Search results for: low phase noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5493

Search results for: low phase noise

963 Strategic Shear Wall Arrangement in Buildings under Seismic Loads

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.

Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level

Procedia PDF Downloads 50
962 Rheological Study of Natural Sediments: Application in Filling of Estuaries

Authors: S. Serhal, Y. Melinge, D. Rangeard, F. Hage Chehadeh

Abstract:

Filling of estuaries is an international problem that can cause economic and environmental damage. This work aims the study of the rheological structuring mechanisms of natural sedimentary liquid-solid mixture in estuaries in order to better understand their filling. The estuary of the Rance river, located in Brittany, France is particularly targeted by the study. The aim is to provide answers on the rheological behavior of natural sediments by detecting structural factors influencing the rheological parameters. So we can better understand the fillings estuarine areas and especially consider sustainable solutions of ‘cleansing’ of these areas. The sediments were collected from the trap of Lyvet in Rance estuary. This trap was created by the association COEUR (Comité Opérationnel des Elus et Usagers de la Rance) in 1996 in order to facilitate the cleansing of the estuary. It creates a privileged area for the deposition of sediments and consequently makes the cleansing of the estuary easier. We began our work with a preliminary study to establish the trend of the rheological behavior of the suspensions and to specify the dormant phase which precedes the beginning of the biochemical reactivity of the suspensions. Then we highlight the visco-plastic character at younger age using the Kinexus rheometer, plate-plate geometry. This rheological behavior of suspensions is represented by the Bingham model using dynamic yield stress and viscosity which can be a function of volume fraction, granular extent, and chemical reactivity. The evolution of the viscosity as a function of the solid volume fraction is modeled by the Krieger-Dougherty model. On the other hand, the analysis of the dynamic yield stress showed a fairly functional link with the solid volume fraction.

Keywords: estuaries, rheological behavior, sediments, Kinexus rheometer, Bingham model, viscosity, yield stress

Procedia PDF Downloads 160
961 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework

Authors: Ma Cecilia Siva

Abstract:

This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.

Keywords: tokenized, sigmoid activation, transformer, multi category classification

Procedia PDF Downloads 8
960 Guidelines for the Sustainable Development of Agriphotovoltaics in Orchard Cultivation: An Approach for Their Harmonious Application in the Natural, Landscape and Socio-Cultural Context of South Tyrol

Authors: Fabrizio Albion

Abstract:

In response to the escalating recognition of the need to combat climate change, renewable energy sources (RES), particularly solar energy, have witnessed exponential growth. The intricate nature of agriphotovoltaics, which combines agriculture and solar energy production, demands rapid legislative and technological development, facing various challenges and multifaceted design. This complexity is also represented by its application for orchard cultivation (APVO), which, in the first part of this research, was studied in its environmental, economic, and sociocultural aspects. Insights from literature, case studies, and consultations with experts contributed valuable perspectives, forming a robust foundation for understanding and integrating APVO into rural environments, including those in the South Tyrolean context. For its harmonious integration into the sensitive Alpine landscape, the second part was then dedicated to the development of guidelines, from the identification of the requirements to be defined as APVO to its design flexibilities for being integrated into the context. As a basis for further considerations, the drafting of these guidelines was preceded by a program of interviews conducted to investigate the social perceptions of farmers, citizens and tourists on the potential integration of APVO in the fruit-growing valleys of the province. Conclusive results from the data collected in the first phase are, however, still pending. Due to ongoing experiments and data collection, the current results, although being generally positive, cannot guarantee a definitive exclusion of potential negative impacts on the crop. The guidelines developed should, therefore, be understood as an initial exploration, providing a basis for future updates, also in synergy with the evolution of existing local projects.

