Search results for: health data
26131 ‘Call Before, Save Lives’: Reducing Emergency Department Visits through Effective Communication
Authors: Sandra Cardoso, Gaspar Pais, Judite Neves, Sandra Cavaca, Fernando Araújo
Abstract:
In 2021, Portugal has 63 emergency department (ED) visits per 100 people annually, the highest numbers in Europe. While EDs provide a critical service, high use is indicative of inappropriate and inefficient healthcare. In Portugal, all ED have the Manchester Triage System (MTS), a clinical risk management tool to enable that patients are seen in order of clinical priority. In 2023, more than 40% of the ED visits were of non-urgent conditions (blue and green), that could be better managed in primary health care (PHC), meaning wrong use of resources and lack of health literacy. From 2017, the country has a phone line, SNS24 (Contact Centre of the National Health Service), for triage, counseling, and referral service, 24 hours/7 days a week. The pilot project ‘Call before, save lives’ was implemented in the municipalities of Póvoa de Varzim and Vila do Conde (around 150.000 residents), in May 2023, by the executive board of the Portuguese Health Service, with the support of the Shared Services of the Ministry of Health, and local authorities. This geographical area has short travel times, 99% of the population a family doctor and the region is organized in a health local unit (HLU), integrating PHC and the local hospital. The purposes of this project included to increase awareness to contact SNS 24, before going to an ED, and non-urgent conditions oriented to a family doctor, reducing ED visits. The implementation of the project involved two phases, beginning with: i) development of campaigns using local influencers (fishmonger, model, fireman) through local institutions and media; ii) provision of telephone installed on site to contact SNS24; iii) establishment of open consultation in PHC; iv) promotion of the use of SNS24; v) creation of acute consultations at the hospital for complex chronic patients; and vi) direct referral for home hospitalization by PHC. The results of this project showed an excellent level of access to SNS24, an increase in the number of users referred to ED, with great satisfaction of users and professionals. The second phase, initiated in January 2024, for access to the ED, the need for prior referral was established as an admission rule, except for certain situations, as trauma patients. If the patient refuses, their registration in the ED and subsequent screening in accordance with the MTS must be ensured. When the patient is non-urgent, shall not be observed in the ED, provided that, according to his clinical condition, is guaranteed to be referred to PHC or to consultation/day hospital, through effective scheduling of an appointment for the same or the following day. In terms of results, 8 weeks after beginning of phase 2, we assist of a decrease in self-reported patients to ED from 59% to 15%, and a reduction of around 7% of ED visits. The key for this success was an effective public campaign that increases the knowledge of the right use of the health system, and capable of changing behaviors.Keywords: contact centre of the national health service, emergency department visits, public campaign, health literacy, SNS24
Procedia PDF Downloads 7326130 Social Media as an Interactive Learning Tool Applied to Faculty of Tourism and Hotels, Fayoum University
Authors: Islam Elsayed Hussein
Abstract:
The aim of this paper is to discover the impact of students’ attitude towards social media and the skills required to adopt social media as a university e-learning (2.0) platform. In addition, it measures the effect of social media adoption on interactive learning effectiveness. The population of this study was students at Faculty of tourism and Hotels, Fayoum University. A questionnaire was used as a research instrument to collect data from respondents, which had been selected randomly. Data had been analyzed using quantitative data analysis method. Findings showed that the students have a positive attitude towards adopting social networking in the learning process and they have also good skills for effective use of social networking tools. In addition, adopting social media is effectively affecting the interactive learning environment.Keywords: attitude, skills, e-learning 2.0, interactive learning, Egypt
Procedia PDF Downloads 52826129 Multidimensional Poverty and Its Correlates among Rural Households in Limpopo Province, South Africa
Authors: Tamunotonye Mayowa Braide, Isaac Oluwatayo
Abstract:
This study investigates multidimensional poverty, and its correlates among rural households in Sekhukhune and Capricorn District municipalities (SDM & CDM) in Limpopo Province, South Africa. Primary data were collected from 407 rural households selected through purposive and simple random sampling techniques. Analytical techniques employed include descriptive statistics, principal component analysis (PCA), and the Alkire Foster (A-F) methodology. The results of the descriptive statistics showed there are more females (66%) than males (34%) in rural areas of Limpopo Province, with about 45% of them having secondary school education as the highest educational level attained and only about 3% do not have formal education. In the analysis of deprivation, eight dimensions of deprivation, constructed from 21 variables, were identified using the PCA. These dimensions include type and condition of dwelling water and sanitation, educational attainment and income, type of fuel for cooking and heating, access to clothing and cell phone, assets and fuel for light, health condition, crowding, and child health. In identifying the poor with poverty cut-off (0.13) of all indicators, about 75.9% of the rural households are deprived in 25% of the total dimensions, with the adjusted headcount ratio (M0) being 0.19. Multidimensional poverty estimates showed higher estimates of poor rural households with 71%, compared to 29%, which fall below the income poverty line. The study conducted poverty decomposition, using sub-groups within the area by examining regions and household characteristics. In SDM, there are more multidimensionally poor households than in CDM. The water and sanitation dimension is the largest contributor to the multidimensional poverty index (MPI) in rural areas of Limpopo Province. The findings can, therefore, assist in better design of welfare policy and target poverty alleviation programs and as well help in efficient resource allocation at the provincial and local municipality levels.Keywords: Alkire-Foster methodology, Limpopo province, multidimensional poverty, principal component analysis, South Africa
