the input quantities which influence the result of measurement. Measurement uncertainty can be evaluated within the framework of conventional statistics presented in the \textit{Guide to the Expression of Measurement Uncertainty (GUM)} as well as by Bayesian Statistical Theory (BST). Another choice is the use of numerical methods like Monte Carlo Simulation (MCS). In this paper, we proposed to evaluate the uncertainty associated to the use of a simplified model for the estimation of the energy consumption of a given building. A detailed review and discussion of these three approaches (GUM, MCS and BST) is given. Therefore, an office building has been monitored and multiple sensors have been mounted on candidate locations to get required data. The monitored zone is composed of six offices and has an overall surface of 102 $m^2$. Temperature data, electrical and heating consumption, windows opening and occupancy rate are the features for our research work.Keywords: building energy performance, uncertainty evaluation, GUM, bayesian approach, monte carlo method
Procedia PDF Downloads 4602437 Toxicological Assessment of Aluminium Extrusion Effluent on the Water Quality of Okatankwo River in Akabo Ikeduru, Imo State, Nigeria
Authors: Anunihu Chinonso Lynda, Ugueri Udochukwu
Abstract:
Water pollution is a global concern, especially with the rise of industries all over the world. Effluents from industries are usually treated and emptied into nearby rivers. However, this is not usually the case as most effluents from some industries are not treated before discharge to water bodies which has led to several degrees of water pollution in our environment. This research assessed the physicochemical characteristics and heavy metals content of water from the Okatankwo River in Ikeduru Local Government Area, Imo State, Nigeria. All analyses were carried out using methods. Ni and Cu had an average value of 3.21mg/l and 13.53mg/l; Ca had an average value of 316.6mg/l, TDS 1741.4 mg/l and TSS 949.33mg/l. Data obtained show that concentrations of some of these heavy metals were much higher than the maximum permissible limits. From the effluent sample, Ni and Cu were found to be at highly elevated levels, also Ca, TDS and TSS exceeded the permissible limits. Other heavy metals and physicochemical parameters were within the WHO and SON standard guidelines. Possible sources of these metals could be the aluminium processing industry, which is located along the Okatankwo River. It could be recommended that industrial effluent be properly treated before discharge into the Okatankwo River to prevent further pollution and contamination of the water.Keywords: water, pollution, effluent, toxicology
Procedia PDF Downloads 82436 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network
Authors: Pawan Kumar Mishra, Ganesh Singh Bisht
Abstract:
Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.Keywords: resolution, deep-learning, neural network, de-blurring
Procedia PDF Downloads 5192435 Performance Analysis and Multi-Objective Optimization of a Kalina Cycle for Low-Temperature Applications
Authors: Sadegh Sadeghi, Negar Shabani
Abstract:
From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature thermodynamic cycles due to their suitable boiling characteristics. In this study, performance of a low-temperature Kalina cycle with R717/water working fluid used in different existing power plants is mathematically investigated. To analyze the behavior of the cycle, mass conservation, energy conservation, and exergy balance equations are presented. With regard to the similarity in molar mass of R717 (17.03 gr/mol) and water (18.01 gr/mol), there is no need to alter the size of Kalina system components such as turbine and pump. To optimize the cycle energy and exergy efficiencies simultaneously, a constrained multi-objective optimization is carried out applying an Artificial Bee Colony algorithm. The main motivation behind using this algorithm lies on its robustness, reliability, remarkable precision and high–speed convergence rate in dealing with complicated constrained multi-objective problems. Convergence rates of the algorithm for calculating the optimal energy and exergy efficiencies are presented. Subsequently, due to the importance of exergy concept in Kalina cycles, exergy destructions occurring in the components are computed. Finally, the impacts of pressure, temperature, mass fraction and mass flow rate on the energy and exergy efficiencies are elaborately studied.Keywords: artificial bee colony algorithm, binary zeotropic mixture, constrained multi-objective optimization, energy efficiency, exergy efficiency, Kalina cycle
Procedia PDF Downloads 1552434 Prioritizing the Factors Effective on Decreasing the Rate of Accidents on Freeways in Iran between 2013-2015
Authors: Mansour Hadji Hosseinlou, Alireza Mahdavi
Abstract:
