Search results for: analog signal processing
610 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process
Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization
Procedia PDF Downloads 116609 Exploring Polypnenolics Content and Antioxidant Activity of R. damascena Dry Extract by Spectroscopic and Chromatographic Techniques
Authors: Daniela Nedeltcheva-Antonova, Kamelia Getchovska, Vera Deneva, Stanislav Bozhanov, Liudmil Antonov
Abstract:
Rosa damascena Mill. (Damask rose) is one of the most important plants belonging to the Rosaceae family, with a long historical use in traditional medicine and as a valuable oil-bearing plant. Many pharmacological effects have been reported from this plant, including anti-inflammatory, hypnotic, analgesic, anticonvulsant, anti-depressant, antianxiety, antitussive, antidiabetic, relaxant effects on tracheal chains, laxative, prokinetic and hepatoprotective activities. Pharmacological studies have shown that the various health effects of R. damascena flowers can mainly be attributed to its large amount of polyphenolic components. Phenolics possess a wide range of pharmacological activities, such as antioxidants, free-radical scavengers, anticancer, anti-inflammatory, antimutagenic, and antidepressant, with flavonoids being the most numerous group of natural polyphenolic compounds. According to the technological process in the production of rose concrete (solvent extraction with non-polar solvents of fresh rose flowers), it can be assumed that the resulting plant residue would be as rich of polyphenolics, as the plant itself, and could be used for the development of novel products with promising health-promoting effect. Therefore, an optimisation of the extraction procedure of the by-product from the rose concrete production was carried out. An assay of the extracts in respect of their total polyphenols and total flavonoids content was performed. HPLC analysis of quercetin and kaempferol, the two main flavonoids found in R. damascena, was also carried out. The preliminary results have shown that the flavonoid content in the rose extracts is comparable to that of the green tea or Gingko biloba, and they could be used for the development of various products (food supplements, natural cosmetics and phyto-pharmaceutical formulation, etc.). The fact that they are derived from the by-product of industrial plant processing could add the marketing value of the final products in addition to the well-known reputation of the products obtained from Bulgarian roses (R. damascena Mill.).Keywords: gas chromatography-mass-spectromrtry, dry extract, flavonoids, Rosa damascena Mill
Procedia PDF Downloads 153608 The Touch Sensation: Ageing and Gender Influences
Authors: A. Abdouni, C. Thieulin, M. Djaghloul, R. Vargiolu, H. Zahouani
Abstract:
A decline in the main sensory modalities (vision, hearing, taste, and smell) is well reported to occur with advancing age, it is expected a similar change to occur with touch sensation and perception. In this study, we have focused on the touch sensations highlighting ageing and gender influences with in vivo systems. The touch process can be divided into two main phases: The first phase is the first contact between the finger and the object, during this contact, an adhesive force has been created which is the needed force to permit an initial movement of the finger. In the second phase, the finger mechanical properties with their surface topography play an important role in the obtained sensation. In order to understand the age and gender effects on the touch sense, we develop different ideas and systems for each phase. To better characterize the contact, the mechanical properties and the surface topography of human finger, in vivo studies on the pulp of 40 subjects (20 of each gender) of four age groups of 26±3, 35+-3, 45+-2 and 58±6 have been performed. To understand the first touch phase a classical indentation system has been adapted to measure the finger contact properties. The normal force load, the indentation speed, the contact time, the penetration depth and the indenter geometry have been optimized. The penetration depth of a glass indenter is recorded as a function of the applied normal force. Main assessed parameter is the adhesive force F_ad. For the second phase, first, an innovative approach is proposed to characterize the dynamic finger mechanical properties. A contactless indentation test inspired from the techniques used in ophthalmology has been used. The test principle is to blow an air blast to the finger and measure the caused deformation by a linear laser. The advantage of this test is the real observation of the skin free return without any outside influence. Main obtained parameters are the wave propagation speed and the Young's modulus E. Second, negative silicon replicas of subject’s fingerprint have been analyzed by a probe laser defocusing. A laser diode transmits a light beam on the surface to be measured, and the reflected signal is returned to a set of four photodiodes. This technology allows reconstructing three-dimensional images. In order to study the age and gender effects on the roughness properties, a multi-scale characterization of roughness has been realized by applying continuous wavelet transform. After determining the decomposition of the surface, the method consists of quantifying the arithmetic mean of surface topographic at each scale SMA. Significant differences of the main parameters are shown with ageing and gender. The comparison between men and women groups reveals that the adhesive force is higher for women. The results of mechanical properties show a Young’s modulus higher for women and also increasing with age. The roughness analysis shows a significant difference in function of age and gender.Keywords: ageing, finger, gender, touch
Procedia PDF Downloads 265607 Effect of Perceived Importance of a Task in the Prospective Memory Task
Authors: Kazushige Wada, Mayuko Ueda
Abstract:
In the present study, we reanalyzed lapse errors in the last phase of a job, by re-counting near lapse errors and increasing the number of participants. We also examined the results of this study from the perspective of prospective memory (PM), which concerns future actions. This study was designed to investigate whether perceiving the importance of PM tasks caused lapse errors in the last phase of a job and to determine if such errors could be explained from the perspective of PM processing. Participants (N = 34) conducted a computerized clicking task, in which they clicked on 10 figures that they had learned in advance in 8 blocks of 10 trials. Participants were requested to click the check box in the start display of a block and to click the checking off box in the finishing display. This task was a PM task. As a measure of PM performance, we counted the number of omission errors caused by forgetting to check off in the finishing display, which was defined as a lapse error. The perceived importance was manipulated by different instructions. Half the participants in the highly important task condition were instructed that checking off was very important, because equipment would be overloaded if it were not done. The other half in the not important task condition was instructed only about the location and procedure for checking off. Furthermore, we controlled workload and the emotion of surprise to confirm the effect of demand capacity and attention. To manipulate emotions during the clicking task, we suddenly presented a photo of a traffic accident and the sound of a skidding car followed by an explosion. Workload was manipulated by requesting participants to press the 0 key in response to a beep. Results indicated too few forgetting induced lapse errors to be analyzed. However, there was a weak main effect of the perceived importance of the check task, in which the mouse moved to the “END” button before moving to the check box in the finishing display. Especially, the highly important task group showed more such near lapse errors, than the not important task group. Neither surprise, nor workload affected the occurrence of near lapse errors. These results imply that high perceived importance of PM tasks impair task performance. On the basis of the multiprocess framework of PM theory, we have suggested that PM task performance in this experiment relied not on monitoring PM tasks, but on spontaneous retrieving.Keywords: prospective memory, perceived importance, lapse errors, multi process framework of prospective memory.