Procedia PDF Downloads 16926128 A Comparison of Income and Fuzzy Index of Multidimensional Poverty in Fourteen Sub-Saharan African Countries
Authors: Joseph Siani
Abstract:
Over the last decades, dissatisfaction with global indicators of economic performance, such as GDP (Gross Domestic Product) per capita, has shifted the attention to what is now referred to as multidimensional poverty. In this framework, poverty goes beyond income to incorporate aspects of well-being not captured by income measures alone. This paper applies the totally fuzzy approach to estimate the fuzzy index of poverty (FIP) in fourteen Sub-Saharan African (SSA) countries using Demographic and Health Survey (DHS) data and explores whether pictures created by the standard headcount ratio at $1.90 a day and the fuzzy index of poverty tell a similar story. The results suggest that there is indeed considerable mismatch between poverty headcount and the fuzzy index of multidimensional poverty, meaning that the majority of the most deprived people (as identified by the fuzzy index of multidimensional poverty) would not be identified by the poverty headcount ratio. Moreover, we find that poverty is distributed differently by colonial heritage (language). In particular, the most deprived countries in SSA are French-speaking.Keywords: fuzzy set approach, multidimensional poverty, poverty headcount, overlap, Sub-Saharan Africa
Procedia PDF Downloads 20826127 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security
Authors: Inayat Ur Rehman, Georgia Sakellari
Abstract:
Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.Keywords: cloud computing, cloud monitoring, performance optimization, high availability
Procedia PDF Downloads 7126126 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018
Authors: Mário Ernesto Sitoe, Orlando Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.Keywords: evasion and retention, cross-validation, bagging, stacking
Procedia PDF Downloads 8726125 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema
Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy
Abstract:
Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet
Procedia PDF Downloads 31526124 The Relation Between Social Class, Race Homophily and Mental Health Outcomes of Black College Students
Authors: Omari W. Keeles
Abstract:
Attention to social class and race processes could illuminate within- group differences in Black students' experiences that help explain variation in adjustment. Of interest is how social class relates to development of intragroup connections with other Black students on campus in ways that promote or inhibit well-being. The present study’s findings suggest that students from lower class backgrounds may be more restrictive or limited in opportunities around their intragroup friendship networks than more affluent students. Furthermore, Black social relationship networks were related to positive mental health adjustment important to healthy psychological functioning and development.Keywords: black students, social class, homophily, psychological adjustment
Procedia PDF Downloads 45626123 A One-Dimensional Modeling Analysis of the Influence of Swirl and Tumble Coefficient in a Single-Cylinder Research Engine
Authors: Mateus Silva Mendonça, Wender Pereira de Oliveira, Gabriel Heleno de Paula Araújo, Hiago Tenório Teixeira Santana Rocha, Augusto César Teixeira Malaquias, José Guilherme Coelho Baeta
Abstract:
The stricter legislation and the greater demand of the population regard to gas emissions and their effects on the environment as well as on human health make the automotive industry reinforce research focused on reducing levels of contamination. This reduction can be achieved through the implementation of improvements in internal combustion engines in such a way that they promote the reduction of both specific fuel consumption and air pollutant emissions. These improvements can be obtained through numerical simulation, which is a technique that works together with experimental tests. The aim of this paper is to build, with support of the GT-Suite software, a one-dimensional model of a single-cylinder research engine to analyze the impact of the variation of swirl and tumble coefficients on the performance and on the air pollutant emissions of an engine. Initially, the discharge coefficient is calculated through the software Converge CFD 3D, given that it is an input parameter in GT-Power. Mesh sensitivity tests are made in 3D geometry built for this purpose, using the mass flow rate in the valve as a reference. In the one-dimensional simulation is adopted the non-predictive combustion model called Three Pressure Analysis (TPA) is, and then data such as mass trapped in cylinder, heat release rate, and accumulated released energy are calculated, aiming that the validation can be performed by comparing these data with those obtained experimentally. Finally, the swirl and tumble coefficients are introduced in their corresponding objects so that their influences can be observed when compared to the results obtained previously.Keywords: 1D simulation, single-cylinder research engine, swirl coefficient, three pressure analysis, tumble coefficient
Procedia PDF Downloads 10826122 Application of Wireless Sensor Networks: A Survey in Thailand
Authors: Sathapath Kilaso
Abstract:
Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.Keywords: wireless sensor network, smart city, survey, Adhoc Network
Procedia PDF Downloads 21526121 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm
Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.
