Search results for: water deficit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9012

Search results for: water deficit

4452 Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa

Authors: Martins A. Adefisoye, Mpaka Lindelwa, Fadare Folake, Anthony I. Okoh

Abstract:

Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health.

Keywords: enterobacteriaceae, antibiotic-resistance, MALDI-TOF, resistance genes, MARP, MARI, public health

Procedia PDF Downloads 156
4451 Evaluation of Paper Effluent with Two Bacterial Strain and Their Consortia

Authors: Priya Tomar, Pallavi Mittal

Abstract:

As industrialization is inevitable and progress with rapid acceleration, the need for innovative ways to get rid of waste has increased. Recent advancement in bioresource technology paves novel ideas for recycling of factory waste that has been polluting the agro-industry, soil and water bodies. Paper industries in India are in a considerable number, where molasses and impure alcohol are still being used as raw materials for manufacturing of paper. Paper mills based on nonconventional agro residues are being encouraged due to increased demand of paper and acute shortage of forest-based raw materials. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. This paper presents some new techniques that were developed for the efficiency of bioremediation on paper industry. A short introduction to paper industry and a variety of presently available methods of bioremediation on paper industry and different strategies are also discussed here. For solving the above problem, two bacterial strains (Pseudomonas aeruginosa and Bacillus subtilis) and their consortia (Pseudomonas aeruginosa and Bacillus subtilis) were utilized for the pulp and paper mill effluent. Pseudomonas aeruginosa and Bacillus subtilis named as T–1, T–2, T–3, T–4, T–5, T–6, for the decolourisation of paper industry effluent. The results indicated that a maximum colour reduction is (60.5%) achieved by Pseudomonas aeruginosa and COD reduction is (88.8%) achieved by Bacillus subtilis, maximum pH changes is (4.23) achieved by Pseudomonas aeruginosa, TSS reduction is (2.09 %) achieved by Bacillus subtilis, and TDS reduction is (0.95 %) achieved by Bacillus subtilis. When the wastewater was supplemented with carbon (glucose) and nitrogen (yeast extract) source and data revealed the efficiency of Bacillus subtilis, having more with glucose than Pseudomonas aeruginosa.

Keywords: bioremediation, paper and pulp mill effluent, treated effluent, lignin

Procedia PDF Downloads 255
4450 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.

Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters

Procedia PDF Downloads 176
4449 Optimizing the Insertion of Renewables in the Colombian Power Sector

Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner

Abstract:

Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.

Keywords: energy policy and planning, stochastic programming, sustainable development, water management

Procedia PDF Downloads 300
4448 Effects of a Cluster Grouping of Gifted and Twice Exceptional Students on Academic Motivation, Socio-emotional Adjustment, and Life Satisfaction

Authors: Line Massé, Claire Baudry, Claudia Verret, Marie-France Nadeau, Anne Brault-Labbé

Abstract:

Little research has been conducted on educational services adapted for twice exceptional students. Within an action research, a cluster grouping was set up in an elementary school in Quebec, bringing together gifted or doubly exceptional (2E) students (n = 11) and students not identified as gifted (n = 8) within a multilevel class (3ᵣ𝒹 and 4ₜₕ years). 2E students had either attention deficit hyperactivity disorder (n = 8, including 3 with specific learning disability) or autism spectrum disorder (n = 2). Differentiated instructions strategies were implemented, including the possibility of progressing at their own pace of learning, independent study or research projects, flexible accommodation, tutoring with older students and the development of socio-emotional learning. A specialized educator also supported the teacher in the class for behavioural and socio-affective aspects. Objectives: The study aimed to assess the impacts of the grouping on all students, their academic motivation, and their socio-emotional adaptation. Method: A mixed method was used, combining a qualitative approach with a quantitative approach. Semi-directed interviews were conducted with students (N = 18, 4 girls and 14 boys aged 8 to 9) and one of their parents (N = 18) at the end of the school year. Parents and students completed two questionnaires at the beginning and end of the school year: the Behavior Assessment System for Children-3, children or parents versions (BASC-3, Reynolds and Kampus, 2015) and the Academic Motivation in Education (Vallerand et al., 1993). Parents also completed the Multidimensional Student Life Satisfaction Scale (Huebner, 1994, adapted by Fenouillet et al., 2014) comprising three domains (school, friendships, and motivation). Mixed thematic analyzes were carried out on the data from the interviews using the N'Vivo software. Related-samples Wilcoxon rank-sums tests were conducted for the data from the questionnaires. Results: Different themes emerge from the students' comments, including a positive impact on school motivation or attitude toward school, improved school results, reduction of their behavioural difficulties and improvement of their social relations. These remarks were more frequent among 2E students. Most 2E students also noted an improvement in their academic performance. Most parents reported improvements in attitudes toward school and reductions in disruptive behaviours in the classroom. Some parents also observed changes in behaviours at home or in the socio-emotional well-being of their children, here again, particularly parents of 2E children. Analysis of questionnaires revealed significant differences at the end of the school year, more specifically pertaining to extrinsic motivation identified, problems of conduct, attention, emotional self-control, executive functioning, negative emotions, functional deficiencies, and satisfaction regarding friendships. These results indicate that this approach could benefit not only gifted and doubly exceptional students but also students not identified as gifted.

Keywords: Cluster grouping, elementary school, giftedness, mixed methods, twice exceptional students

Procedia PDF Downloads 76
4447 Investigation of the Trunk Inclination Positioning Angle on Swallowing and Respiratory Function

Authors: Hsin-Yi Kathy Cheng, Yan-Ying JU, Wann-Yun Shieh, Chin-Man Wang

Abstract:

Although the coordination of swallowing and respiration has been discussed widely, the influence of the positioning angle on swallowing and respiration during feeding has rarely been investigated. This study aimed to investigate the timing and coordination of swallowing and respiration in different seat inclination angles, with liquid and bolus, to provide suggestions and guidelines for the design and develop a feedback-controlled seat angle adjustment device for the back-adjustable wheelchair. Twenty-six participants aged between 15-30 years old without any signs of swallowing difficulty were included. The combination of seat inclinations and food types was randomly assigned, with three repetitions in each combination. The trunk inclination angle was adjusted by a commercialized positioning wheelchair. A total of 36 swallows were done, with at least 30 seconds of rest between each swallow. We used a self-developed wearable device to measure the submandibular muscle surface EMG, the movement of the thyroid cartilage, and the respiratory status of the nasal cavity. Our program auto-analyzed the onset and offset of duration, and the excursion and strength of thyroid cartilage when it was moving, coordination between breathing and swallowing were also included. Variables measured include the EMG duration (DsEMG), swallowing apnea duration (SAD), total excursion time (TET), duration of 2nd deflection, FSR amplitude, Onset latency, DsEMG onset, DsEMG offset, FSR onset, and FSR offset. These measurements were done in four-seat inclination angles (5。, 15。, 30。, 45。) and three food contents (1ml water, 10ml water, and 5ml pudding bolus) for each subject. The data collected between different contents were compared. Descriptive statistics were used to describe the basic features of the data. Repeated measure ANOVAs were used to analyze the differences for the dependent variables in different seat inclination and food content combinations. The results indicated significant differences in seat inclination, mostly between 5。 and 45。, in all variables except FSR amplitude. It also indicated significant differences in food contents almost among all variables. Significant interactions between seat inclination and food contents were only found in FSR offsets. The same protocol will be applied to participants with disabilities. The results of this study would serve as clinical guidance for proper feeding positions with different food contents. The ergonomic data would also provide references for assistive technology professionals and practitioners in device design and development. In summary, the current results indicated that it is easier for a subject to lean backward during swallowing than when sitting upright and swallowing water is easier than swallowing pudding. The results of this study would serve as the clinical guidance for proper feeding position (such as wheelchair back angle adjustment) with different food contents. The same protocol can be applied to elderly participants or participants with physical disabilities. The ergonomic data would also provide references for assistive technology professionals and practitioners in device design and development.