Procedia PDF Downloads 446606 Effects of Sensory Integration Techniques in Science Education of Autistic Students
Authors: Joanna Estkowska
Abstract:
Sensory integration methods are very useful and improve daily functioning autistic and mentally disabled children. Autism is a neurobiological disorder that impairs one's ability to communicate with and relate to others as well as their sensory system. Children with autism, even highly functioning kids, can find it difficult to process language with surrounding noise or smells. They are hypersensitive to things we can ignore such as sight, sounds and touch. Adolescents with highly functioning autism or Asperger Syndrome can study Science and Math but the social aspect is difficult for them. Nature science is an area of study that attracts many of these kids. It is a systematic field in which the children can focus on a small aspect. If you follow these rules you can come up with an expected result. Sensory integration program and systematic classroom observation are quantitative methods of measuring classroom functioning and behaviors from direct observations. These methods specify both the events and behaviors that are to be observed and how they are to be recorded. Our students with and without autism attended the lessons in the classroom of nature science in the school and in the laboratory of University of Science and Technology in Bydgoszcz. The aim of this study is investigation the effects of sensory integration methods in teaching to students with autism. They were observed during experimental lessons in the classroom and in the laboratory. Their physical characteristics, sensory dysfunction, and behavior in class were taken into consideration by comparing their similarities and differences. In the chemistry classroom, every autistic student is paired with a mentor from their school. In the laboratory, the children are expected to wear goggles, gloves and a lab coat. The chemistry classes in the laboratory were held for four hours with a lunch break, and according to the assistants, the children were engaged the whole time. In classroom of nature science, the students are encouraged to use the interactive exhibition of chemical, physical and mathematical models constructed by the author of this paper. Our students with and without autism attended the lessons in those laboratories. The teacher's goals are: to assist the child in inhibiting and modulating sensory information and support the child in processing a response to sensory stimulation.Keywords: autism spectrum disorder, science education, sensory integration techniques, student with special educational needs
Procedia PDF Downloads 192605 Development and Characterization of Expandable TPEs Compounds for Footwear Applications
Authors: Ana Elisa Ribeiro Costa, Sónia Daniela Ferreira Miranda, João Pedro De Carvalho Pereira, João Carlos Simões Bernardo
Abstract:
Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process.Keywords: blowing agents, expandable thermoplastic elastomeric compounds, low density, footwear applications
Procedia PDF Downloads 208604 12 Real Forensic Caseworks Solved by the DNA STR-Typing of Skeletal Remains Exposed to Extremely Environment Conditions without the Conventional Bone Pulverization Step
Authors: Chiara Della Rocca, Gavino Piras, Andrea Berti, Alessandro Mameli
Abstract:
DNA identification of human skeletal remains plays a valuable role in the forensic field, especially in missing persons and mass disaster investigations. Hard tissues, such as bones and teeth, represent a very common kind of samples analyzed in forensic laboratories because they are often the only biological materials remaining. However, the major limitation of using these compact samples relies on the extremely time–consuming and labor–intensive treatment of grinding them into powder before proceeding with the conventional DNA purification and extraction step. In this context, a DNA extraction assay called the TBone Ex kit (DNA Chip Research Inc.) was developed to digest bone chips without powdering. Here, we simultaneously analyzed bone and tooth samples that arrived at our police laboratory and belonged to 15 different forensic casework that occurred in Sardinia (Italy). A total of 27 samples were recovered from different scenarios and were exposed to extreme environmental factors, including sunlight, seawater, soil, fauna, vegetation, and high temperature and humidity. The TBone Ex kit was used prior to the EZ2 DNA extraction kit on the EZ2 Connect Fx instrument (Qiagen), and high-quality autosomal and Y-chromosome STRs profiles were obtained for the 80% of the caseworks in an extremely short time frame. This study provides additional support for the use of the TBone Ex kit for digesting bone fragments/whole teeth as an effective alternative to pulverization protocols. We empirically demonstrated the effectiveness of the kit in processing multiple bone samples simultaneously, largely simplifying the DNA extraction procedure and the good yield of recovered DNA for downstream genetic typing in highly compromised forensic real specimens. In conclusion, this study turns out to be extremely useful for forensic laboratories, to which the various actors of the criminal justice system – such as potential jury members, judges, defense attorneys, and prosecutors – required immediate feedback.Keywords: DNA, skeletal remains, bones, tbone ex kit, extreme conditions
Procedia PDF Downloads 46603 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 34602 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 42601 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems
Authors: Moustafa Osman Mohammed
Abstract:
This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system
Procedia PDF Downloads 124600 The Role of Artificial Intelligence in Patent Claim Interpretation: Legal Challenges and Opportunities
Authors: Mandeep Saini
Abstract:
The rapid advancement of Artificial Intelligence (AI) is transforming various fields, including intellectual property law. This paper explores the emerging role of AI in interpreting patent claims, a critical and highly specialized area within intellectual property rights. Patent claims define the scope of legal protection granted to an invention, and their precise interpretation is crucial in determining the boundaries of the patent holder's rights. Traditionally, this interpretation has relied heavily on the expertise of patent examiners, legal professionals, and judges. However, the increasing complexity of modern inventions, especially in fields like biotechnology, software, and electronics, poses significant challenges to human interpretation. Introducing AI into patent claim interpretation raises several legal and ethical concerns. This paper addresses critical issues such as the reliability of AI-driven interpretations, the potential for algorithmic bias, and the lack of transparency in AI decision-making processes. It considers the legal implications of relying on