Keywords: agriphotovoltaics, Alpin agricultural landscapes, landscape impact assessment, renewable energy

Procedia PDF Downloads 17
959 Carbon Footprint of Road Project for Sustainable Development: Lessons Learnt from Traffic Management of a Developing Urban Centre

Authors: Sajjad Shukur Ullah, Syed Shujaa Safdar Gardezi

Abstract:

Road infrastructure plays a vital role in the economic activities of any economy. Besides derived benefits from these facilities, the utilization of extensive energy resources, fuels, and materials results in a negative impact on the environment in terms of carbon footprint; carbon footprint is the overall amount of greenhouse gas (GHG) generated from any action. However, this aspect of environmental impact from road structure is not seriously considered during such developments, thus undermining a critical factor of sustainable development, which usually remains unaddressed, especially in developing countries. The current work investigates the carbon footprint impact of a small road project (0.8 km, dual carriageway) initiated for traffic management in an urban centre. Life cycle assessment (LCA) with boundary conditions of cradle to the site has been adopted. The only construction phase of the life cycle has been assessed at this stage. An impact of 10 ktons-CO2 (6260 ton-CO2/km) has been assessed. The rigid pavement dominated the contributions as compared to a flexible component. Among the structural elements, the underpass works shared the major portion. Among the materials, the concrete and steel utilized for various structural elements resulted in more than 90% of the impact. The earth-moving equipment was dominant in operational carbon. The results have highlighted that road infrastructure projects pose serious threats to the environment during their construction and which need to be considered during the approval stages. This work provides a guideline for supporting sustainable development that could only be ensured when such endeavours are properly assessed by industry professionals and decide various alternative environmental conscious solutions for the future.

Keywords: construction waste management, kiloton, life cycle assessment, rigid pavement

Procedia PDF Downloads 99
958 Social Change and Cultural Sustainability in the Wake of Digital Media Revolution in South Asia

Authors: Binod C. Agrawal

Abstract:

In modern history, industrial and media merchandising in South Asia from East Asia, Europe, United States and other countries of the West is over 200 years old. Hence, continued external technology and media exposure is not a new experience in multi-lingual and multi religious South Asia which evolved cultural means to withstand structural change. In the post-World War II phase, media exposure especially of telecommunication, film, Internet, radio, print media and television have increased manifold. South Asia did not lose any time in acquiring and adopting digital media accelerated by chip revolution, computer and satellite communication. The penetration of digital media and utilization are exceptionally high though the spread has an unequal intensity, use and effects. The author argues that industrial and media products are “cultural products” apart from being “technological products”; hence their influences are most felt in the cultural domain which may lead to blunting of unique cultural specifics in the multi-cultural, multi-lingual and multi religious South Asia. Social scientists, political leaders and parents have voiced concern of “Cultural domination”, “Digital media colonization” and “Westernization”. Increased digital media access has also opened up doors of pornography and other harmful information that have sparked fresh debates and discussions about serious negative, harmful, and undesirable social effects especially among youth. Within ‘techno-social’ perspective, based on recent research studies, the paper aims to describe and analyse possible socio-economic change due to digital media penetration. Further, analysis supports the view that the ancient multi-lingual and multi-religious cultures of South Asia due to inner cultural strength may sustain without setting in a process of irreversible structural changes in South Asia.

Keywords: cultural sustainability, digital media effects, digital media impact in South Asia, social change in South Asia

Procedia PDF Downloads 355
957 Recent Progress in the Uncooled Mid-Infrared Lead Selenide Polycrystalline Photodetector

Authors: Hao Yang, Lei Chen, Ting Mei, Jianbang Zheng

Abstract:

Currently, the uncooled PbSe photodetectors in the mid-infrared range (2-5μm) with sensitization technology extract more photoelectric response than traditional ones, and enable the room temperature (300K) photo-detection with high detectivity, which have attracted wide attentions in many fields. This technology generally contains the film fabrication with vapor phase deposition (VPD) and a sensitizing process with doping of oxygen and iodine. Many works presented in the recent years almost provide and high temperature activation method with oxygen/iodine vapor diffusion, which reveals that oxygen or iodine plays an important role in the sensitization of PbSe material. In this paper, we provide our latest experimental results and discussions in the stoichiometry of oxygen and iodine and its influence on the polycrystalline structure and photo-response. The experimental results revealed that crystal orientation was transformed from (200) to (420) by sensitization, and the responsivity of 5.42 A/W was gained by the optimal stoichiometry of oxygen and iodine with molecular density of I2 of ~1.51×1012 mm-3 and oxygen pressure of ~1Mpa. We verified that I2 plays a role in transporting oxygen into the lattice of crystal, which is actually not its major role. It is revealed that samples sensitized with iodine transform atomic proportion of Pb from 34.5% to 25.0% compared with samples without iodine from XPS data, which result in the proportion of about 1:1 between Pb and Se atoms by sublimation of PbI2 during sensitization process, and Pb/Se atomic proportion is controlled by I/O atomic proportion in the polycrystalline grains, which is very an important factor for improving responsivity of uncooled PbSe photodetector. Moreover, a novel sensitization and dopant activation method is proposed using oxygen ion implantation with low ion energy of < 500eV and beam current of ~120μA/cm2. These results may be helpful to understanding the sensitization mechanism of polycrystalline lead salt materials.

Keywords: polycrystalline PbSe, sensitization, transport, stoichiometry

Procedia PDF Downloads 349
956 3D Biomechanical Analysis in Shot Put Techniques of International Throwers

Authors: Satpal Yadav, Ashish Phulkar, Krishna K. Sahu

Abstract:

Aim: The research aims at doing a 3 Dimension biomechanical analysis in the shot put techniques of International throwers to evaluate the performance. Research Method: The researcher adopted the descriptive method and the data was subjected to calculate by using Pearson’s product moment correlation for the correlation of the biomechanical parameters with the performance of shot put throw. In all the analyses, the 5% critical level (p ≤ 0.05) was considered to indicate statistical significance. Research Sample: Eight (N=08) international shot putters using rotational/glide technique in male category was selected as subjects for the study. The researcher used the following methods and tools to obtain reliable measurements the instrument which was used for the purpose of present study namely the tesscorn slow-motion camera, specialized motion analyzer software, 7.260 kg Shot Put (for a male shot-putter) and steel tape. All measurement pertaining to the biomechanical variables was taken by the principal investigator so that data collected for the present study was considered reliable. Results: The finding of the study showed that negative significant relationship between the angular velocity right shoulder, acceleration distance at pre flight (-0.70), (-0.72) respectively were obtained, the angular displacement of knee, angular velocity right shoulder and acceleration distance at flight (0.81), (0.75) and (0.71) respectively were obtained, the angular velocity right shoulder and acceleration distance at transition phase (0.77), (0.79) respectively were obtained and angular displacement of knee, angular velocity right shoulder, release velocity shot, angle of release, height of release, projected distance and measured distance as the values (0.76), (0.77), (-0.83), (-0.79), (-0.77), (0.99) and (1.00) were found higher than the tabulated value at 0.05 level of significance. On the other hand, there exists an insignificant relationship between the performance of shot put and acceleration distance [m], angular displacement shot, C.G at release and horizontal release distance on the technique of shot put.

Keywords: biomechanics, analysis, shot put, international throwers

Procedia PDF Downloads 187
955 Uranium Migration Process: A Multi-Technique Investigation Strategy for a Better Understanding of the Role of Colloids

Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes

Abstract:

The knowledge of uranium migration processes within underground environments is a major issue in the environmental risk assessment associated with nuclear activities. This process is identified as strongly controlled by adsorption mechanisms, thus leading to strongly delayed migration paths. Colloidal ligands are likely to significantly increase the mobility of uranium in natural environments. The ability of colloids to mobilize and transport uranium depends on their origin, their nature, their structure, their stability and their reactivity with uranium. Thus, the colloidal mobilization and transport properties are often described as site-specific. In this work, the colloidal phases of two leachates obtained from two different horizons of the same podzolic soil were characterized with a speciation approach. For this purpose, a multi-technique strategy was used, based on Field-Flow Fractionation coupled to Ultraviolet, Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry (AF4-UV-MALS-ICPMS), Transmission Electron Microscopy (TEM), Electrospray Ionization Orbitrap Mass Spectrometry (ESI-Orbitrap), and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS-EEM). Thus, elemental composition, size distribution, microscopic structure, colloidal stability and possible organic and/or inorganic content of colloids were determined, as well as their association with uranium. The leachates exhibit differences in their physical and chemical characteristics, mainly in the nature of organic matter constituents. The multi-technique investigation strategy used provides original data about colloidal phase structure and composition, offering a new vision of the way the uranium can be mobilized and transported in the considered soil. This information is a real significant contribution opening the way to our understanding and predicting of the colloidal transport.