Abstract:
The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony
Procedia PDF Downloads 10626120 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique
Authors: Jaturong Som-ard
Abstract:
The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings
Procedia PDF Downloads 19626119 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 42726118 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition
Authors: A. Bayaga
Abstract:
This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.Keywords: AIDS mortality rates, epidemiological model, time-homogeneous markov jump process, transition probability, statistics South Africa
Procedia PDF Downloads 49926117 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie
Authors: Xiaofang Wei
Abstract:
Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria
Procedia PDF Downloads 18026116 Performance Assessment of Ventilation Systems for Operating Theatres
Authors: Clemens Bulitta, Sasan Sadrizadeh, Sebastian Buhl
Abstract:
Introduction: Ventilation technology in operating theatres (OT)is internationally regulated by dif-ferent standards, which define basic specifications for technical equipment and many times also the necessary operating and performance parameters. This confronts the operators of healthcare facilities with the question of finding the best ventilation and air conditioning system for the OT in order to achieve the goal of a large and robust surgicalworkzone with appropriate air quality and climate for patient safety and occupational health. Additionally, energy consumption and the potential need for clothing that limits transmission of bacteria must be considered as well as the total life cycle cost. However, the evaluation methodology of ventilation systems regarding these matters are still a topic of discussion. To date, there are neither any uniform standardized specifications nor any common validation criteria established. Thus, this study aimed to review data in the literature and add ourown research results to compare and assess the performance of different ventilations systems regarding infection preventive effects, energy efficiency, and staff comfort. Methods: We have conducted a comprehensive literature review on OT ventilation-related topics to understand the strengths and limitations of different ventilation systems. Furthermore, data from experimental assessments on OT ventilation systems at the University of Amberg-Weidenin Germany were in-cluded to comparatively assess the performance of Laminar Airflow (LAF), Turbulent Mixing Air-flow(TMA), and Temperature-controlled Airflow (TcAF) with regards to patient and occupational safety as well as staff comfort including indoor climate.CFD simulations from the Royal Institute of Technology in Sweden (KTH) were also studied to visualize the differences between these three kinds of ventilation systems in terms of the size of the surgical workzone, resilience to obstacles in the airflow, and energy use. Results: A variety of ventilation concepts are in use in the OT today. Each has its advantages and disadvantages, and thus one may be better suited than another depend-ing on the built environment and clinical workflow. Moreover, the proper functioning of OT venti-lation is also affected by multiple external and internal interfering factors. Based on the available data TcAF and LAF seem to provide the greatest effects regarding infection control and minimizing airborne risks for surgical site infections without the need for very tight surgical clothing systems. Resilience to obstacles, staff comfort, and energy efficiency seem to be favourable with TcAF. Conclusion: Based on literature data in current publications and our studies at the Technical Uni-versity of Applied Sciences Amberg-Weidenand the Royal Institute of Technoclogy, LAF and TcAF are more suitable for minimizing the risk for surgical site infections leading to improved clin-ical outcomes. Nevertheless, regarding the best management of thermal loads, atmosphere, energy efficiency, and occupational safety, overall results and data suggest that TcAF systems could pro-vide the economically most efficient and clinically most effective solution under routine clinical conditions.Keywords: ventilation systems, infection control, energy efficiency, operating theatre, airborne infection risks
Procedia PDF Downloads 10126115 Remodeling of Gut Microbiome of Pakistani Expats in China After Intermittent Fasting/Ramadan Fasting
Authors: Hafiz Arbab Sakandar
Abstract:
Time-restricted intermittent fasting (TRIF) impacts host’s physiology and health. Plenty of health benefits have been reported for TRIF in animal models. However, limited studies have been conducted on humans especially in underdeveloped economies. Here, we designed a study to investigate the impact of TRIF/Ramadan fasting (16:8) on the modulation of gut-microbiome structure, metabolic pathways, and predicted metabolites and explored the correlation among them at different time points (during and after the month of Ramadan) in Pakistani Expats living in China. We observed different trends of Shannon-Wiener index in different subjects; however, all subjects showed substantial change in bacterial diversity with the progression of TRIF. Moreover, the changes in gut microbial structure by the end of TRIF were higher vis-a-vis in the beginning, significant difference was observed among individuals. Additionally, metabolic pathways analysis revealed that amino acid, carbohydrate and energy metabolism, glycan biosynthesis metabolism of cofactors and vitamins were significantly affected by TRIF. Pyridoxamine, glutamate, citrulline, arachidonic acid, and short chain fatty acid showed substantial difference at different time points based on the predicted metabolism. In conclusion, these results contribute to further our understanding about the key relationship among, dietary intervention (TRIF), gut microbiome structure and function. The preliminary results from study demonstrate significant potential for elucidating the mechanisms underlying gut microbiome stability and enhancing the effectiveness of microbiome-tailored interventions among the Pakistani populace. Nonetheless, extensive, and rigorous large-scale research on the Pakistani population is necessary to expound on the association between diet, gut microbiome, and overall health.Keywords: gut microbiome, health, fasting, functionality
Procedia PDF Downloads 8626114 Moved by Music: The Impact of Music on Fatigue, Arousal and Motivation During Conditioning for High to Elite Level Female Artistic Gymnasts
Authors: Chante J. De Klerk
Abstract:
The potential of music to facilitate superior performance during high to elite level gymnastics conditioning instigated this research. A team of seven gymnasts completed a fixed conditioning programme eight times, alternating the two variable conditions. Four sessions of each condition were conducted: without music (session 1), with music (session 2), without music (3), with music (4), without music (5), and so forth. Quantitative data were collected in both conditions through physiological monitoring of the gymnasts, and administration of the Situational Motivation Scale (SIMS). Statistical analysis of the physiological data made it possible to quantify the presence as well as the magnitude of the musical intervention’s impact on various aspects of the gymnasts' physiological functioning during conditioning. The SIMS questionnaire results were used to evaluate if their motivation towards conditioning was altered by the intervention. Thematic analysis of qualitative data collected through semi-structured interviews revealed themes reflecting the gymnasts’ sentiments towards the data collection process. Gymnast-specific descriptions and experiences of the team as a whole were integrated with the quantitative data to facilitate greater dimension in establishing the impact of the intervention. The results showed positive physiological, motivational, and emotional effects. In the presence of music, superior sympathetic nervous activation, and energy efficiency, with more economic breathing, dominated the physiological data. Fatigue and arousal levels (emotional and physiological) were also conducive to improved conditioning outcomes compared to conventional conditioning (without music). Greater levels of positive affect and motivation emerged in analysis of both the SIMS and interview data sets. Overall, the intervention was found to promote psychophysiological coherence during the physical activity. In conclusion, a strategically constructed musical intervention, designed to accompany a gymnastics conditioning session for high to elite level gymnasts, has ergogenic potential.Keywords: arousal, fatigue, gymnastics conditioning, motivation, musical intervention, psychophysiological coherence
Procedia PDF Downloads 9726113 Serological Evidence of Enzootic Bovine Leukosis in Dairy Cattle Herds in the United Arab Emirates
Authors: Nabeeha Hassan Abdel Jalil, Lulwa Saeed Al Badi, Mouza Ghafan Alkhyeli, Khaja Mohteshamuddin, Ahmad Al Aiyan, Mohamed Elfatih Hamad, Robert Barigye
Abstract:
The present study was done to elucidate the prevalence of enzootic bovine leucosis (EBL) in the UAE, the seroprevalence rates of EBL in dairy herds from the Al Ain area, Abu Dhabi (AD) and indigenous cattle at the Al Ain livestock market (AALM) were assessed. Of the 949 sera tested by ELISA, 657 were from adult Holstein-Friesians from three farms and 292 from indigenous cattle at the AALM. The level of significance between the proportions of seropositive cattle were analyzed by the Marascuilo procedure and questionnaire data on husbandry and biosecurity practices evaluated. Overall, the aggregated farm and AALM data demonstrated a seroprevalence of 25.9%, compared to 37.0% for the study farms, and 1.0% for the indigenous cattle. Additionally, the seroprevalence rates at farms #1, #2 and #3 were 54.7%, 0.0%, and 26.3% respectively. Except for farm #2 and the AALM, statistically significant differences were noted between the proportions of seropositive cattle for farms #1 and #2 (Critical Range or CR=0.0803), farms #1 and #3 (p=0.1069), and farms #2 and #3 (CR=0.0707), farm #1 and the AALM (CR=0.0819), and farm #3 and the AALM (CR=0.0726). Also, the proportions of seropositive animals on farm #1 were 9.8%, 59.8%, 29.3%, and 1.2% in the 12-36, 37-72, 73-108, and 109-144-mo-old age groups respectively compared to 21.5%, 60.8%, 15.2%, and 2.5% in the respective age groups for farm #2. On both farms and the AALM, the 37-72-mo-old age group showed the highest EBL seroprevalence rate while all the 57 cattle on farm #2 were seronegative. Additionally, farms #1 and #3 had 3,130 and 2,828 intensively managed Holstein-Friesian cattle respectively, and all animals were routinely immunized against several diseases except EBL. On both farms #1 and #3, artificial breeding was practiced using semen sourced from the USA, and USA and Canada respectively, all farms routinely quarantined new stock, and farm #1 previously imported dairy cattle from an unspecified country, and farm #3 from the Netherlands, Australia and South Africa. While farm #1 provided no information on animal nutrition, farm #3 cited using hay, concentrates, and ad lib water. To the authors’ best knowledge, this is the first serological evidence of EBL in the UAE and as previously reported, the seroprevalence rates are comparatively higher in the intensively managed dairy herds than in indigenous cattle. As two of the study farms previously sourced cattle and semen from overseas, biosecurity protocols need to be revisited to avoid inadvertent EBL incursion and the possibility of regional transboundary disease spread also needs to be assessed. After the proposed molecular studies have adduced additional data, the relevant UAE animal health authorities may need to develop evidence-based EBL control policies and programs.Keywords: cattle, enzootic bovine leukosis, seroprevalence, UAE
Procedia PDF Downloads 14926112 Associations of the FTO Gene Polymorphism with Obesity and Metabolic Syndrome in Lithuanian Adult Population
Authors: Alina Smalinskiene Janina Petkeviciene, Jurate Klumbiene, Vilma Kriaucioniene, Vaiva Lesauskaite
Abstract:
The worldwide prevalence of obesity has been increasing dramatically in the last few decades, and Lithuania is no exception. In 2012, every fifth adult (19% of men and 20.5 % of women) was obese and every third was overweight Association studies have highlighted the influence of SNPs in obesity, with particular focus on FTO rs9939609. Thus far, no data on the possible association of this SNP to obesity in the adult Lithuanian population has been reported. Here, for the first time, we demonstrate an association between the FTO rs9939609 homozygous AA genotype and increased BMI when compared to homozygous TT. Furthermore, a positive association was determined between the FTO rs9939609 variant and risk of metabolic syndrome. Background: This study aimed to examine the associations between the fat mass and obesity associated (FTO) gene rs9939609 variant with obesity and metabolic syndrome in Lithuanian adult population. Materials and Methods: A cross-sectional health survey was carried out in randomly selected municipalities of Lithuania. The random sample was obtained from lists of 25–64 year-old inhabitants. The data from 1020 subjects were analysed. The rs9939609 SNP of the FTO gene was assessed using TaqMan assays (Applied Biosystems, Foster City, CA, USA). The Applied Biosystems 7900HT Real-Time Polymerase Chain Reaction System was used for detecting the SNPs. Results: The carriers of the AA genotype had the highest mean values of BMI and waist circumference (WC) and the highest risk of obesity. Interactions ‘genotype x age’ and ‘genotype x physical activity’ in determining BMI and WC were shown. Neither lipid and glucose levels, nor blood pressure were associated with the rs9939609 independently of BMI. In the age group of 25-44 years, association between the FTO genotypes and metabolic syndrome was found. Conclusion: The FTO rs9939609 variant was significantly associated with BMI and WC, and with the risk of obesity in Lithuanian population. The FTO polymorphism might have a greater influence on weight status in younger individuals and in subjects with a low level of physical activity.Keywords: obesity metabolic syndrome, FTO gene, polymorphism, Lithuania
Procedia PDF Downloads 43326111 Tobacco Taxation and the Heterogeneity of Smokers' Responses to Price Increases
Authors: Simone Tedeschi, Francesco Crespi, Paolo Liberati, Massimo Paradiso, Antonio Sciala