AI, particularly regarding accountability for errors and the potential challenges to AI interpretations in court. The paper includes a comparative study of AI-driven patent claim interpretations versus human interpretations across different jurisdictions to provide a comprehensive analysis. This comparison highlights the variations in legal standards and practices, offering insights into how AI could impact the harmonization of international patent laws. The paper proposes policy recommendations for the responsible use of AI in patent law. It suggests legal frameworks that ensure AI tools complement, rather than replace, human expertise in patent claim interpretation. These recommendations aim to balance the benefits of AI with the need for maintaining trust, transparency, and fairness in the legal process. By addressing these critical issues, this research contributes to the ongoing discourse on integrating AI into the legal field, specifically within intellectual property rights. It provides a forward-looking perspective on how AI could reshape patent law, offering both opportunities for innovation and challenges that must be carefully managed to protect the integrity of the legal system.Keywords: artificial intelligence (ai), patent claim interpretation, intellectual property rights, algorithmic bias, natural language processing, patent law harmonization, legal ethics
Procedia PDF Downloads 21599 The Impact of Electrospinning Parameters on Surface Morphology and Chemistry of PHBV Fibers
Authors: Lukasz Kaniuk, Mateusz M. Marzec, Andrzej Bernasik, Urszula Stachewicz
Abstract:
Electrospinning is one of the commonly used methods to produce micro- or nano-fibers. The properties of electrospun fibers allow them to be used to produce tissue scaffolds, biodegradable bandages, or purification membranes. The morphology of the obtained fibers depends on the composition of the polymer solution as well as the processing parameters. Interesting properties such as high fiber porosity can be achieved by changing humidity during electrospinning. Moreover, by changing voltage polarity in electrospinning, we are able to alternate functional groups at the surface of fibers. In this study, electrospun fibers were made of natural, thermoplastic polyester – PHBV (poly(3-hydroxybutyric acid-co-3-hydrovaleric acid). The fibrous mats were obtained using both positive and negative voltage polarities, and their surface was characterized using X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Chigasaki, Japan). Furthermore, the effect of the humidity on surface morphology was investigated using scanning electron microscopy (SEM, Merlin Gemini II, Zeiss, Germany). Electrospun PHBV fibers produced with positive and negative voltage polarity had similar morphology and the average fiber diameter, 2.47 ± 0.21 µm and 2.44 ± 0.15 µm, respectively. The change of the voltage polarity had a significant impact on the reorientation of the carbonyl groups what consequently changed the surface potential of the electrospun PHBV fibers. The increase of humidity during electrospinning causes porosity in the surface structure of the fibers. In conclusion, we showed within our studies that the process parameters such as humidity and voltage polarity have a great influence on fiber morphology and chemistry, changing their functionality. Surface properties of polymer fiber have a significant impact on cell integration and attachment, which is very important in tissue engineering. The possibility of changing surface porosity allows the use of fibers in various tissue engineering and drug delivery systems. Acknowledgment: This study was conducted within 'Nanofiber-based sponges for atopic skin treatment' project., carried out within the First TEAM programme of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund, project no POIR.04.04.00-00- 4571/18-00.Keywords: cells integration, electrospun fiber, PHBV, surface characterization
Procedia PDF Downloads 118598 A Computational Fluid Dynamics Simulation of Single Rod Bundles with 54 Fuel Rods without Spacers
Authors: S. K. Verma, S. L. Sinha, D. K. Chandraker
Abstract:
The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube type, heavy water moderated and boiling light water cooled natural circulation based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18 and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passage called subchannels. Single phase flow condition exists in reactor rod bundle during startup condition and up to certain length of rod bundle when it is operating at full power. Prediction of the thermal margin of the reactor during startup condition has necessitated the determination of the turbulent mixing rate of coolant amongst these subchannels. Thus, it is vital to evaluate turbulent mixing between subchannels of AHWR rod bundle. With the remarkable progress in the computer processing power, the computational fluid dynamics (CFD) methodology can be useful for investigating the thermal–hydraulic characteristics phenomena in the nuclear fuel assembly. The present report covers the results of simulation of pressure drop, velocity variation and turbulence intensity on single rod bundle with 54 rods in circular arrays. In this investigation, 54-rod assemblies are simulated with ANSYS Fluent 15 using steady simulations with an ANSYS Workbench meshing. The simulations have been carried out with water for Reynolds number 9861.83. The rod bundle has a mean flow area of 4853.0584 mm2 in the bare region with the hydraulic diameter of 8.105 mm. In present investigation, a benchmark k-ε model has been used as a turbulence model and the symmetry condition is set as boundary conditions. Simulation are carried out to determine the turbulent mixing rate in the simulated subchannels of the reactor. The size of rod and the pitch in the test has been same as that of actual rod bundle in the prototype. Water has been used as the working fluid and the turbulent mixing tests have been carried out at atmospheric condition without heat addition. The mean velocity in the subchannel has been varied from 0-1.2 m/s. The flow conditions are found to be closer to the actual reactor condition.Keywords: AHWR, CFD, single-phase turbulent mixing rate, thermal–hydraulic
Procedia PDF Downloads 320597 Anodic Stability of Li₆PS₅Cl/PEO Composite Polymer Electrolytes for All-Solid-State Lithium Batteries: A First-Principles Molecular Dynamics Study
Authors: Hao-Wen Chang, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