Keywords: colloids, migration, multi-technique, speciation, transport, uranium

Procedia PDF Downloads 144
954 Redesigning the Plant Distribution of an Industrial Laundry in Arequipa

Authors: Ana Belon Hercilla

Abstract:

The study is developed in “Reactivos Jeans” company, in the city of Arequipa, whose main business is the laundry of garments at an industrial level. In 2012 the company initiated actions to provide a dry cleaning service of alpaca fiber garments, recognizing that this item is in a growth phase in Peru. Additionally this company took the initiative to use a new greenwashing technology which has not yet been developed in the country. To accomplish this, a redesign of both the process and the plant layout was required. For redesigning the plant, the methodology used was the Systemic Layout Planning, allowing this study divided into four stages. First stage is the information gathering and evaluation of the initial situation of the company, for which a description of the areas, facilities and initial equipment, distribution of the plant, the production process and flows of major operations was made. Second stage is the development of engineering techniques that allow the logging and analysis procedures, such as: Flow Diagram, Route Diagram, DOP (process flowchart), DAP (analysis diagram). Then the planning of the general distribution is carried out. At this stage, proximity factors of the areas are established, the Diagram Paths (TRA) is developed, and the Relational Diagram Activities (DRA). In order to obtain the General Grouping Diagram (DGC), further information is complemented by a time study and Guerchet method is used to calculate the space requirements for each area. Finally, the plant layout redesigning is presented and the implementation of the improvement is made, making it possible to obtain a model much more efficient than the initial design. The results indicate that the implementation of the new machinery, the adequacy of the plant facilities and equipment relocation resulted in a reduction of the production cycle time by 75.67%, routes were reduced by 68.88%, the number of activities during the process were reduced by 40%, waits and storage were removed 100%.

Keywords: redesign, time optimization, industrial laundry, greenwashing

Procedia PDF Downloads 394
953 Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals

Authors: Zineb Kassab, Nassima El Miri, A. Aboulkas, Abdellatif Barakat, Mounir El Achaby

Abstract:

Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications.

Keywords: biopolymer composites, cellulose nanocrystals, food packaging, lignocellulosic fibers

Procedia PDF Downloads 240
952 Cellular Senescence and Neuroinflammation Following Controlled Cortical Impact Traumatic Brain Injury in Juvenile Mice

Authors: Zahra F. Al-Khateeb, Shenel Shekerzade, Hasna Boumenar, Siân M. Henson, Jordi L. Tremoleda, A. T. Michael-Titus

Abstract:

Traumatic brain injury (TBI) is the leading cause of disability and death in young adults and also increases the risk ofneurodegeneration. The mechanisms linking moderate to severe TBI to neurodegeneration are not known. It has been proposed that cellular senescence inductionpost-injury could amplify neuroinflammation and induce long-term changes. The impact of these processes after injury to an immature brain has not been characterised yet. We carried out a controlled cortical impact injury (CCI) in juvenile 1 month-old male CD1 mice. Animals were anesthetised and received a unilateral CCI injury. The sham group received anaesthesia and had a craniotomy. A naïve group had no intervention. The brain tissue was analysed at 5 days and 35 days post-injury using immunohistochemistry and markers for microglia, astrocytes, and senescence. Compared tonaïve animals, injured mice showed an increased microglial and astrocytic reaction early post-injury, as reflected in Iba1 and GFAP markers, respectively; the GFAP increase persisted in the later phase. The senescence analysis showed a significant increase inγH2AX-53BP1 nuclear foci, 8-oxoguanine, p19ARF, p16INK4a, and p53 expression in naïve vs. sham groups and naïve vs. CCI groups, at 5 dpi. At 35 days, the difference was no longer statistically significant in all markers. The injury induced a decrease p21 expression vs. the naïve group, at 35 dpi. These results indicate the induction of a complex senescence response after immature brain injury. Some changes occur early and may reflect the activation/proliferation of non-neuronal cells post-injury that had been hindered, whereas changes such as p21 downregulation may reflect a delayed response and pro-repair processes.