Abstract:
This paper aims at contributing to the understanding of smokers’ responses to cigarette prices increases with a focus on heterogeneity, both across individuals and price levels. To do this, a stated preference quasi-experimental design grounded in a random utility framework is proposed to evaluate the effect on smokers’ utility of the price level and variation, along with social conditioning and health impact perception. The analysis is based on individual-level data drawn from a unique survey gathering very detailed information on Italian smokers’ habits. In particular, qualitative information on the individual reactions triggered by changes in prices of different magnitude and composition are exploited. The main findings stemming from the analysis are the following; the average price elasticity of cigarette consumption is comparable with previous estimates for advanced economies (-.32). However, the decomposition of this result across five latent-classes of smokers, reveals extreme heterogeneity in terms of price responsiveness, implying a potential price elasticity that ranges between 0.05 to almost 1. Such heterogeneity is in part explained by observable characteristics such as age, income, gender, education as well as (current and lagged) smoking intensity. Moreover, price responsiveness is far from being independent from the size of the prospected price increase. Finally, by comparing even and uneven price variations, it is shown that uniform across-brand price increases are able to limit the scope of product substitutions and downgrade. Estimated price-response heterogeneity has significant implications for tax policy. Among them, first, it provides evidence and a rationale for why the aggregate price elasticity is likely to follow a strictly increasing pattern as a function of the experienced price variation. This information is crucial for forecasting the effect of a given tax-driven price change on tax revenue. Second, it provides some guidance on how to design excise tax reforms to balance public health and revenue goals.Keywords: smoking behaviour, preference heterogeneity, price responsiveness, cigarette taxation, random utility models
Procedia PDF Downloads 16826110 Evaluation of Collect Tree Protocol for Structural Health Monitoring System Using Wireless Sensor Networks
Authors: Amira Zrelli, Tahar Ezzedine
Abstract:
Routing protocol may enhance the lifetime of sensor network, it has a highly importance, especially in wireless sensor network (WSN). Therefore, routing protocol has a big effect in these networks, thus the choice of routing protocol must be studied before setting up our network. In this work, we implement the routing protocol collect tree protocol (CTP) which is one of the hierarchic protocols used in structural health monitoring (SHM). Therefore, to evaluate the performance of this protocol, we choice to work with Contiki system and Cooja simulator. By throughput and RSSI evaluation of each node, we will deduce about the utility of CTP in structural monitoring system.Keywords: CTP, WSN, SHM, routing protocol
Procedia PDF Downloads 30026109 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 49326108 Revealing of the Wave-Like Process in Kinetics of the Structural Steel Radiation Degradation
Authors: E. A. Krasikov
Abstract:
Dependence of the materials properties on neutron irradiation intensity (flux) is a key problem while usage data of the accelerated materials irradiation in test reactors for forecasting of their capacity for work in realistic (practical) circumstances of operation. Investigations of the reactor pressure vessel steel radiation degradation dependence on fast neutron fluence (embrittlement kinetics) at low flux reveal the instability in the form of the scatter of the experimental data and wave-like sections of embrittlement kinetics appearance. Disclosure of the steel degradation oscillating is a sign of the steel structure cyclic self-recovery transformation as it take place in self-organization processes. This assumption has received support through the discovery of the similar ‘anomalous’ data in scientific publications and by means of own additional experiments. Data obtained stimulate looking-for ways to management of the structural steel radiation stability (for example, by means of nano - structure modification for radiation defects annihilation intensification) for creation of the intelligent self-recovering material. Expected results: - radiation degradation theory and mechanisms development, - more adequate models of the radiation embrittlement elaboration, - surveillance specimen programs improvement, - methods and facility development for usage data of the accelerated materials irradiation for forecasting of their capacity for work in realistic (practical) circumstances of operation, - search of the ways for creating of the radiation stable self-recovery intelligent materials.Keywords: degradation, radiation, steel, wave-like kinetics