All-solid-state lithium batteries (ASSLBs) are increasingly recognized as a safer and more reliable alternative to conventional lithium-ion batteries due to their non-flammable nature and enhanced safety performance. ASSLBs utilize a range of solid-state electrolytes, including solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and composite polymer electrolytes (CPEs). SPEs are particularly valued for their flexibility, ease of processing, and excellent interfacial compatibility with electrodes, though their ionic conductivity remains a significant limitation. ISEs, on the other hand, provide high ionic conductivity, broad electrochemical windows, and strong mechanical properties but often face poor interfacial contact with electrodes, impeding performance. CPEs, which merge the strengths of SPEs and ISEs, represent a compelling solution for next-generation ASSLBs by addressing both electrochemical and mechanical challenges. Despite their potential, the mechanisms governing lithium-ion transport within these systems remain insufficiently understood. In this study, we designed CPEs based on argyrodite-type Li₆PS₅Cl (LPSC) combined with two distinct polymer matrices: poly(ethylene oxide) (PEO) with 24.5 wt% lithium bis(trifluoromethane)sulfonimide (LiTFSI) and polycaprolactone (PCL) with 25.7 wt% LiTFSI. Through density functional theory (DFT) calculations, we investigated the interfacial chemistry of these materials, revealing critical insights into their stability and interactions. Additionally, ab initio molecular dynamics (AIMD) simulations of lithium electrodes interfaced with LPSC layers containing polymers and LiTFSI demonstrated that the polymer matrix significantly mitigates LPSC decomposition, compared to systems with only a lithium electrode and LPSC layers. These findings underscore the pivotal role of CPEs in improving the performance and longevity of ASSLBs, offering a promising path forward for next-generation energy storage technologies.Keywords: all-solid-state lithium-ion batteries, composite solid electrolytes, DFT calculations, Li-ion transport
Procedia PDF Downloads 20596 A Study of Female Casino Dealers' Job Stress and Job Satisfaction: The Case of Macau
Authors: Xinrong Zong, Tao Zhang
Abstract:
Macau is known as the Oriental Monte Carlo and its economy depends on gambling heavily. The dealer is the key position of the gambling industry, at the end of the fourth quarter of 2015, there were over 24,000 dealers among the 56,000 full-time employees in gambling industry. More than half of dealers were female. The dealer is also called 'Croupier', the main responsibilities of them are shuffling, dealing, processing chips, rolling dice game and inspecting play. Due to the limited land and small population of Macao, the government has not allowed hiring foreign domestic dealers since Macao developed temporary gambling industry. Therefore, local dealers enjoy special advantages but also bear the high stresses from work. From the middle of last year, with the reduced income of gambling, and the decline of mainland gamblers as well as VIP lounges, the working time of dealers increased greatly. Thus, many problems occurred in this condition, such as the rise of working pressures, psychological pressures and family-responsibility pressures, which may affect job satisfaction as well. Because of the less research of dealer satisfaction, and a lack of standing on feminine perspective to analyze female dealers, this study will focus on investigating the relationship between working pressure and job satisfaction from feminine view. Several issues will be discussed specifically: firstly, to understand current situation of the working pressures and job satisfactions of female dealers in different ages; secondly, to research if there is any relevance between working pressures and job satisfactions of female dealers in different ages; thirdly, to find out the relationship between dealers' working pressures and job satisfactions in different ages. This paper combined qualitative approach with quantitative approach selected samples by convenient sampling. The research showed the female dealers from diverse ages have different kinds of working pressures; second, job satisfactions of the female dealers in different ages are dissimilar; moreover, there is negative correlation between working pressure and job satisfaction of female dealer in different ages' groups; last but not the least, working pressure has a significant negative impact on job satisfaction. The research result will provide a reference value for the Macau gambling business. It is a pattern to improve dealers' working environment, to increase employees' job satisfaction, as well as to offer tourists a better service, which can help to attract more and more visitors from a good image of Macau gaming and tourism.Keywords: female dealers, job satisfaction, working pressure, Macau
Procedia PDF Downloads 297595 Linking Enhanced Resting-State Brain Connectivity with the Benefit of Desirable Difficulty to Motor Learning: A Functional Magnetic Resonance Imaging Study
Authors: Chien-Ho Lin, Ho-Ching Yang, Barbara Knowlton, Shin-Leh Huang, Ming-Chang Chiang
Abstract:
Practicing motor tasks arranged in an interleaved order (interleaved practice, or IP) generally leads to better learning than practicing tasks in a repetitive order (repetitive practice, or RP), an example of how desirable difficulty during practice benefits learning. Greater difficulty during practice, e.g. IP, is associated with greater brain activity measured by higher blood-oxygen-level dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) in the sensorimotor areas of the brain. In this study resting-state fMRI was applied to investigate whether increase in resting-state brain connectivity immediately after practice predicts the benefit of desirable difficulty to motor learning. 26 healthy adults (11M/15F, age = 23.3±1.3 years) practiced two sets of three sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, fMRI data were acquired in a resting state after practice. The resting-state fMRI data was decomposed using a group-level spatial independent component analysis (ICA), yielding 9 independent components (IC) matched to the precuneus network, primary visual networks (two ICs, denoted by I and II respectively), sensorimotor networks (two ICs, denoted by I and II respectively), the right and the left frontoparietal networks, occipito-temporal network, and the frontal network. A weighted resting-state functional connectivity (wRSFC) was then defined to incorporate information from within- and between-network brain connectivity. The within-network functional connectivity between a voxel and an IC was gauged by a z-score derived from the Fisher transformation of the IC map. The between-network connectivity was derived from the cross-correlation of time courses across all possible pairs of ICs, leading to a symmetric nc x nc matrix of cross-correlation coefficients, denoted by C = (pᵢⱼ). Here pᵢⱼ is the extremum of cross-correlation between ICs i and j; nc = 9 is the number of ICs. This component-wise cross-correlation matrix C was then projected to the voxel space, with the weights for each voxel set to the z-score that represents the above within-network functional connectivity. The wRSFC map incorporates the global characteristics of brain networks measured by the between-network connectivity, and the spatial information contained in the IC maps measured by the within-network connectivity. Pearson correlation analysis revealed that greater IP-minus-RP difference in wRSFC was positively correlated with the RP-minus-IP difference in the response time on Day 5, particularly in brain regions crucial for motor learning, such as the right dorsolateral prefrontal cortex (DLPFC), and the right premotor and supplementary motor cortices. This indicates that enhanced resting brain connectivity during the early phase of memory consolidation is associated with enhanced learning following interleaved practice, and as such wRSFC could be applied as a biomarker that measures the beneficial effects of desirable difficulty on motor sequence learning.Keywords: desirable difficulty, functional magnetic resonance imaging, independent component analysis, resting-state networks