Keywords: swallowing, positioning, assistive device, disability

Procedia PDF Downloads 76
4446 Enhancing the Flotation of Fine and Ultrafine Pyrite Particles Using Electrolytically Generated Bubbles

Authors: Bogale Tadesse, Krutik Parikh, Ndagha Mkandawire, Boris Albijanic, Nimal Subasinghe

Abstract:

It is well established that the floatability and selectivity of mineral particles are highly dependent on the particle size. Generally, a particle size of 10 micron is considered as the critical size below which both flotation selectivity and recovery decline sharply. It is widely accepted that the majority of ultrafine particles, including highly liberated valuable minerals, will be lost in tailings during a conventional flotation process. This is highly undesirable particularly in the processing of finely disseminated complex and refractory ores where there is a requirement for fine grinding in order to liberate the valuable minerals. In addition, the continuing decline in ore grade worldwide necessitates intensive processing of low grade mineral deposits. Recent advances in comminution allow the economic grinding of particles down to 10 micron sizes to enhance the probability of liberating locked minerals from low grade ores. Thus, it is timely that the flotation of fine and ultrafine particles is improved in order to reduce the amount of valuable minerals lost as slimes. It is believed that the use of fine bubbles in flotation increases the bubble-particle collision efficiency and hence the flotation performance. Electroflotation, where bubbles are generated by the electrolytic breakdown of water to produce oxygen and hydrogen gases, leads to the formation of extremely finely dispersed gas bubbles with dimensions varying from 5 to 95 micron. The sizes of bubbles generated by this method are significantly smaller than those found in conventional flotation (> 600 micron). In this study, microbubbles generated by electrolysis of water were injected into a bench top flotation cell to assess the performance electroflotation in enhancing the flotation of fine and ultrafine pyrite particles of sizes ranging from 5 to 53 micron. The design of the cell and the results from optimization of the process variables such as current density, pH, percent solid and particle size will be presented at this conference.

Keywords: electroflotation, fine bubbles, pyrite, ultrafine particles

Procedia PDF Downloads 341
4445 Physical and Chemical Alternative Methods of Fresh Produce Disinfection

Authors: Tuji Jemal Ahmed

Abstract:

Fresh produce is an essential component of a healthy diet. However, it can also be a potential source of pathogenic microorganisms that can cause foodborne illnesses. Traditional disinfection methods, such as washing with water and chlorine, have limitations and may not effectively remove or inactivate all microorganisms. This has led to the development of alternative/new methods of fresh produce disinfection, including physical and chemical methods. In this paper, we explore the physical and chemical new methods of fresh produce disinfection, their advantages and disadvantages, and their suitability for different types of produce. Physical methods of disinfection, such as ultraviolet (UV) radiation and high-pressure processing (HPP), are crucial in ensuring the microbiological safety of fresh produce. UV radiation uses short-wavelength UV-C light to damage the DNA and RNA of microorganisms, and HPP applies high levels of pressure to fresh produce to reduce the microbial load. These physical methods are highly effective in killing a wide range of microorganisms, including bacteria, viruses, and fungi. However, they may not penetrate deep enough into the product to kill all microorganisms and can alter the sensory characteristics of the product. Chemical methods of disinfection, such as acidic electrolyzed water (AEW), ozone, and peroxyacetic acid (PAA), are also important in ensuring the microbiological safety of fresh produce. AEW uses a low concentration of hypochlorous acid and a high concentration of hydrogen ions to inactivate microorganisms, ozone uses ozone gas to damage the cell membranes and DNA of microorganisms, and PAA uses a combination of hydrogen peroxide and acetic acid to inactivate microorganisms. These chemical methods are highly effective in killing a wide range of microorganisms, but they may cause discoloration or changes in the texture and flavor of some products and may require specialized equipment and trained personnel to produce and apply. In conclusion, the selection of the most suitable method of fresh produce disinfection should take into consideration the type of product, the level of microbial contamination, the effectiveness of the method in reducing the microbial load, and any potential negative impacts on the sensory characteristics, nutritional composition, and safety of the produce.

Keywords: fresh produce, pathogenic microorganisms, foodborne illnesses, disinfection methods

Procedia PDF Downloads 78
4444 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network

Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert

Abstract:

The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.

Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy

Procedia PDF Downloads 140
4443 Biological Monitoring: Vegetation Cover, Bird Assemblages, Rodents, Terrestrial and Aquatic Invertebrates from a Closed Landfill

Authors: A. Cittadino, P. Gantes, C. Coviella, M. Casset, A. Sanchez Caro

Abstract:

Three currently active landfills receive the waste from Buenos Aires city and the Great Buenos Aires suburbs. One of the first landfills to receive solid waste from this area was located in Villa Dominico, some 7 km south from Buenos Aires City. With an area of some 750 ha, including riparian habitats, divided into 14 cells, it received solid wastes from June 1979 through February 2004. In December 2010, a biological monitoring program was set up by CEAMSE and Universidad Nacional de Lujan, still operational to date. The aim of the monitoring program is to assess the state of several biological groups within the landfill and to follow their dynamics overtime in order to identify if any, early signs of damage the landfill activities might have over the biota present. Bird and rodent populations, aquatic and terrestrial invertebrates’ populations, cells vegetation coverage, and surrounding areas vegetation coverage and main composition are followed by quarterly samplings. Bird species richness and abundance were estimated by observation over walk transects on each environment. A total of 74 different species of birds were identified. Species richness and diversity were high for both riparian surrounding areas and within the landfill. Several grassland -typical of the 'Pampa'- bird species were found within the landfill, as well as some migratory and endangered bird species. Sherman and Tomahawk traps are set overnight for small mammal sampling. Rodent populations are just above detection limits, and the few specimens captured belong mainly to species common to rural areas, instead of city-dwelling species. The two marsupial species present in the region were captured on occasions. Aquatic macroinvertebrates were sampled on a watercourse upstream and downstream the outlet of the landfill’s wastewater treatment plant and are used to follow water quality using biological indices. Water quality ranged between weak and severe pollution; benthic invertebrates sampled before and after the landfill, show no significant differences in water quality using the IBMWP index. Insect biota from yellow sticky cards and pitfall traps showed over 90 different morphospecies, with Shannon diversity index running from 1.9 to 3.9, strongly affected by the season. An easy-to-perform non-expert demandant method was used to assess vegetation coverage. Two scales of determination are utilized: field observation (1 m resolution), and Google Earth images (that allow for a better than 5 m resolution). Over the eight year period of the study, vegetation coverage over the landfill cells run from a low 83% to 100% on different cells, with an average between 95 to 99% for the entire landfill depending on seasonality. Surrounding area vegetation showed almost 100% coverage during the entire period, with an average density from 2 to 6 species per sq meter and no signs of leachate damaged vegetation.