Transportation is one of any society's needs which have developed after improving economically and socially and is one of civilization symbols today. Although it is so useful for human, it leads to many serious harms and injuries. The development of communication system and building new roads has resulted in increasing the rate of accidents; therefore, in practice, this increasing rate has decreased the advantages of transportation. Traffic accidents are one of the causes of death, serious financial and bodily harms and its significant social, economic and cultural consequences threatens the societies seriously. Iran's ground transportation system is one of the most eventful transportation systems in the world and mortality rate and financial harms cost too much for the country in national aspect. Therefore, we have presented a data collection by referring to recorded statistics of the accidents occurred in freeways from 2013 to 2015. These statistics are recorded in different related databases, generally police and road transportation system. The data is separated and arranged in tables and after preparing, processing and prioritizing the factors, the achieved collection is presented to the departments, managers and researchers to help them suggest practical solutions.Keywords: freeways’ accidents, humane causes, death, tiredness, drowsiness
Procedia PDF Downloads 1952433 Doxorubicin and Cyclosporine Loaded PLGA Nanoparticles to Combat Multidrug Resistance
Authors: Senthil Rajan Dharmalingam, Shamala Nadaraju, Srinivasan Ramamurthy
Abstract:
Doxorubicin is the most widely used anticancer drugs in chemotherapy treatment. However, problems related to the development of multidrug resistance (MDR) and acute cardiotoxicity have led researchers to investigate alternative forms of administering doxorubicin for cancer therapy. Several methods have been attempted to overcome MDR, including the co-administration of a chemosensitizer inhibiting the efflux caused by ATP binding cassette transporters with anticancer drugs, and the bypass of the efflux mechanism. Co encapsulation of doxorubicin (Dox) and cyclosporine A (CSA) into poly (DL-lactide-co-glycolide) nanoparticles was emulsification-solvent evaporation method using polyvinyl alcohol as emulsion stabilizers. The Dox-CSA loaded nanoparticles were evaluated for particle size, zeta potential and PDI by light scattering analysis and thermal characterizations by differential scanning calorimetry (DSC). Loading efficiency (LE %) and in-vitro dissolution samples were evaluated by developed and validated HPLC method. The optimum particle size obtained is 298.6.8±39.4 nm and polydispersity index (PDI) is 0.098±0.092. Zeta potential is found to be -29.9±4.23. Optimum pH to increase Dox LE% was found 7.1 which gave 42.5% and 58.9% increase of LE% for pH 6.6 and pH 8.6 compared respectively. LE% achieved for Dox is 0.07±0.01 % and CSA is 0.09±0.03%. Increased volume of PVA and weight of PLGA shows increase in size of nanoparticles. DSC thermograms showed shift in the melting peak for the nanoparticles compared to Dox and CSA indicating encapsulation of drugs. In conclusion, these preliminary studies showed the feasibility of PLGA nanoparticles to entrap Dox and CSA and require future in-vivo studies to be performed to establish its potential.Keywords: doxorubicin, cyclosporine, PLGA, nanoparticles
Procedia PDF Downloads 4622432 Religiosity and Social Factors on Alcohol Use among South African University Students
Authors: Godswill Nwabuisi Osuafor, Sonto Maria Maputle
Abstract:
Background: Abounding studies found that religiosity and social factors modulate alcohol use among university students. However, there is a scarcity of empirical studies examining the protective effects of religiosity and other social factors on alcohol use and abuse in South African universities. The aim of this study was therefore to assess the protective effects of religiosity and roles of social factors on alcohol use among university students. Methodology: A survey on the use of alcohol among 416 university students was conducted using structured questionnaire in 2014. Data were sourced on religiosity and contextual variables. Students were classified as practicing intrinsic religiosity or extrinsic religiosity based on the response to the measures of religiosity. Descriptive, chi square and binary logistic analyses were used in processing the data. Result: Results revealed that alcohol use was associated with religiosity, religion, sex, family history of alcohol use and experimenting with alcohol. Reporting alcohol abuse was significantly predicted by sex, family history of alcohol use and experimenting with alcohol. Religiosity mediated lower alcohol use whereas family history of alcohol use and experimenting with alcohol promoted alcohol use and abuse. Conclusion: Families, religious groups and societal factors may be the specific niches for intervention on alcohol use among university students.Keywords: religiosity, alcohol use, protective factors, university students
Procedia PDF Downloads 4002431 Insulation and Architectural Design to Have Sustainable Buildings in Iran
Authors: Ali Bayati, Jamileh Azarnoush
Abstract:
Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities shows one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also Reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In the construction industry, we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaptation with the environment is critical. Otherwise, the isolation should be use and mention in the long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.Keywords: building design, construction masonry, insulation, sustainable construction
Procedia PDF Downloads 5422430 Investigating the Vehicle-Bicyclists Conflicts using LIDAR Sensor Technology at Signalized Intersections
Authors: Alireza Ansariyar, Mansoureh Jeihani
Abstract:
Light Detection and Ranging (LiDAR) sensors are capable of recording traffic data including the number of passing vehicles and bicyclists, the speed of vehicles and bicyclists, and the number of conflicts among both road users. In order to collect real-time traffic data and investigate the safety of different road users, a LiDAR sensor was installed at Cold Spring Ln – Hillen Rd intersection in Baltimore City. The frequency and severity of collected real-time conflicts were analyzed and the results highlighted that 122 conflicts were recorded over a 10-month time interval from May 2022 to February 2023. By using an innovative image-processing algorithm, a new safety Measure of Effectiveness (MOE) was proposed to recognize the critical zones for bicyclists entering each zone. Considering the trajectory of conflicts, the results of the analysis demonstrated that conflicts in the northern approach (zone N) are more frequent and severe. Additionally, sunny weather is more likely to cause severe vehicle-bike conflicts.Keywords: LiDAR sensor, post encroachment time threshold (PET), vehicle-bike conflicts, a measure of effectiveness (MOE), weather condition
Procedia PDF Downloads 2382429 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints
Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache
Abstract:
The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy
Procedia PDF Downloads 1302428 Analysis of a Multiejector Cooling System in a Truck at Different Loads
Authors: Leonardo E. Pacheco, Carlos A. Díaz
Abstract:
An alternative way of addressing the difficult to recover the useless heat is through an ejector refrigeration cycle for vehicles applications. A group of thermo-compressor supply the mechanical compressor function at conventional refrigeration compression system. The thermo-compressor group recovers the thermal energy from waste streams (exhaust gases product in internal combustion motors, gases burned in wellhead among others) to eliminate the power consumption of the mechanical compressor. These types of alternative cooling system (air-conditioners) present a kind of advantages in both the increase in energy efficiency and the improvement of the COP of the system being studied from their its mechanical simplicity (decrease of moving parts). An ejector refrigeration cycle represents a significant step forward in the optimization of the efficient use of energy in the process of air conditioning and an alternative to reduce the environmental impacts. On one side, with the energy recycling decreases the temperature of the gases thrown into the atmosphere, which contributes to the principal beneficiaries of the average temperature of the planet. In parallel, mitigating the environmental impact caused by the production and handling of conventional cooling fluids commonly available in the market, causing the destruction of the ozone layer. This work had studied the operation of the multiejector cooling system for a truck with a 420 HP engine at different rotation speed. The operation condition limits and the COP of multi-ejector cooling systems applied in a truck are analyzed for a variable rpm range from to 800–1800 rpm.Keywords: ejector system, exhaust gas, multiejector cooling system, recovery energy
Procedia PDF Downloads 2612427 Portable Water Treatment for Flood Resilience
Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed
Abstract:
Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.Keywords: flood resilience, membrane desalination, portable water treatment, solar energy
Procedia PDF Downloads 2902426 The Effect of the Internal Organization Communications' Effectiveness through Employee's Performance of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Malaiphan Pansap, Surasit Vithayarat
Abstract:
The purpose of this study was to study the relationship between internal organization communications’ effectiveness and employee’s performance of Faculty of Management Science, Suan Sunandha Rajabhat University. Study on solutions of communication were carried out within the organization. Questionnaire was used to collect information from 136 people of staff and instructor and data were analyzed by using frequency, percentage, mean and standard deviation and then data processing statistic programs. The result found that organization communication that affects their employee’s performance is sender which lack the skills for speaking and writing to convince audiences ready before taking message and the message which organizations are not always informed. The employees believe the behavior of good organization communication has a positive impact on the development of organization because the employees feel involved and be a part of the organization, by the cooperation in working to achieve the goal, the employees can work in the same direction and meet goal quickly.Keywords: employee’s performance, faculty of management science, internal organization communications’ effectiveness, management accounting, Suan Sunandha Rajabhat University
Procedia PDF Downloads 2402425 Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions
Authors: Jean-Philippe Gagnon, Benjamin Saute, Stéphane Boubanga-Tombet
Abstract:
Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution.Keywords: infrared, multispectral, fire, broadband, gas temperature, IR camera
Procedia PDF Downloads 1452424 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 3362423 Comparison of Effect of Promoter and K Addition of Co₃O₄ for N₂O Decomposition Reaction
Authors: R. H. Hwang, J. H. Park, K. B. Yi
Abstract:
Nitrous oxide (N2O) is now distinguished as an environmental pollutant. N2O is one of the representative greenhouse gases and N2O is produced by both natural and anthropogenic sources. So, it is very important to reduce N2O. N2O abatement processes are various processes such as HC-SCR, NH3-SCR and decomposition process. Among them, decomposition process is advantageous because it does not use a reducing agent. N2O decomposition is a reaction in which N2O is decomposed into N2 and O2. There are noble metals, transition metal ion-exchanged zeolites, pure and mixed oxides for N2O decomposition catalyst. Among the various catalysts, cobalt-based catalysts derived from hydrotalcites gathered much attention because spinel catalysts having large surface areas and high thermal stabilities. In this study, the effect of promoter and K addition on the activity was compared and analyzed. Co3O4 catalysts for N2O decomposition were prepared by co- precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. In addition, 1 wt% K2CO3 was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. Characterizations of catalysts were carried out with SEM, BET, XRD, XPS and H2-TPR. The catalytic activity tests were carried out at a GHSV of 45,000 h-1 and a temperature range of 250 ~ 375 ℃. The Co3O4 catalysts showed a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was exhibited that the doping of K improves the catalytic activity by increasing the concentration of Co2+ in the catalyst which is an active site for catalytic reaction. As a result, the K-doped catalyst showed higher activity than the promoter added. Also, it was found through experiments that Co2+ concentration and reduction temperature greatly affect the reactivity.Keywords: Co₃O4, K-doped, N₂O decomposition, promoter
Procedia PDF Downloads 1702422 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 1482421 Getting to Know the Types of Concrete and its Production Methods
Authors: Mokhtar Nikgoo
Abstract:
Definition of Concrete and Concreting: Concrete (in French: Béton) in a broad sense is any substance or combination that consists of a sticky substance with the property of cementation. In general, concrete refers to concrete made by Portland cement, which is produced by mixing fine and coarse aggregates, Portland cement and water. After enough time, this mixture turns into a stone-like substance. During the hardening or processing of the concrete, cement is chemically combined with water to form strong crystals that bind the aggregates together, a process called hydration. During this process, significant heat is released called hydration heat. Additionally, concrete shrinks slightly, especially as excess water evaporates, a phenomenon known as drying shrinkage. The process of hardening and the gradual increase in concrete strength that occurs with it does not end suddenly unless it is artificially interrupted. Instead, it decreases more over long periods of time, although, in practical applications, concrete is usually set after 28 days and is considered at full design strength. Concrete may be made from different types of cement as well as pozzolans, furnace slag, additives, additives, polymers, fibers, etc. It may also be used in the way it is made, heating, water vapor, autoclave, vacuum, hydraulic pressures and various condensers.Keywords: concrete, RCC, batching, cement, Pozzolan, mixing plan
Procedia PDF Downloads 1002420 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.Keywords: neural network, motion detection, signature detection, convolutional neural network
Procedia PDF Downloads 892419 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information
Authors: Babar Khan, Wang Zhijie
Abstract:
Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel
Procedia PDF Downloads 4872418 Developing Value Chain of Synthetic Methane for Net-zero Carbon City Gas Supply in Japan
Authors: Ryota Kuzuki, Mitsuhiro Kohara, Noboru Kizuki, Satoshi Yoshida, Hidetaka Hirai, Yuta Nezasa
Abstract:
About fifty years have passed since Japan's gas supply industry became the first in the world to switch from coal and oil to LNG as a city gas feedstock. Since the Japanese government target of net-zero carbon emission in 2050 was announced in October 2020, it has now entered a new era of challenges to commit to the requirement for decarbonization. This paper describes the situation that synthetic methane, produced from renewable energy-derived hydrogen and recycled carbon, is a promising national policy of transition toward net-zero society. In November 2020, the Japan Gas Association announced the 'Carbon Neutral Challenge 2050' as a vision to contribute to the decarbonization of society by converting the city gas supply to carbon neutral. The key technologies is methanation. This paper shows that methanation is a realistic solution to contribute to the decarbonization of the whole country at a lower social cost, utilizing the supply chain that already exists, from LNG plants to burner chips. The challenges during the transition period (2030-2050), as CO2 captured from exhaust of thermal power plants and industrial factories are expected to be used, it is proposed that a system of guarantee of origin (GO) for H2 and CO2 should be established and harmonize international rules for calculating and allocating greenhouse gas emissions in the supply chain, a platform is also needed to manage tracking information on certified environmental values.Keywords: synthetic methane, recycled carbon fuels, methanation, transition period, environmental value transfer platform