Procedia PDF Downloads 203594 The KAPSARC Energy Policy Database: Introducing a Quantified Library of China's Energy Policies
Authors: Philipp Galkin
Abstract:
Government policy is a critical factor in the understanding of energy markets. Regardless, it is rarely approached systematically from a research perspective. Gaining a precise understanding of what policies exist, their intended outcomes, geographical extent, duration, evolution, etc. would enable the research community to answer a variety of questions that, for now, are either oversimplified or ignored. Policy, on its surface, also seems a rather unstructured and qualitative undertaking. There may be quantitative components, but incorporating the concept of policy analysis into quantitative analysis remains a challenge. The KAPSARC Energy Policy Database (KEPD) is intended to address these two energy policy research limitations. Our approach is to represent policies within a quantitative library of the specific policy measures contained within a set of legal documents. Each of these measures is recorded into the database as a single entry characterized by a set of qualitative and quantitative attributes. Initially, we have focused on the major laws at the national level that regulate coal in China. However, KAPSARC is engaged in various efforts to apply this methodology to other energy policy domains. To ensure scalability and sustainability of our project, we are exploring semantic processing using automated computer algorithms. Automated coding can provide a more convenient input data for human coders and serve as a quality control option. Our initial findings suggest that the methodology utilized in KEPD could be applied to any set of energy policies. It also provides a convenient tool to facilitate understanding in the energy policy realm enabling the researcher to quickly identify, summarize, and digest policy documents and specific policy measures. The KEPD captures a wide range of information about each individual policy contained within a single policy document. This enables a variety of analyses, such as structural comparison of policy documents, tracing policy evolution, stakeholder analysis, and exploring interdependencies of policies and their attributes with exogenous datasets using statistical tools. The usability and broad range of research implications suggest a need for the continued expansion of the KEPD to encompass a larger scope of policy documents across geographies and energy sectors.Keywords: China, energy policy, policy analysis, policy database
Procedia PDF Downloads 323593 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 47592 Social Implementation of Information Sharing Road Safety Measure in South-East Asia
Authors: Hiroki Kikuchi, Atsushi Fukuda, Hirokazu Akahane, Satoru Kobayakawa, Tuenjai Fukuda, Takeru Miyokawa
Abstract:
According to WHO reports, fatalities by road traffic accidents in many countries of South-East Asia region especially Thailand and Malaysia are increasing year by year. In order to overcome these serious problems, both governments are focusing on road safety measures. In response, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan and Japan International Cooperation Agency (JICA) have begun active support based on the experiences to reduce the number of fatalities in road accidents in Japan in the past. However, even if the successful road safety measures in Japan is adopted in South-East Asian countries, it is not sure whether it will work well or not. So, it is necessary to clarify the issues and systematize the process for the implementation of road safety measures in South-East Asia. On the basis of the above, this study examined the applicability of "information sharing traffic safety measure" which is one of the successful road safety measures in Japan to the social implementation of road safety measures in South-East Asian countries. The "Information sharing traffic safety measure" is carried out traffic safety measures by stakeholders such as residents, administration, and experts jointly. In this study, we extracted the issues of implementation of road safety measures under local context firstly. This is clarifying the particular issues with its implementation in South-East Asian cities. Secondly, we considered how to implement road safety measures for solving particular issues based on the method of "information sharing traffic safety measure". In the implementation method, the location of the occurrence of a dangerous event was extracted based on the “HIYARI-HATTO” data which were obtained from the residents. This is because it is considered that the implementation of the information sharing traffic safety measure focusing on the location where the dangerous event occurs leads to the reduction of traffic accidents. Also, the target locations for the implementation of measures differ for each city. In Penang, we targeted the intersections in the downtown, while in Suphan Buri, we targeted mainly traffic control on the intercity highway. Finally, we proposed a method for implementing traffic safety measures. For Penang, we proposed a measure to improve the signal phase and showed the effect of the measure on the micro traffic simulation. For Suphan Buri, we proposed the suitable measures for the danger points extracted by collecting the “HIYARI-HATTO” data of residents to the administration. In conclusion, in order to successfully implement the road safety measure based on the "information sharing traffic safety measure", the process for social implementation of the road safety measures should be consistent and carried out repeatedly. In particular, by clarifying specific issues based on local context in South-East Asian countries, the stakeholders, not only such as government sectors but also local citizens can share information regarding road safety and select appropriate countermeasures. Finally, we could propose this approach to the administration that had the authority.Keywords: information sharing road safety measure, social implementation, South-East Asia, HIYARI-HATTO
Procedia PDF Downloads 149591 Nonlinear Evolution of the Pulses of Elastic Waves in Geological Materials