Keywords: cellular senescence, traumatic brain injury, brain injury, controlled cortical impact

Procedia PDF Downloads 139
951 On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis

Authors: Narayana Murthy Akurathi, Vijaya Lakshmi Marella

Abstract:

The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution.

Keywords: super critical fluid extraction (SFE), super critical fluid chromatography (SFC), LCMS/MS, GCMS/MS

Procedia PDF Downloads 391
950 X-Ray Diffraction and Crosslink Density Analysis of Starch/Natural Rubber Polymer Composites Prepared by Latex Compounding Method

Authors: Raymond Dominic Uzoh

Abstract:

Starch fillers were extracted from three plant sources namely amora tuber (a wild variety of Irish potato), sweet potato and yam starch and their particle size, pH, amylose, and amylopectin percentage decomposition determined accordingly by high performance liquid chromatography (HPLC). The starch was introduced into natural rubber in liquid phase (through gelatinization) by the latex compounding method and compounded according to standard method. The prepared starch/natural rubber composites was characterized by Instron Universal testing machine (UTM) for tensile mechanical properties. The composites was further characterized by x-ray diffraction and crosslink density analysis. The particle size determination showed that amora starch granules have the highest particle size (156 × 47 μm) followed by yam starch (155× 40 μm) and then the sweet potato starch (153 × 46 μm). The pH test also revealed that amora starch has a near neutral pH of 6.9, yam 6.8, and sweet potato 5.2 respectively. Amylose and amylopectin determination showed that yam starch has a higher percentage of amylose (29.68), followed by potato (22.34) and then amora starch with the lowest value (14.86) respectively. The tensile mechanical properties testing revealed that yam starch produced the best tensile mechanical properties followed by amora starch and then sweet potato starch. The structure, crystallinity/amorphous nature of the product composite was confirmed by x-ray diffraction, while the nature of crosslinking was confirmed by swelling test in toluene solvent using the Flory-Rehner approach. This research study has rendered a workable strategy for enhancing interfacial interaction between a hydrophilic filler (starch) and hydrophobic polymeric matrix (natural rubber) yielding moderately good tensile mechanical properties for further exploitation development and application in the rubber processing industry.

Keywords: natural rubber, fillers, starch, amylose, amylopectin, crosslink density

Procedia PDF Downloads 169
949 Interactively Developed Capabilities for Environmental Management Systems: An Exploratory Investigation of SMEs

Authors: Zhuang Ma, Zihan Zhang, Yu Li

Abstract:

Environmental concerns from stakeholders (e.g., governments & customers) have pushed firms to integrate environmental management systems into business processes such as R&D, manufacturing, and marketing. Environmental systems include managing environmental risks and pollution control (e.g., air pollution control, waste-water treatment, noise control, energy recycling & solid waste treatment) through raw material management, the elimination and reduction of contaminants, recycling, and reuse in firms' operational processes. Despite increasing studies on firms' proactive adoption of environmental management, their focus is primarily on large corporations operating in developed economies. Investigations in the environmental management efforts of small and medium-sized enterprises (SMEs) are scarce. This is problematic for SMEs because, unlike large corporations, SMEs have limited awareness, resources, capabilities to adapt their operational routines to address environmental impacts. The purpose of this study is to explore how SMEs develop organizational capabilities through interactions with business partners (e.g., environmental management specialists & customers). Drawing on the resource-based view (RBV) and an organizational capabilities perspective, this study investigates the interactively developed capabilities that allow SMEs to adopt environmental management systems. Using an exploratory approach, the study includes 12 semi-structured interviews with senior managers from four SMEs, two environmental management specialists, and two customers in the pharmaceutical sector in Chongqing, China. Findings of this study include four key organizational capabilities: 1) ‘dynamic marketing’ capability, which allows SMEs to recoup the investments in environmental management systems by developing environmentally friendly products to address customers' ever-changing needs; 2) ‘process improvement’ capability, which allows SMEs to select and adopt the latest technologies from biology, chemistry, new material, and new energy sectors into the production system for improved environmental performance and cost-reductions; and 3) ‘relationship management’ capability which allows SMEs to improve corporate image among the public, social media, government agencies, and customers, who in turn help SMEs to overcome their competitive disadvantages. These interactively developed capabilities help SMEs to address larger competitors' foothold in the local market, reduce market constraints, and exploit competitive advantages in other regions (e.g., Guangdong & Jiangsu) of China. These findings extend the RBV and organizational capabilities perspective; that is, SMEs can develop the essential resources and capabilities required for environmental management through interactions with upstream and downstream business partners. While a limited number of studies did highlight the importance of interactions among SMEs, customers, suppliers, NGOs, industrial associations, and consulting firms, they failed to explore the specific capabilities developed through these interactions. Additionally, the findings can explain how a proactive adoption of environmental management systems could help some SMEs to overcome the institutional and market restraints on their products, thereby springboarding into larger, more environmentally demanding, yet more profitable markets compared with their existing market.

Keywords: capabilities, environmental management systems, interactions, SMEs

Procedia PDF Downloads 180
948 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach

Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier

Abstract:

The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.

Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis

Procedia PDF Downloads 104
947 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition

Authors: H. F. Shi, C. L. Zhang

Abstract:

Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.

Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4

Procedia PDF Downloads 199
946 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments

Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem

Abstract:

The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.

Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength

Procedia PDF Downloads 135
945 Solvent-Aided Dilution Approach for Heavy Hydrocarbon Liquid Evaluation in the Eastern Dahomey Basin, Southwestern Nigeria: Case Study of Agbabu Bitumen in Ondo State.

Authors: Adetokunbo Ademola Falade, Oluwatoyin Olakunle Akinsete, Hussein Omeiza Aliu

Abstract:

Solvent-aided dilution processes are often employed to recover bitumen by reducing its viscosity. In this study, methanol, toluene, and xylene were investigated as potential hydrocarbon solvents for solvent-aided hydrocarbon recovery of Agbabu bitumen. Solubility, Viscosity, and Saturate, Aromatic, Resin and Asphaltene (SARA) Analysis tests were carried out to determine the solubility of the bitumen in the solvents, the viscosity, and the SARA fraction of the natural bitumen and bitumen-solvent mixtures. Agbabu bitumen was found to have a high content of saturates and aromatics. Viscosity decreases as pressure increases, while solubility reduces as temperature increases. The experimental diffusivity of the sample decreases with temperature and increases with pressure, indicating that the presence of additional solvent molecules in the oil phase facilitates diffusion. Agbabu bitumen was found to be most soluble in toluene, and its viscosity was reduced most in it. Xylene exhibited a similar effect as toluene on the sample, though lesser but better than methanol. Methanol reduced the saturated content and significantly raised the asphaltene content, keeping the mixture viscosity high, a condition that, in turn, favors its colloidal stability. The colloidal instability index (CII) values, which account for the asphaltene stability of the mixture, show that the bitumen-methanol system with a CII of 0.874 will have mild asphaltene deposit issues while others are unstable. This approach of combining multiple tests with the CII can accurately predict the behavior of Agbabu bitumen in solvents and enhance the decision on the choice of bitumen recovery technology.