Procedia PDF Downloads 1082417 Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater
Authors: Bernard Bladergroen, David Vlotman, Bradley Cerff
Abstract:
The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively).Keywords: shear enhanced flotation, suspended solids, primary wastewater treatment, zeta potential
Procedia PDF Downloads 632416 Genetic and Environmental Variation in Reproductive and Lactational Performance of Holstein Cattle
Authors: Ashraf Ward
Abstract:
Effect of calving interval on 305 day milk yield for first three lactations was studied in order to increase efficiency of selection schemes and to more efficiently manage Holstein cows that have been raised on small farms in Libya. Results obtained by processing data of 1476 cows, managed in 935 small scale farms, pointed out that current calving interval significantly affects on milk production for first three lactations (p<0.05). Preceding calving interval affected 305 day milk yield (p<0.05) in second lactation only. Linear regression model accounted for 20-25 % of the total variance of 305 day milk yield. Extension of calving interval over 420, 430, 450 days for first, second and third lactations respectively, did not increase milk production when converted to 305 day lactation. Stochastic relations between calving interval and calving age and month are moderated. Values of Pierson’s correlation coefficients ranged 0.38 to 0.69. Adjustment of milk production in order to reduce effect of calving interval on total phenotypic variance of milk yield is valid for first lactation only. Adjustment of 305 day milk yield for second and third lactations in order to reduce effects of factors “calving age and month” brings about, at the same time, elimination of calving interval effect.Keywords: milk yield, Holstien, non genetic, calving
Procedia PDF Downloads 4182415 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm
Authors: P. Senthil Kumari
Abstract:
Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.Keywords: text mining, data classification, community network, learning algorithm
Procedia PDF Downloads 5092414 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis
Procedia PDF Downloads 1372413 Attachment Systems and Psychotherapy: An Internal Secure Caregiver to Heal and Protect the Parts of Our Clients: InCorporer Method
Authors: Julien Baillet
Abstract:
In light of 30 years of scientific research, InCorporer Method was created in 2019 as a new approach to heal traumatic, developmental, and dissociative injuries. Following natural nervous system functions, InCorporer aims to heal, develop, and update the different defensive mammalian subsystems: fight, flight, freeze, feign death, cry for help, & energy regulator. The dimensions taken into account are: (i) Heal the traumatic injuries who are still bleeding, (ii) Develop the systems that never received the security, attention, and affection they needed. (iii) Update the parts that stayed stuck in the past, ignoring for too long that they are out of danger now. Through the Present Part and its caregiving skills, InCorporer method enables a balanced, soothed, and collaborative personality system. To be as integrative as possible, InCorporer method has been designed according to several fields of research, such as structural dissociation theory, attachment theory, and information processing theory. In this paper, the author presents how the internal caregiver is developed and trained to heal all the different parts/subsystems of our clients through mindful attention and reflex movement integration.Keywords: PTSD, attachment, dissociation, part work
Procedia PDF Downloads 812412 Applicability of Overhangs for Energy Saving in Existing High-Rise Housing in Different Climates
Authors: Qiong He, S. Thomas Ng
Abstract:
Upgrading the thermal performance of building envelope of existing residential buildings is an effective way to reduce heat gain or heat loss. Overhang device is a common solution for building envelope improvement as it can cut down solar heat gain and thereby can reduce the energy used for space cooling in summer time. Despite that, overhang can increase the demand for indoor heating in winter due to its function of lowering the solar heat gain. Obviously, overhang has different impacts on energy use in different climatic zones which have different energy demand. To evaluate the impact of overhang device on building energy performance under different climates of China, an energy analysis model is built up in a computer-based simulation program known as DesignBuilder based on the data of a typical high-rise residential building. The energy simulation results show that single overhang is able to cut down around 5% of the energy consumption of the case building in the stand-alone situation or about 2% when the building is surrounded by other buildings in regions which predominantly rely on space cooling though it has no contribution to energy reduction in cold region. In regions with cold summer and cold winter, adding overhang over windows can cut down around 4% and 1.8% energy use with and without adjoining buildings, respectively. The results indicate that overhang might not an effective shading device to reduce the energy consumption in the mixed climate or cold regions.Keywords: overhang, energy analysis, computer-based simulation, design builder, high-rise residential building, climate, BIM model
Procedia PDF Downloads 367