Authors: Elena B. Cherepetskaya, Alexander A. Karabutov, Natalia B. Podymova, Ivan Sas
Abstract:
Nonlinear evolution of broadband ultrasonic pulses passed through the rock specimens is studied using the apparatus ‘GEOSCAN-02M’. Ultrasonic pulses are excited by the pulses of Q-switched Nd:YAG laser with the time duration of 10 ns and with the energy of 260 mJ. This energy can be reduced to 20 mJ by some light filters. The laser beam radius did not exceed 5 mm. As a result of the absorption of the laser pulse in the special material – the optoacoustic generator–the pulses of longitudinal ultrasonic waves are excited with the time duration of 100 ns and with the maximum pressure amplitude of 10 MPa. The immersion technique is used to measure the parameters of these ultrasonic pulses passed through a specimen, the immersion liquid is distilled water. The reference pulse passed through the cell with water has the compression and the rarefaction phases. The amplitude of the rarefaction phase is five times lower than that of the compression phase. The spectral range of the reference pulse reaches 10 MHz. The cubic-shaped specimens of the Karelian gabbro are studied with the rib length 3 cm. The ultimate strength of the specimens by the uniaxial compression is (300±10) MPa. As the reference pulse passes through the area of the specimen without cracks the compression phase decreases and the rarefaction one increases due to diffraction and scattering of ultrasound, so the ratio of these phases becomes 2.3:1. After preloading some horizontal cracks appear in the specimens. Their location is found by one-sided scanning of the specimen using the backward mode detection of the ultrasonic pulses reflected from the structure defects. Using the computer processing of these signals the images are obtained of the cross-sections of the specimens with cracks. By the increase of the reference pulse amplitude from 0.1 MPa to 5 MPa the nonlinear transformation of the ultrasonic pulse passed through the specimen with horizontal cracks results in the decrease by 2.5 times of the amplitude of the rarefaction phase and in the increase of its duration by 2.1 times. By the increase of the reference pulse amplitude from 5 MPa to 10 MPa the time splitting of the phases is observed for the bipolar pulse passed through the specimen. The compression and rarefaction phases propagate with different velocities. These features of the powerful broadband ultrasonic pulses passed through the rock specimens can be described by the hysteresis model of Preisach-Mayergoyz and can be used for the location of cracks in the optically opaque materials.Keywords: cracks, geological materials, nonlinear evolution of ultrasonic pulses, rock
Procedia PDF Downloads 350590 The Thinking of Dynamic Formulation of Rock Aging Agent Driven by Data
Authors: Longlong Zhang, Xiaohua Zhu, Ping Zhao, Yu Wang
Abstract:
The construction of mines, railways, highways, water conservancy projects, etc., have formed a large number of high steep slope wounds in China. Under the premise of slope stability and safety, the minimum cost, green and close to natural wound space repair, has become a new problem. Nowadays, in situ element testing and analysis, monitoring, field quantitative factor classification, and assignment evaluation will produce vast amounts of data. Data processing and analysis will inevitably differentiate the morphology, mineral composition, physicochemical properties between rock wounds, by which to dynamically match the appropriate techniques and materials for restoration. In the present research, based on the grid partition of the slope surface, tested the content of the combined oxide of rock mineral (SiO₂, CaO, MgO, Al₂O₃, Fe₃O₄, etc.), and classified and assigned values to the hardness and breakage of rock texture. The data of essential factors are interpolated and normalized in GIS, which formed the differential zoning map of slope space. According to the physical and chemical properties and spatial morphology of rocks in different zones, organic acids (plant waste fruit, fruit residue, etc.), natural mineral powder (zeolite, apatite, kaolin, etc.), water-retaining agent, and plant gum (melon powder) were mixed in different proportions to form rock aging agents. To spray the aging agent with different formulas on the slopes in different sections can affectively age the fresh rock wound, providing convenience for seed implantation, and reducing the transformation of heavy metals in the rocks. Through many practical engineering practices, a dynamic data platform of rock aging agent formula system is formed, which provides materials for the restoration of different slopes. It will also provide a guideline for the mixed-use of various natural materials to solve the complex, non-uniformity ecological restoration problem.Keywords: data-driven, dynamic state, high steep slope, rock aging agent, wounds
Procedia PDF Downloads 115589 Wave State of Self: Findings of Synchronistic Patterns in the Collective Unconscious
Authors: R. Dimitri Halley
Abstract:
The research within Jungian Psychology presented here is on the wave state of Self. What has been discovered via shared dreaming, independently correlating dreams across dreamers, is beyond the Self stage into the deepest layer or the wave state Self: the very quantum ocean, the Self archetype is embedded in. A quantum wave or rhyming of meaning constituting synergy across several dreamers was discovered in dreams and in extensively shared dream work with small groups at a post therapy stage. Within the format of shared dreaming, we find synergy patterns beyond what Jung called the Self archetype. Jung led us up to the phase of Individuation and delivered the baton to Von Franz to work out the next synchronistic stage, here proposed as the finding of the quantum patterns making up the wave state of Self. These enfolded synchronistic patterns have been found in group format of shared dreaming of individuals approximating individuation, and the unfolding of it is carried by belief and faith. The reason for this format and operating system is because beyond therapy and of living reality, we find no science – no thinking or even awareness in the therapeutic sense – but rather a state of mental processing resembling more like that of spiritual attitude. Thinking as such is linear and cannot contain the deepest layer of Self, the quantum core of the human being. It is self reflection which is the container for the process at the wave state of Self. Observation locks us in an outside-in reactive flow from a first-person perspective and hence toward the surface we see to believe, whereas here, the direction of focus shifts to inside out/intrinsic. The operating system or language at the wave level of Self is thus belief and synchronicity. Belief has up to now been almost the sole province of organized religions but was viewed by Jung as an inherent property in the process of Individuation. The shared dreaming stage of the synchronistic patterns forms a larger story constituting a deep connectivity unfolding around individual Selves. Dreams of independent dreamers form larger patterns that come together as puzzles forming a larger story, and in this sense, this group work level builds on Jung as a post individuation collective stage. Shared dream correlations will be presented, illustrating a larger story in terms of trails of shared synchronicity.Keywords: belief, shared dreaming, synchronistic patterns, wave state of self