Keywords: biological indicators, biota monitoring, landfill species diversity, waste management

Procedia PDF Downloads 144
4442 Enhancing Postharvest Quality and Shelf-Life of Leaf Lettuce (Lactuca sativa L.) by Altering Growing Conditions

Authors: Jung-Soo Lee, Ujjal Kumar Nath, IllSup Nou, Dulal Chandra

Abstract:

Leaf lettuce is one of the most important leafy vegetables that is used as raw for salad and part of everyday dishes in many parts of the world including Asian countries. Since it is used as fresh, its quality maintenance is crucial which depends on several pre- and postharvest factors. In order to investigate the effects of pre-fix factors on the postharvest quality, the interaction of pre-fix factors such as growing conditions and fixed factor like cultivars were evaluated. Four Korean leaf lettuce cultivars ‘Cheongchima’, ‘Cheongchuckmyeon’, ‘Geockchima’ and ‘Geockchuckmyeon’ were grown under natural condition (as control) and altered growing condition (green house) with excess soil water and 50% shading to monitor their postharvest qualities. Several growth parameters like plant height, number of leaves, leaf thickness, fresh biomass yield as well as postharvest qualities like fresh weight loss, respiration rate, changes in color and shelf-life were measured in lettuce during storage up to 36 days at 5°C. Plant height and the number of leaves were affected by both pre-fix growing conditions as well as the cultivars. However, fresh biomass yield was affected by only growing condition, whereas leaf thickness was affected by cultivars. Additionally, the degrees of fresh weight loss and respiration rate of leaf lettuce at postharvest stages were influenced by pre-fix growing conditions and cultivars. However, changes in color of leaves during storage were less remarkable in samples harvested from of ‘Cheongchima’ and ‘Cheongchuckmyeon’ cultivars grown in excess watering with 50% shade than that grown in control condition. Consequently, these two cultivars also showed longer shelf-life when they were grown in excess watering with 50% shade than other cultivars or samples were grown in control condition. Based on the measured parameters, it can be concluded that postharvest quality of leaf lettuce might be accelerated by growing lettuce under excess soil water with 50% shading.

Keywords: cultivar, growing condition, leaf lettuce, postharvest quality, shelf-life

Procedia PDF Downloads 267
4441 Contribution to the Understanding of the Hydrodynamic Behaviour of Aquifers of the Taoudéni Sedimentary Basin (South-eastern Part, Burkina Faso)

Authors: Kutangila Malundama Succes, Koita Mahamadou

Abstract:

In the context of climate change and demographic pressure, groundwater has emerged as an essential and strategic resource whose sustainability relies on good management. The accuracy and relevance of decisions made in managing these resources depend on the availability and quality of scientific information they must rely on. It is, therefore, more urgent to improve the state of knowledge on groundwater to ensure sustainable management. This study is conducted for the particular case of the aquifers of the transboundary sedimentary basin of Taoudéni in its Burkinabe part. Indeed, Burkina Faso (and the Sahel region in general), marked by low rainfall, has experienced episodes of severe drought, which have justified the use of groundwater as the primary source of water supply. This study aims to improve knowledge of the hydrogeology of this area to achieve sustainable management of transboundary groundwater resources. The methodological approach first described lithological units regarding the extension and succession of different layers. Secondly, the hydrodynamic behavior of these units was studied through the analysis of spatio-temporal variations of piezometric. The data consists of 692 static level measurement points and 8 observation wells located in the usual manner in the area and capturing five of the identified geological formations. Monthly piezometric level chronicles are available for each observation and cover the period from 1989 to 2020. The temporal analysis of piezometric, carried out in comparison with rainfall chronicles, revealed a general upward trend in piezometric levels throughout the basin. The reaction of the groundwater generally occurs with a delay of 1 to 2 months relative to the flow of the rainy season. Indeed, the peaks of the piezometric level generally occur between September and October in reaction to the rainfall peaks between July and August. Low groundwater levels are observed between May and July. This relatively slow reaction of the aquifer is observed in all wells. The influence of the geological nature through the structure and hydrodynamic properties of the layers was deduced. The spatial analysis reveals that piezometric contours vary between 166 and 633 m with a trend indicating flow that generally goes from southwest to northeast, with the feeding areas located towards the southwest and northwest. There is a quasi-concordance between the hydrogeological basins and the overlying hydrological basins, as well as a bimodal flow with a component following the topography and another significant component deeper, controlled by the regional gradient SW-NE. This latter component may present flows directed from the high reliefs towards the sources of Nasso. In the source area (Kou basin), the maximum average stock variation, calculated by the Water Table Fluctuation (WTF) method, varies between 35 and 48.70 mm per year for 2012-2014.

Keywords: hydrodynamic behaviour, taoudeni basin, piezometry, water table fluctuation

Procedia PDF Downloads 69
4440 Exploring Bio-Inspired Catecholamine Chemistry to Design Durable Anti-Fungal Wound Dressings

Authors: Chetna Dhand, Venkatesh Mayandi, Silvia Marrero Diaz, Roger W. Beuerman, Seeram Ramakrishna, Rajamani Lakshminarayanan

Abstract:

Sturdy Insect Cuticle Sclerotization, Incredible Substrate independent Mussel’s bioadhesion, Tanning of Leather are some of catechol(amine)s mediated natural processes. Chemical contemplation spots toward a mechanism instigated with the formation of the quinone moieties from the respective catechol(amine)s, via oxidation, followed by the nucleophilic addition of the amino acids/proteins/peptides to this quinone leads to the development of highly strong, cross-linked and water-resistant proteinacious structures. Inspired with this remarkable catechol(amine)s chemistry towards amino acids/proteins/peptides, we attempted to design highly stable and water-resistant antifungal wound dressing mats with exceptional durability using collagen (protein), dopamine (catecholamine) and antifungal drugs (Amphotericin B and Caspofungin) as the key materials. Electrospinning technique has been used to fabricate desired nanofibrous mat including Collagen (COLL), COLL/Dopamine (COLL/DP) and calcium incorporated COLL/DP (COLL-DP-Ca2+). The prepared protein-based scaffolds have been studied for their microscopic investigations (SEM, TEM, and AFM), structural analysis (FT-IR), mechanical properties, water wettability characteristics and aqueous stability. Biocompatibility of these scaffolds has been analyzed for dermal fibroblast cells using MTS assay, Cell TrackerTM Green CMFDA and confocal imaging. Being the winner sample, COLL-DP-Ca2+ scaffold has been selected for incorporating two antifungal drugs namely Caspofungin (Peptide based) and Amphotericin B (Non-Peptide based). Antifungal efficiency of the designed mats has been evaluated for eight diverse fungal strains employing different microbial assays including disc diffusion, cell-viability assay, time kill kinetics etc. To confirm the durability of these mats, in term of their antifungal activity, drug leaching studies has been performed and monitored using disc diffusion assay each day. Ex-vivo fungal infection model has also been developed and utilized to validate the antifungal efficacy of the designed wound dressings. Results clearly reveal dopamine mediated crosslinking within COLL-antifungal scaffolds that leads to the generation of highly stable, mechanical tough, biocompatible wound dressings having the zone of inhabitation of ≥ 2 cm for almost all the investigated fungal strains. Leaching studies and Ex-vivo model has confirmed the durability of these wound dressing for more than 3 weeks and certified their suitability for commercialization. A model has also been proposed to enlighten the chemical mechanism involved for the development of these antifungal wound dressings with exceptional robustness.