Procedia PDF Downloads 30826107 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 21926106 Systematic Review and Meta-Analysis of Mid-Term Survival, and Recurrent Mitral Regurgitation for Robotic-Assisted Mitral Valve Repair
Authors: Ramanen Sugunesegran, Michael L. Williams
Abstract:
Over the past two decades surgical approaches for mitral valve (MV) disease have evolved with the advent of minimally invasive techniques. Robotic mitral valve repair (RMVr) safety and efficacy has been well documented, however, mid- to long-term data are limited. The aim of this review was to provide a comprehensive analysis of the available mid- to long-term term data for RMVr. Electronic searches of five databases were performed to identify all relevant studies reporting minimum 5-year data on RMVr. Pre-defined primary outcomes of interest were overall survival, freedom from MV reoperation and freedom from moderate or worse mitral regurgitation (MR) at 5-years or more post-RMVr. A meta-analysis of proportions or means was performed, utilizing a random effects model, to present the data. Kaplan-Meier curves were aggregated using reconstructed individual patient data. Nine studies totaling 3,300 patients undergoing RMVr were identified. Rates of overall survival at 1-, 5- and 10-years were 99.2%, 97.4% and 92.3%, respectively. Freedom from MV reoperation at 8-years post RMVr was 95.0%. Freedom from moderate or worse MR at 7-years was 86.0%. Rates of early post-operative complications were low with only 0.2% all-cause mortality and 1.0% cerebrovascular accident. Reoperation for bleeding was low at 2.2% and successful RMVr was 99.8%. Mean intensive care unit and hospital stay were 22.4 hours and 5.2 days, respectively. RMVr is a safe procedure with low rates of early mortality and other complications. It can be performed with low complication rates in high volume, experienced centers. Evaluation of available mid-term data post-RMVr suggests favorable rates of overall survival, freedom from MV reoperation and freedom from moderate or worse MR recurrence.Keywords: mitral valve disease, mitral valve repair, robotic cardiac surgery, robotic mitral valve repair
Procedia PDF Downloads 8526105 Fruits and Vegetable Consumers' Behaviour towards Organised Retailers: Evidence from India
Authors: K. B. Ramappa, A. V. Manjunatha
Abstract:
Consumerism in India is witnessing unprecedented growth driven by favourable demographics, rising young and working population, rising income levels, urbanization and growing brand orientation. In addition, the increasing level of awareness on health, hygiene and quality has made the consumers to think on the fairly traded goods and brands. This has made retailing extremely important to everyone because without retailers’ consumers would not have access to day-to-day products. The increased competition among different retailers has contributed significantly towards rising consumer awareness on quality products and brand loyalty. Many existing empirical studies have mainly focused on net saving of consumers at organised retail via-a-vis unorganised retail shops. In this article, authors have analysed the Bangalore consumers' attitudes towards buying of fruits and vegetables and their choice of retail outlets. The primary data was collected from 100 consumers belonging to the Bangalore City during October 2014. Sample consumers buying at supermarkets, convenience stores and hypermarkets were purposively selected. The collected data was analyzed using descriptive statistics and multinomial logit model. It was found that among all variables, quality and prices were major accountable factors for buying fruits and vegetables at organized retail shops. The empirical result of multinomial logit model reveals that annual net income was positively associated with the Big Bazar and Food World consumers and negatively associated with the Reliance Fresh, More and Niligiris consumers, as compared with the HOPCOMS consumers. Per month expenditure on fruits and vegetables was positively and age of the consumer was negatively related to the consumers’ choice of buying at modern retail markets. Consumers were willing to buy at modern retail outlets irrespective of the distance.Keywords: organized retailers, consumers' attitude, consumers' preference, fruits, vegetables, multinomial logit, Bangalore
Procedia PDF Downloads 41626104 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 4026103 Risks beyond Cyber in IoT Infrastructure and Services
Authors: Mattias Bergstrom
Abstract:
Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys.Keywords: IoT, security, infrastructure, SCADA, blockchain, AI
Procedia PDF Downloads 11026102 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 172