Procedia PDF Downloads 196588 NanoFrazor Lithography for advanced 2D and 3D Nanodevices
Authors: Zhengming Wu
Abstract:
NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits
Procedia PDF Downloads 72587 The Golden Bridge for Better Farmers Life
Authors: Giga Rahmah An-Nafisah, Lailatus Syifa Kamilah
Abstract:
Agriculture today, especially in Indonesia have globally improved. Since the election of the new president, who in the program of work priority the food self-sufficiency. Many ways and attempts have been planned carefully. All this is done to maximize agricultural production for the future. But if we look from another side, there is something missing. Yes! Improvement of life safety of the farmers, useless we fix all agricultural processing systems to maximize agricultural output, but the Hero of agriculture itself it does not change towards a better life. Yes, broker or middleman system agriculture results. Broker system or middleman this is the real problem facing farmers for their welfare. How come? As much as agriculture result, but if farmers were sell into middlemen with very low prices, then there will be no progress for their welfare. Broker system who do the actual middlemen should not happen in the current agricultural system, because the agriculture condition currently being concern, they would still be able to reap a profit as much as possible, no matter how miserable farmers manage the farm and currently face import competition this cannot be avoided anymore. This phenomenon is already visible plain sight all, who see it. Why? Because farmers those who fell victim cannot do anything to change this system. It is true, if only these middlemen who want to receive it for the sale of agricultural products, or arguably the only system that is the bridge realtor economic life of the farmers. The problem is that we should strive for the welfare of the heroes of our food. A golden bridge that could save them that, are the government. Why? Because the government can more easily with the powers to stop this broker system compared to other parties. The government supposed to be a bridge connecting the farmers with consumers or the people themselves. Yes, with improved broker system becomes: buy agricultural produce with highest prices to farmers and selling of agricultural products with lowest price to the consumer or the people themselves. And then the next question about the fate of middlemen? The system indirectly realtor is like system corruption. Why? Because the definition of corruption is an activity that is detrimental to the victim without being noticed by anyone continue to enrich himself and his victim's life miserable. Government may transfer performance of the middlemen into the idea of a new bridge that is done by the government itself. The government could lift them into this new bridge system employs them to remain a distributor of agricultural products themselves, but under the new policy made by the government to keep improving the welfare of farmers. This idea is made is not going to have much effect would improve the welfare of farmers, but most/least this idea will bring around many people for helping conscience farmers to the government, through the daily chatter, as well as celebrity gossip can quickly know too many people.Keywords: broker system, farmers live, government, agricultural economics
Procedia PDF Downloads 294586 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 116585 Histological and Morphometric Studies of the Liver of Goats Aborted
Authors: Toumi Farah, Charallah Salima
Abstract:
In the Algerian Sahara, goat farming is predominant, and it’s associated with other types of breeding, particularly camel and sheep; it also constitutes a significant proportion of breeding exclusively goat. This Saharan goat is a small ruminant with a black dress with white’s spots, hanging ears, and a coat more or less long. It is known for its hardiness and resistance to adverse conditions of arid zones and its perfect ecophysiological adaptation to harsh environmental conditions. However, pregnancy alterations, particularly abortion, degrade its productivity and cause economic losses, having both direct and indirect effects on animal production, like the costs of veterinary interventions and the reconstitution of livestock. The purpose of this work is to study the histological aspect of the liver of goats’ aborted living under nomadic herds in the region of Béni-Abbès (30° 7' N, 2° 10 'O). The organs were collected in physiological serum, rinsed, and then fixed with formaldehyde (37°, diluted at 10%). After that, these samples were processed for a topographic study. The morphometric study of the liver was performed by using an image analysis and processing software "Image J"; the various measurements obtained are intended to specify the supposed stage of development according to the body weight. The histological structure of the liver shows that the hepatic parenchyma consists of vascular conjunctive spaces surrounded by Glisson’s capsule. The sinusoids and hepatic portal vein are full of red blood cells, representing sinusoidal congestion and a thrombosed vein. At high magnification, the blood vessels show the presence of vascular thrombosis and haemorrhage in some areas of the hepatic parenchyma. Morphometric analysis shows that the number of liver parenchymal cells and the diameter of liver vessels vary according to the stage of development. The results obtained will provide details of the anatomical and cellular elements that can be used in the diagnosis of early or late abortion and late embryonic death. It would be interesting to find, by immunohistochemistry, some inflammatory markers useful for monitoring the progress of pregnancy and bioindicators of fetomaternal distress.Keywords: aborting goat, arid zone, liver, histopathology
Procedia PDF Downloads 99584 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 162583 Hard and Soft Skills in Marketing Education: Using Serious Games to Engage Higher Order Processing
Authors: Ann Devitt, Mairead Brady, Markus Lamest, Stephen Gomez
Abstract:
This study set out to explore the use of an online collaborative serious game for student learning in a postgraduate introductory marketing module. The simulation game aimed to bridge the theory-practice divide in marketing by allowing students to apply theory in a safe, simulated marketplace. This study addresses the following research questions: Does an online marketing simulation game engage students higher order cognitive skills? Does collaborative activity required develop students’ “soft” skills, such as communication and negotiation? What specific affordances of the online simulation promote learning? This qualitative case study took place in 2014 with 40 postgraduate students on a Business Masters Programme. The two-week intensive module combined lectures with collaborative activity on a marketing simulation game, MMX from Pearsons. The game requires student teams to compete against other teams in a marketplace and design a marketing plan to maximize key performance indicators. The data for this study comprise essays written by students after the module reflecting on their learning on the module. A thematic analysis was conducted of the essays using the following a priori theme sets: 6 levels of the cognitive domain of Blooms taxonomy; 5 principles of Cooperative Learning; affordances of simulation environments including experiential learning; motivation and engagement; goal orientation. Preliminary findings would strongly suggest that the game facilitated students identifying the value of theory in practice, in particular for future employment; enhanced their understanding of group dynamics and their role within that; and impacted very strongly, both positively and negatively on motivation. In particular the game mechanics of MMX, which hinges on the correct identification of a target consumer group, was identified as a key determinant of extrinsic and intrinsic motivation for learners. The findings also suggest that the situation of the simulation game within a broader module which required post-game reflection was valuable in identifying key learning of marketing concepts in both the positive and the negative experiences of the game.Keywords: simulation, marketing, serious game, cooperative learning, bloom's taxonomy
Procedia PDF Downloads 551582 Export and Import Indicators of Georgian Agri-food Products during the Pandemic: Challenges and Opportunities
Authors: Eteri Kharaishvili
Abstract:
Introduction. The paper analyzes the main indicators of export and import of Georgian agri-food products; identifies positive and negative trends under the pandemic; based on the revealed problemssubstantiates the need formodernization ofin agri-food sector. It is argued that low production and productivity rates of food products negatively impact achieving the optimal export-to-import ratio; therefore, it leads toincreaseddependence on other countries andreduces the level of food security. Research objectives. The objective of the research is to identify the key challenges based on the analysis of export-import indicators of Georgian food products during the pandemic period and develop recommendations on the possibilities of post-pandemic perspectives. Research methods. Various theoretical and methodological research tools are used in the paper; in particular, a desk research is carried out on the research topic; endogenous and exogenous variables affecting export and import are determined through factor analysis; SWOT and PESTEL analysis are used to identify development opportunities; selection and groupingof data, identification of similarities and differences is carried outby using analysis, synthesis, sampling, induction and other methods; a qualitative study is conducted based on a survey of agri-food experts and exporters for clarifying the factors that impede export-import flows. Contributions. The factors that impede the export of Georgian agri-food products in the short run under COVID-19 pandemic are identified. These are: reduced income of farmers, delays in the supply of raw materials and supplies to the agri-food sectorfrom the neighboring industries, as well as in harvesting, processing, marketing, transportation, and other sectors; increased indirect costs, etc. The factors that impede the export in the long run areas follows loss of public confidence in the industry, risk of losing positions in traditional markets, etc. Conclusions are made on the problems in the field of export and import of Georgian agri-food products in terms of the pandemic; development opportunities are evaluated based on the analysis of the agri-food sector potential. Recommendations on the development opportunities for export and import of Georgian agri-food products in the post-pandemic period are proposed.Keywords: agri-food products, export, and import, pandemic period, hindering factor, development potential
Procedia PDF Downloads 143581 Effects of Fe Addition and Process Parameters on the Wear and Corrosion Characteristics of Icosahedral Al-Cu-Fe Coatings on Ti-6Al-4V Alloy
Authors: Olawale S. Fatoba, Stephen A. Akinlabi, Esther T. Akinlabi, Rezvan Gharehbaghi
Abstract:
The performance of material surface under wear and corrosion environments cannot be fulfilled by the conventional surface modifications and coatings. Therefore, different industrial sectors need an alternative technique for enhanced surface properties. Titanium and its alloys possess poor tribological properties which limit their use in certain industries. This paper focuses on the effect of hybrid coatings Al-Cu-Fe on a grade five titanium alloy using laser metal deposition (LMD) process. Icosahedral Al-Cu-Fe as quasicrystals is a relatively new class of materials which exhibit unusual atomic structure and useful physical and chemical properties. A 3kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the cladding process was utilized for the fabrication of the coatings. The titanium cladded surfaces were investigated for its hardness, corrosion and tribological behaviour at different laser processing conditions. The samples were cut to corrosion coupons, and immersed into 3.65% NaCl solution at 28oC using Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization (LP) techniques. The cross-sectional view of the samples was analysed. It was found that the geometrical properties of the deposits such as width, height and the Heat Affected Zone (HAZ) of each sample remarkably increased with increasing laser power due to the laser-material interaction. It was observed that there are higher number of aluminum and titanium presented in the formation of the composite. The indentation testing reveals that for both scanning speed of 0.8 m/min and 1m/min, the mean hardness value decreases with increasing laser power. The low coefficient of friction, excellent wear resistance and high microhardness were attributed to the formation of hard intermetallic compounds (TiCu, Ti2Cu, Ti3Al, Al3Ti) produced through the in situ metallurgical reactions during the LMD process. The load-bearing capability of the substrate was improved due to the excellent wear resistance of the coatings. The cladded layer showed a uniform crack free surface due to optimized laser process parameters which led to the refinement of the coatings.Keywords: Al-Cu-Fe coating, corrosion, intermetallics, laser metal deposition, Ti-6Al-4V alloy, wear resistance
Procedia PDF Downloads 178