Keywords: catecholamine chemistry, electrospinning technique, antifungals, wound dressings, collagen

Procedia PDF Downloads 380
4439 Application of Data Driven Based Models as Early Warning Tools of High Stream Flow Events and Floods

Authors: Mohammed Seyam, Faridah Othman, Ahmed El-Shafie

Abstract:

The early warning of high stream flow events (HSF) and floods is an important aspect in the management of surface water and rivers systems. This process can be performed using either process-based models or data driven-based models such as artificial intelligence (AI) techniques. The main goal of this study is to develop efficient AI-based model for predicting the real-time hourly stream flow (Q) and apply it as early warning tool of HSF and floods in the downstream area of the Selangor River basin, taken here as a paradigm of humid tropical rivers in Southeast Asia. The performance of AI-based models has been improved through the integration of the lag time (Lt) estimation in the modelling process. A total of 8753 patterns of Q, water level, and rainfall hourly records representing one-year period (2011) were utilized in the modelling process. Six hydrological scenarios have been arranged through hypothetical cases of input variables to investigate how the changes in RF intensity in upstream stations can lead formation of floods. The initial SF was changed for each scenario in order to include wide range of hydrological situations in this study. The performance evaluation of the developed AI-based model shows that high correlation coefficient (R) between the observed and predicted Q is achieved. The AI-based model has been successfully employed in early warning throughout the advance detection of the hydrological conditions that could lead to formations of floods and HSF, where represented by three levels of severity (i.e., alert, warning, and danger). Based on the results of the scenarios, reaching the danger level in the downstream area required high RF intensity in at least two upstream areas. According to results of applications, it can be concluded that AI-based models are beneficial tools to the local authorities for flood control and awareness.

Keywords: floods, stream flow, hydrological modelling, hydrology, artificial intelligence

Procedia PDF Downloads 250
4438 Wicking Bed Cultivation System as a Strategic Proposal for the Cultivation of Milpa and Mexican Medicinal Plants in Urban Spaces

Authors: David Lynch Steinicke, Citlali Aguilera Lira, Andrea León García

Abstract:

The proposal posed in this work comes from a researching-action approach. In Mexico, a dialogue of knowledge may function as a link between traditional, local, pragmatic knowledge, and technological, scientific knowledge. The advantage of generating this nexus lies on the positive impact in the environment, in society and economy. This work attempts to combine, on the one hand the traditional Mexican knowledge such as the usage of medicinal herb and the agroecosystem milpa; and on the other hand make use of a newly created agricultural ecotechnology which main function is to take advantage of the urban space and to save water. This ecotechnology is the wicking bed. In a globalized world, is relevant to have a proposal where the most important aspect is to revalorize the culture through the acquisition of traditional knowledge but at the same time adapting them to the new social and urbanized structures without threatening the environment. The methodology used in this work comes from a researching-action approach combined with a practical dimension where an experimental model made of three wickingbeds was implemented. In this model, there were cultivated medicinal herb and milpa components. The water efficiency and the social acceptance were compared with a traditional ground crop, all this practice was made in an urban social context. The implementation of agricultural ecotechnology has had great social acceptance as its irrigation involves minimal effort and it is economically feasible for low-income people. The wicking bed system raised in this project is attainable to be implemented in schools, urban and peri-urban environments, homemade gardens and public areas. The proposal managed to carry out an innovative and sustainable knowledge-based traditional Mexican agricultural technology, allowing regain Milpa agroecosystem in urban environments to strengthen food security in favour of nutritional and protein benefits for the Mexican fare.

Keywords: milpa, traditional medicine, urban agriculture, wicking bed

Procedia PDF Downloads 391
4437 Hydro-Mechanical Characterization of PolyChlorinated Biphenyls Polluted Sediments in Interaction with Geomaterials for Landfilling

Authors: Hadi Chahal, Irini Djeran-Maigre

Abstract:

This paper focuses on the hydro-mechanical behavior of polychlorinated biphenyl (PCB) polluted sediments when stored in landfills and the interaction between PCBs and geosynthetic clay liners (GCL) with respect to hydraulic performance of the liner and the overall performance and stability of landfills. A European decree, adopted in the French regulation forbids the reintroducing of contaminated dredged sediments containing more than 0,64mg/kg Σ 7 PCBs to rivers. At these concentrations, sediments are considered hazardous and a remediation process must be adopted to prevent the release of PCBs into the environment. Dredging and landfilling polluted sediments is considered an eco-environmental remediation solution. French regulations authorize the storage of PCBs contaminated components with less than 50mg/kg in municipal solid waste facilities. Contaminant migration via leachate may be possible. The interactions between PCBs contaminated sediments and the GCL barrier present in the bottom of a landfill for security confinement are not known. Moreover, the hydro-mechanical behavior of stored sediments may affect the performance and the stability of the landfill. In this article, hydro-mechanical characterization of the polluted sediment is presented. This characterization led to predict the behavior of the sediment at the storage site. Chemical testing showed that the concentration of PCBs in sediment samples is between 1.7 and 2,0 mg/kg. Physical characterization showed that the sediment is organic silty sand soil (%Silt=65, %Sand=27, %OM=8) characterized by a high plasticity index (Ip=37%). Permeability tests using permeameter and filter press showed that sediment permeability is in the order of 10-9 m/s. Compressibility tests showed that the sediment is a very compressible soil with Cc=0,53 and Cα =0,0086. In addition, effects of PCB on the swelling behavior of bentonite were studied and the hydraulic performance of the GCL in interaction with PCBs was examined. Swelling tests showed that PCBs don’t affect the swelling behavior of bentonite. Permeability tests were conducted on a 1.0 m pilot scale experiment, simulating a storage facility. PCBs contaminated sediments were directly placed over a passive barrier containing GCL to study the influence of the direct contact of polluted sediment leachate with the GCL. An automatic water system has been designed to simulate precipitation. Effluent quantity and quality have been examined. The sediment settlements and the water level in the sediment have been monitored. The results showed that desiccation affected the behavior of the sediment in the pilot test and that laboratory tests alone are not sufficient to predict the behavior of the sediment in landfill facility. Furthermore, the concentration of PCB in the sediment leachate was very low ( < 0,013 µg/l) and that the permeability of the GCL was affected by other components present in the sediment leachate. Desiccation and cracks were the main parameters that affected the hydro-mechanical behavior of the sediment in the pilot test. In order to reduce these infects, the polluted sediment should be stored at a water content inferior to its shrinkage limit (w=39%). We also propose to conduct other pilot tests with the maximum concentration of PCBs allowed in municipal solid waste facility of 50 mg/kg.

Keywords: geosynthetic clay liners, landfill, polychlorinated biphenyl, polluted dredged materials

Procedia PDF Downloads 126
4436 The Impact of Gold Mining on Disability: Experiences from the Obuasi Municipal Area

Authors: Mavis Yaa Konadu Agyemang

Abstract:

Despite provisions to uphold and safeguard the rights of persons with disability in Ghana, there is evidence that they still encounter several challenges which limit their full and effective involvement in mainstream society, including the gold mining sector. The study sought to explore how persons with physical disability (PWPDs) experience gold mining in the Obuasi Municipal Area. A qualitative research design was used to discover and understand the experiences of PWPDs regarding mining. The purposive sampling technique was used to select five key informants for the study with the age range of (24-52 years) while snowball sampling aided the selection of 16 persons with various forms of physical disability with the age range of (24-60 years). In-depth interviews were used to gather data. The interviews lasted from forty-five minutes to an hour. In relation to the setting, the interviews of thirteen (13) of the participants with disability were done in their houses, two (2) were done on the phone, and one (1) was done in the office. Whereas the interviews of the five (5) key informants were all done in their offices. Data were analyzed using Creswell’s (2009) concept of thematic analysis. The findings suggest that even though land degradation affected everyone in the area, persons with mobility and visual impairment experienced many difficulties trekking the undulating land for long distances in search of arable land. Also, although mining activities are mostly labour-intensive, PWPDs were not employed even in areas where they could work. Further, the cost of items, in general, was high, affecting PWPDs more due to their economic immobility and paying for other sources of water due to land degradation and water pollution. The study also discovered that the peculiar conditions of PWPDs were not factored into compensation payments, and neither were females with physical disability engaged in compensation negotiations. Also, although some of the infrastructure provided by the gold mining companies in the area was physically accessible to some extent, it was not accessible in terms of information delivery. There is a need to educate the public on the effects of mining on PWPDs, their needs as well as disability issues in general. The Minerals and Mining Act (703) should be amended to include provisions that would consider the peculiar needs of PWPDs in compensation payment.

Keywords: mining, resettlement, compensation, environmental, social, disability

Procedia PDF Downloads 61
4435 Interfacial Adhesion and Properties Improvement of Polyethylene/Thermoplastic Starch Blend Compatibilized by Stearic Acid-Grafted-Starch

Authors: Nattaporn Khanoonkon, Rangrong Yoksan, Amod A. Ogale

Abstract:

Polyethylene (PE) is one of the most petroleum-based thermoplastic materials used in many applications including packaging due to its cheap, light-weight, chemically inert and capable to be converted into various shapes and sizes of products. Although PE is a commercially potential material, its non-biodegradability caused environmental problems. At present, bio-based polymers become more interesting owing to its bio-degradability, non-toxicity, and renewability as well as being eco-friendly. Thermoplastic starch (TPS) is a bio-based and biodegradable plastic produced from the plasticization of starch under applying heat and shear force. In many researches, TPS was blended with petroleum-based polymers including PE in order to reduce the cost and the use of those polymers. However, the phase separation between hydrophobic PE and hydrophilic TPS limited the amount of TPS incorporated. The immiscibility of two different polarity polymers can be diminished by adding compatibilizer. PE-based compatibilizers, e.g. polyethylene-grafted-maleic anhydride, polyethylene-co-vinyl alcohol, etc. have been applied for the PE/TPS blend system in order to improve their miscibility. Until now, there is no report about the utilization of starch-based compatibilizer for PE/TPS blend system. The aims of the present research were therefore to synthesize a new starch-based compatibilizer, i.e. stearic acid-grafted starch (SA-g-starch) and to study the effect of SA-g-starch on chemical interaction, morphological properties, tensile properties and water vapor as well as oxygen barrier properties of the PE/TPS blend films. PE/TPS blends without and with incorporating SA-g-starch with a content of 1, 3 and 5 part(s) per hundred parts of starch (phr) were prepared using a twin screw extruder and then blown into films using a film blowing machine. Incorporating 1 phr and 3 phr of SA-g-starch could improve miscibility of the two polymers as confirmed from the reduction of TPS phase size and the good dispersion of TPS phase in PE matrix. In addition, the blend containing SA-g-starch with contents of 1 phr and 3 phr exhibited higher tensile strength and extensibility, as well as lower water vapor and oxygen permeabilities than the naked blend. The above results suggested that SA-g-starch could be potentially applied as a compatibilizer for the PE/TPS blend system.

Keywords: blend, compatibilizer, polyethylene, thermoplastic starch

Procedia PDF Downloads 441
4434 Rewilding the River: Assessing the Environmental Effects and Regulatory Influences of the Condit Dam Removal Process

Authors: Neda Safari, Jacob Petersen-Perlman

Abstract:

There are more than two million dams in the United States, and a considerable portion of them are either non-operational or approaching the end of their designed lifespan. However, this emerging trend is new, and the majority of dam sites have not undergone thorough research and assessments after their removal to determine the overall effectiveness of restoration initiatives, particularly in the case of large-scale dams that may significantly impact their surrounding areas. A crucial factor to consider is the lack of specific regulations pertaining to dam removal at the federal level. Consequently, other environmental regulations that were not originally designed with dam removal considerations are used to execute these projects. This can result in delays or challenges for dam removal initiatives. The process of removing dams is usually the most important first step to restore the ecological and biological health of the river, but often there is a lack of measurable indicators to assess if it has achieved its intended objectives. In addition, the majority of studies on dam removal are only short-term and focus on a particular measure of response. Therefore, it is essential to conduct extensive and continuous monitoring to analyze the river's response throughout every aspect. Our study is divided into two sections. The first section of my research will analyze the establishment and utilization of dam removal laws and regulations in the Condit Dam removal process. We will highlight the areas where the frameworks for policy and dam removal projects remain in need of improvement in order to facilitate successful dam removals in the future. In this part, We will review the policies and plans that affected the decision-making process to remove the Condit dam while also looking at how they impacted the physical changes to the river after the dam was removed. In the second section, we will look at the effects of the dam removal over a decade later and attempt to determine how the river's physical response has been impacted by this modification. Our study aims to investigate the Condit dam removal process and its impact on the ecological response of the river. We anticipate identifying areas for improvement in policies pertaining to dam removal projects and exploring ways to enhance them to ensure improved project outcomes in the future.

Keywords: dam removal, ecolocgical change, water related regulation, water resources

Procedia PDF Downloads 49
4433 Preparation and Properties of Polylactic Acid/MDI Modified Thermoplastic Starch Blends

Authors: Sukhila Krishnan, Smita Mohanty, Sanjay K. Nayak

Abstract:

Polylactide (PLA) and thermoplastic starch (TPS) are the most promising bio-based materials presently available on the market. Polylactic acid is one of the versatile biodegradable polyester showing wide range of applications in various fields and starch is a biopolymer which is renewable, cheap as well as extensively available. The usual increase in the cost of petroleum-based commodities in the next decades opens bright future for these materials. Their biodegradability and compostability was an added advantage in applications that are difficult to recycle. Currently, thermoplastic starch (TPS) has been used as a substitute for synthetic plastic in several commercial products. But, TPS shows some limitations mainly due to its brittle and hydrophilic nature, which has to be resolved to widen its application.The objective of the work we report here was to initiate chemical modifications on TPS and to build up a process to control its chemical structure using a solution process which can reduce its water sensitive properties and then blended it with PLA to improve compatibility between PLA and TPS. The method involves in cleavage of starch amylose and amylopectin chain backbone to plasticize with glycerol and water in batch mixer and then the prepared TPS was reacted in solution with diisocyanates i.e, 4,4'-Methylenediphenyl Diisocyanate (MDI).This diisocyanate was used before with great success for the chemical modification of TPS surface. The method utilized here will form an urethane-linkages between reactive isocyanate groups (–NCO) and hydroxyl groups (-OH) of starch as well as of glycerol. New polymer synthesised shows a reduced crystallinity, less hydrophilic and enhanced compatibility with other polymers. The TPS was prepared by Haake Rheomix 600 batch mixer with roller rotors operating at 50 rpm. The produced material is then refluxed for 5hrs with MDI in toluene with constant stirring. Finally, the modified TPS was melt blended with PLA in different compositions. Blends obtained shows an improved mechanical properties. These materials produced are characterized by Fourier Transform Infrared Spectra (FTIR), DSC, X-Ray diffraction and mechanical tests.

Keywords: polylactic acid, thermoplastic starch, Methylenediphenyl Diisocyanate, Polylactide (PLA)

Procedia PDF Downloads 388
4432 Structural and Functional Correlates of Reaction Time Variability in a Large Sample of Healthy Adolescents and Adolescents with ADHD Symptoms

Authors: Laura O’Halloran, Zhipeng Cao, Clare M. Kelly, Hugh Garavan, Robert Whelan

Abstract:

Reaction time (RT) variability on cognitive tasks provides the index of the efficiency of executive control processes (e.g. attention and inhibitory control) and is considered to be a hallmark of clinical disorders, such as attention-deficit disorder (ADHD). Increased RT variability is associated with structural and functional brain differences in children and adults with various clinical disorders, as well as poorer task performance accuracy. Furthermore, the strength of functional connectivity across various brain networks, such as the negative relationship between the task-negative default mode network and task-positive attentional networks, has been found to reflect differences in RT variability. Although RT variability may provide an index of attentional efficiency, as well as being a useful indicator of neurological impairment, the brain substrates associated with RT variability remain relatively poorly defined, particularly in a healthy sample. Method: Firstly, we used the intra-individual coefficient of variation (ICV) as an index of RT variability from “Go” responses on the Stop Signal Task. We then examined the functional and structural neural correlates of ICV in a large sample of 14-year old healthy adolescents (n=1719). Of these, a subset had elevated symptoms of ADHD (n=80) and was compared to a matched non-symptomatic control group (n=80). The relationship between brain activity during successful and unsuccessful inhibitions and gray matter volume were compared with the ICV. A mediation analysis was conducted to examine if specific brain regions mediated the relationship between ADHD symptoms and ICV. Lastly, we looked at functional connectivity across various brain networks and quantified both positive and negative correlations during “Go” responses on the Stop Signal Task. Results: The brain data revealed that higher ICV was associated with increased structural and functional brain activation in the precentral gyrus in the whole sample and in adolescents with ADHD symptoms. Lower ICV was associated with lower activation in the anterior cingulate cortex (ACC) and medial frontal gyrus in the whole sample and in the control group. Furthermore, our results indicated that activation in the precentral gyrus (Broadman Area 4) mediated the relationship between ADHD symptoms and behavioural ICV. Conclusion: This is the first study first to investigate the functional and structural correlates of ICV collectively in a large adolescent sample. Our findings demonstrate a concurrent increase in brain structure and function within task-active prefrontal networks as a function of increased RT variability. Furthermore, structural and functional brain activation patterns in the ACC, and medial frontal gyrus plays a role-optimizing top-down control in order to maintain task performance. Our results also evidenced clear differences in brain morphometry between adolescents with symptoms of ADHD but without clinical diagnosis and typically developing controls. Our findings shed light on specific functional and structural brain regions that are implicated in ICV and yield insights into effective cognitive control in healthy individuals and in clinical groups.

Keywords: ADHD, fMRI, reaction-time variability, default mode, functional connectivity

Procedia PDF Downloads 259
4431 Optimizing Stormwater Sampling Design for Estimation of Pollutant Loads

Authors: Raja Umer Sajjad, Chang Hee Lee

Abstract:

Stormwater runoff is the leading contributor to pollution of receiving waters. In response, an efficient stormwater monitoring program is required to quantify and eventually reduce stormwater pollution. The overall goals of stormwater monitoring programs primarily include the identification of high-risk dischargers and the development of total maximum daily loads (TMDLs). The challenge in developing better monitoring program is to reduce the variability in flux estimates due to sampling errors; however, the success of monitoring program mainly depends on the accuracy of the estimates. Apart from sampling errors, manpower and budgetary constraints also influence the quality of the estimates. This study attempted to develop optimum stormwater monitoring design considering both cost and the quality of the estimated pollutants flux. Three years stormwater monitoring data (2012 – 2014) from a mix land use located within Geumhak watershed South Korea was evaluated. The regional climate is humid and precipitation is usually well distributed through the year. The investigation of a large number of water quality parameters is time-consuming and resource intensive. In order to identify a suite of easy-to-measure parameters to act as a surrogate, Principal Component Analysis (PCA) was applied. Means, standard deviations, coefficient of variation (CV) and other simple statistics were performed using multivariate statistical analysis software SPSS 22.0. The implication of sampling time on monitoring results, number of samples required during the storm event and impact of seasonal first flush were also identified. Based on the observations derived from the PCA biplot and the correlation matrix, total suspended solids (TSS) was identified as a potential surrogate for turbidity, total phosphorus and for heavy metals like lead, chromium, and copper whereas, Chemical Oxygen Demand (COD) was identified as surrogate for organic matter. The CV among different monitored water quality parameters were found higher (ranged from 3.8 to 15.5). It suggests that use of grab sampling design to estimate the mass emission rates in the study area can lead to errors due to large variability. TSS discharge load calculation error was found only 2 % with two different sample size approaches; i.e. 17 samples per storm event and equally distributed 6 samples per storm event. Both seasonal first flush and event first flush phenomena for most water quality parameters were observed in the study area. Samples taken at the initial stage of storm event generally overestimate the mass emissions; however, it was found that collecting a grab sample after initial hour of storm event more closely approximates the mean concentration of the event. It was concluded that site and regional climate specific interventions can be made to optimize the stormwater monitoring program in order to make it more effective and economical.

Keywords: first flush, pollutant load, stormwater monitoring, surrogate parameters

Procedia PDF Downloads 245
4430 Sedimentological and Geochemical Characteristics of Aeolian Sediments and Their Implication for Sand Origin in the Yarlung Zangbo River Valley, Southern Qinghai-Tibetan Plateau

Authors: Na Zhou, Chun-Lai Zhang, Qing Li, Bingqi Zhu, Xun-Ming Wang

Abstract:

The understanding of the dynamics of aeolian sand in the Yarlung Zangbo River Valley (YLZBV), southern Qinghai-Tibetan Plateau, including its origins, transportation,and deposition, remains preliminary. In this study, we investigated the extensive origin of aeolian sediments in the YLZBV by analyzing the distribution and composition of sediment’s grain size and geochemical composition in dune sediments collected from the wide river terraces. The major purpose is to characterize the sedimentological and geochemical compositions of these aeolian sediments, trace back to their sources, and understand their influencing factors. As a result, the grain size and geochemistry variations, which showed a significant correlation between grain sizes distribution and element abundances, give a strong evidence that the important part of the aeolian sediments in the downstream areas was firstly derived from the upper reaches by intense fluvial processes. However, the sediments experienced significant mixing process with local inputs and reconstructed by regional wind transportation. The diverse compositions and tight associations in the major and trace element geochemistry between the up- and down-stream aeolian sediments and the local detrital rocks, which were collected from the surrounding mountains, suggest that the upstream aeolian sediments had originated from the various close-range rock types, and experienced intensive mixing processes via aeolian- fluvial dynamics. Sand mass transported by water and wind was roughly estimated to qualify the interplay between the aeolian and fluvial processes controlling the sediment transport, yield, and ultimately shaping the aeolian landforms in the mainstream of the YLZBV.

Keywords: grain size distribution, geochemistry, wind and water load, sand source, Yarlung Zangbo River Valley

Procedia PDF Downloads 102
4429 Blood Flow Estimator of the Left Ventricular Assist Device Based in Look-Up-Table: In vitro Tests

Authors: Tarcisio F. Leao, Bruno Utiyama, Jeison Fonseca, Eduardo Bock, Aron Andrade

Abstract:

This work presents a blood flow estimator based in Look-Up-Table (LUT) for control of Left Ventricular Assist Device (LVAD). This device has been used as bridge to transplantation or as destination therapy to treat patients with heart failure (HF). Destination Therapy application requires a high performance LVAD; thus, a stable control is important to keep adequate interaction between heart and device. LVAD control provides an adequate cardiac output while sustaining an appropriate flow and pressure blood perfusion, also described as physiologic control. Because thrombus formation and system reliability reduction, sensors are not desirable to measure these variables (flow and pressure blood). To achieve this, control systems have been researched to estimate blood flow. LVAD used in the study is composed by blood centrifugal pump, control, and power supply. This technique used pump and actuator (motor) parameters of LVAD, such as speed and electric current. Estimator relates electromechanical torque (motor or actuator) and hydraulic power (blood pump) via LUT. An in vitro Mock Loop was used to evaluate deviations between blood flow estimated and actual. A solution with glycerin (50%) and water was used to simulate the blood viscosity with hematocrit 45%. Tests were carried out with variation hematocrit: 25%, 45% and 58% of hematocrit, or 40%, 50% and 60% of glycerin in water solution, respectively. Test with bovine blood was carried out (42% hematocrit). Mock Loop is composed: reservoir, tubes, pressure and flow sensors, and fluid (or blood), beyond LVAD. Estimator based in LUT is patented, number BR1020160068363, in Brazil. Mean deviation is 0.23 ± 0.07 L/min for mean flow estimated. Larger mean deviation was 0.5 L/min considering hematocrit variation. This estimator achieved deviation adequate for physiologic control implementation. Future works will evaluate flow estimation performance in control system of LVAD.

Keywords: blood pump, flow estimator, left ventricular assist device, look-up-table

Procedia PDF Downloads 189
4428 Evaluation of Chemoprotective Effect of NBRIQU16 against N-Methyl-N-Nitro-N-Nitrosoguanidine and NaCl-Induced Gastric Carcinomas in Wistar Rats

Authors: Lubna Azmi, Ila Shukla, Shyam Sundar Gupta, Padam Kant, C. V. Rao

Abstract:

To investigate the chemoprotective potential of NBRIQU16 chemotype isolated from Argyreia speciosa (Family: Convolvulaceae) on N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and NaCl-induced gastric carcinomas in Wistar rats. Forty-six male 6-week-old Wistar rats were divided into two groups. Thirty rats in group A were fed with a diet supplemented with 8 % NaCl for 20 weeks and simultaneously given N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) in drinking water at a concentration of 100 ug/ml for the first 17 weeks. After administration of the carcinogen, 200 and 400 mg/kg of NBRIQU16 were administered orally once a day throughout the study. From week 18, these rats were given normal water. From week 21, these rats were fed with a normal diet for 15 weeks. Group B containing 16 rats was fed standard diet for thirty-five days. It served as control. Ten rats from group A were sacrificed after 20 weeks. Scarification of remaining animals was conducted after 35 weeks. Entire stomach and some part of the duodenum were incised parallel to the greater curvature, and the samples were collected. After opening the stomach location and size of tumors were recorded. The number of tumors with their locations and sizes were recorded. Expression of survivin was examined by recording the Immunohistochemistry of the specimens. The treatment with NBRIQU16 significantly reduced the nodule incidence and nodule multiplicity in the rats after MNNG administration. Surviving expression in glandular stomachs of normal rats, of rats in middle induction period, in adenocarcinomas and NBRIQU16 treated tissues adjacent to tumor were 0, 42.0 %, 79.3%, and 36.4 %, respectively. Expression of survivin was significantly different as compared to the normal rats. Histological observations of stomach tissues too correlated with the biochemical observations.These finding powerfully supports that NBRIQU16 chemopreventive effect by suppressing the tumor burden and restoring the activities of gastric cancer marker enzymes on MNNG and NaCl-induced gastric carcinomas in Wistar rats.

Keywords: Argyreia speciosa, gastric carcinoma, immunochemistry, NBRIQU16

Procedia PDF Downloads 302
4427 Development and Validation of a Liquid Chromatographic Method for the Quantification of Related Substance in Gentamicin Drug Substances

Authors: Sofiqul Islam, V. Murugan, Prema Kumari, Hari

Abstract:

Gentamicin is a broad spectrum water-soluble aminoglycoside antibiotics produced by the fermentation process of microorganism known as Micromonospora purpurea. It is widely used for the treatment of infection caused by both gram positive and gram negative bacteria. Gentamicin consists of a mixture of aminoglycoside components like C1, C1a, C2a, and C2. The molecular structure of Gentamicin and its related substances showed that it has lack of presence of chromophore group in the molecule due to which the detection of such components were quite critical and challenging. In this study, a simple Reversed Phase-High Performance Liquid Chromatographic (RP-HPLC) method using ultraviolet (UV) detector was developed and validated for quantification of the related substances present in Gentamicin drug substances. The method was achieved by using Thermo Scientific Hypersil Gold analytical column (150 x 4.6 mm, 5 µm particle size) with isocratic elution composed of methanol: water: glacial acetic acid: sodium hexane sulfonate in the ratio 70:25:5:3 % v/v/v/w as a mobile phase at a flow rate of 0.5 mL/min, column temperature was maintained at 30 °C and detection wavelength of 330 nm. The four components of Gentamicin namely Gentamicin C1, C1a, C2a, and C2 were well separated along with the related substance present in Gentamicin. The Limit of Quantification (LOQ) values were found to be at 0.0075 mg/mL. The accuracy of the method was quite satisfactory in which the % recovery was resulted between 95-105% for the related substances. The correlation coefficient (≥ 0.995) shows the linearity response against concentration over the range of Limit of Quantification (LOQ). Precision studies showed the % Relative Standard Deviation (RSD) values less than 5% for its related substance. The method was validated in accordance with the International Conference of Harmonization (ICH) guideline with various parameters like system suitability, specificity, precision, linearity, accuracy, limit of quantification, and robustness. This proposed method was easy and suitable for use for the quantification of related substances in routine analysis of Gentamicin formulations.

Keywords: reversed phase-high performance liquid chromatographic (RP-HPLC), high performance liquid chromatography, gentamicin, isocratic, ultraviolet

Procedia PDF Downloads 167
4426 Transient Freshwater-Saltwater Transition-Zone Dynamics in Heterogeneous Coastal Aquifers

Authors: Antoifi Abdoulhalik, Ashraf Ahmed

Abstract:

The ever growing threat of saltwater intrusion has prompted the need to further advance the understanding of underlying processes related to SWI for effective water resource management. While research efforts have mainly been focused on steady state analysis, studies on the transience of saltwater intrusion mechanism remain very scarce and studies considering transient SWI in heterogeneous medium are, as per our knowledge, simply inexistent. This study provides for the first time a quantitative analysis of the effect of both inland and coastal water level changes on the transition zone under transient conditions in layered coastal aquifer. In all, two sets of four experiments were completed, including a homogeneous case, and four layered cases: case LH and case HL presented were two bi-layered scenarios where a low K layer was set at the top and the bottom, respectively; case HLH and case LHL presented two stratified aquifers with High K–Low K–High K and Low K–High K– Low K pattern, respectively. Experimental automated image analysis technique was used here to quantify the main SWI parameters under high spatial and temporal resolution. The findings of this study provide an invaluable insight on the underlying processes responsible of transition zone dynamics in coastal aquifers. The results show that in all the investigated cases, the width of the transition zone remains almost unchanged throughout the saltwater intrusion process regardless of where the boundary change occurs. However, the results demonstrate that the width of the transition zone considerably increases during the retreat, with largest amplitude observed in cases LH and LHL, where a low K was set at the top of the system. In all the scenarios, the amplitude of widening was slightly smaller when the retreat was prompted by instantaneous drop of the saltwater level than when caused by inland freshwater rise, despite equivalent absolute head change magnitude. The magnitude of head change significantly caused larger widening during the saltwater wedge retreat, while having no impact during the intrusion phase.

Keywords: freshwater-saltwater transition-zone dynamics, heterogeneous coastal aquifers, laboratory experiments, transience seawater intrusion

Procedia PDF Downloads 243
4425 Experiences and Challenges of Menstruation Among Rural Schoolgirls in Ghana: A Case of Nadowli-Kaleo District in the Upper West Region of Ghana

Authors: Rosemond Mbii

Abstract:

Menstruation is a critical topic. However normal menstruation is, it has become a determinant in the education of young women today. The research focuses on Breaking the silence and accessing menstrual hygiene management's challenges and experiences among rural schoolgirls in Ghana. The study's goal was to examine the menstrual hygiene practices of female students. Participants described their menstrual hygiene practices, their problems, and how they coped with their menstrual symptoms. The research used a qualitative technique through group interviews, personal interviews, and open-ended questionnaires since it is easier to understand a phenomenon from the subject's viewpoint. Sen's capacities approach and Feminist Political Ecology (FPE) were used to analyze the data. Menstruation was known to girls even before their menarche. A mother or grandmother, friends, and teachers were the primary sources of menstrual knowledge. The study also found that most girls use sanitary products made of fabrics, pads, and cotton during menstruation. Among the difficulties the girls faced, the study found were emotional upset, physical discomfort (cramps in the stomach, fatigue), embarrassment, and inadequate sanitation hygiene facilities. The girls wore many garments to avoid leaks; checked their skirts continuously, went to the bathroom with their friends to act as spics while they changed; sat differently on the chairs, and took medicine to reduce period discomfort. Introduction of a health care teacher who supplies sanitary products and medications to girls during school time. Euphemisms as a form of communication amongst girls were all coping mechanisms girls and the school developed. Another finding was that some girls continued to go to school even while having their periods, while others did not. Discomfort and menstruation cramps hampered class participation. In addition, the study revealed insufficient sanitation and hygiene for females to change sanitary products in private and manage menstrual hygiene comfortably.

Keywords: MHM (menstrual hygiene management), rural area, sanitation, menstruation, water, schoolgirl, rural area, sanitation, menstruation, water

Procedia PDF Downloads 121
4424 Sonocatalytic Treatment of Baker’s Yeast Wastewater by Using SnO2/TiO2 Composite

Authors: Didem Ildırar, Serap Fındık

Abstract:

Baker’s yeast industry uses molasses as a raw material. Molasses wastewater contains high molecular weight polymers called melanoidins. Melanoidins are obtained after the reactions between the amino acids and carbonyl groups in molasses. The molasses wastewater has high biochemical and chemical oxygen demand and dark brown color. If it is discharged to receiving bodies without any treatment, it prevents light penetration and dissolved oxygen level of the surface water decreases. Melanoidin compounds are toxic effect to the microorganism in water and there is a resistance to microbial degradation. Before discharging molasses wastewater, adequate treatment is necessary. In addition to changing environmental regulations, properties of treated wastewater must be improved. Advanced oxidation processes can be used to improve existing properties of wastewater. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs the use of ultrasound resulting in cavitation phenomena. In this study, decolorization and chemical oxygen demand removal (COD) of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator was used for this study. Its operating frequency is 20kHz. SnO2/TiO2 catalyst has been used as sonocatalyst. The effects of the composite preparation method, mixing time while composite prepared, the molar ratio of SnO2/TiO2, the calcination temperature, and time, the catalyst amount were investigated on the treatment of baker’s yeast effluent. . According to the results, the prepared composite SnO2/TiO2 by using ultrasonic probe gave a better result than prepared composite by using an ultrasonic bath. Prepared composite by using an ultrasonic probe with a 4:1 molar ratio treated at 800°C for 60min gave a better result. By using this composite, optimum catalyst amount was 0.2g/l. At these conditions 26.6% decolorization was obtained. There was no COD removal at the studied conditions.

Keywords: baker’s yeast effluent, COD, decolorization, sonocatalyst, ultrasonic irradiation

Procedia PDF Downloads 325
4423 Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities

Authors: Mariana Damova, Stanko Stankov, Emil Stoyanov, Hristo Hristov, Hermand Pessek, Plamen Chernev

Abstract:

We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform.

Keywords: flood simulation, AI, Earth observation, e-Infrastructure, flood forecasting, flood areas localization, response planning, resource estimation

Procedia PDF Downloads 29