Keywords: asphaltene, bitumen, diffusivity, hydrocarbon solvent, SARA

Procedia PDF Downloads 36
944 The Evaluation of Adjuvant Effects of CD154 in a Subunit Vaccine against Classical Swine Fever Virus

Authors: Yu-Chieh Chen, Li-Yun Wang, Chi-Chih Chen, Huy Hùng Đào, Ya-Mei Chen, Ming-Chu Cheng, Wen-Bin Chung, Hso-Chi Chaung, Guan-Ming Ke

Abstract:

Many recent researches have demonstrated that CD154, a protein primarily expressed on activated T cell molecules, has potentially acted as a molecular adjuvant to improve the immunogenicity of subunit vaccines against viral infections. Classical swine fever (CSF) affects the swine industry worldwide that is one of the most devastating and highly contagious pig diseases. It is listed by the World Organization for Animal Health (OIE) as an infectious animal disease that must be reported. Although pigs vaccinated with subunit vaccines can be differentially diagnosed from those infected animals, subunit vaccines usually need adjuvants to enhance and elicit immune responses. In this study, CD154 was linked with CSFV E2 sequences and then expressed in CHO cells to produce the fusion protein as E2-CD154. The porcine specific CpG adjuvant was also used in one of the formulations. The specific pathogen-free pigs (SPF) at the age of 4-week-old were randomly separated into four groups, vaccinated with E2-CpG, E2-CD154, E2-CD154-CpG or the commercial Bayovac® CSF-E2 vaccine and boosted two weeks after primary vaccination. The results showed that the percentages of CD4+ and CD4+IL2+ in peripheral blood mononuclear cells (PBMC) in E2-CD154 vaccinated piglets seven days after primary vaccination were gained by 1-5% relative to the control group. In addition, the percentages of CD4+IFNγ+ T cells had slightly edged up 0.1-0.3% compared with the control group. Also, increased E2-specific IFNγ levels had edged up CD4+CD8+ T cells found in E2-CD154 and E2-CD154-CpG groups, particularly in the E2-CD154-CpG group. These results implicate that CD154 may enhance cellular immunity and synergistically act with species-specific CpG adjuvant as a dual-phase adjuvant. Therefore, the CD154 may be beneficial as a promising adjuvant in subunit vaccines.

Keywords: CD154, CpG adjuvant, cellular immunity, subunit vaccine, pig

Procedia PDF Downloads 68
943 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 54
942 Single Tuned Shunt Passive Filter Based Current Harmonic Elimination of Three Phase AC-DC Converters

Authors: Mansoor Soomro

Abstract:

The evolution of power electronic equipment has been pivotal in making industrial processes productive, efficient and safe. Despite its attractive features, it has been due to nonlinear loads which make it vulnerable to power quality conditions. Harmonics is one of the power quality problem in which the harmonic frequency is integral multiple of supply frequency. Therefore, the supply voltage and supply frequency do not last within their tolerable limits. As a result, distorted current and voltage waveform may appear. Attributes of low power quality confirm that an electrical device or equipment is likely to malfunction, fail promptly or unable to operate under all applied conditions. The electrical power system is designed for delivering power reliably, namely maximizing power availability to customers. However, power quality events are largely untracked, and as a result, can take out a process as many as 20 to 30 times a year, costing utilities, customers and suppliers of load equipment, a loss of millions of dollars. The ill effects of current harmonics reduce system efficiency, cause overheating of connected equipment, result increase in electrical power and air conditioning costs. With the passage of time and the rapid growth of power electronic converters has highlighted the damages of current harmonics in the electrical power system. Therefore, it has become essential to address the bad influence of current harmonics while planning any suitable changes in the electrical installations. In this paper, an effort has been made to mitigate the effects of dominant 3rd order current harmonics. Passive filtering technique with six pulse multiplication converter has been employed to mitigate them. Since, the standards of power quality are to maintain the supply voltage and supply current within certain prescribed standard limits. For this purpose, the obtained results are validated as per specifications of IEEE 519-1992 and IEEE 519-2014 performance standards.

Keywords: current harmonics, power quality, passive filters, power electronic converters

Procedia PDF Downloads 301
941 A Family Development Approach to Understanding the Transfer of Family Business Ownership

Authors: Susan Lanz, Gary T. Burke, Omid Omidvar

Abstract:

The intention to transfer ownership control across family generations is acknowledged to be central to developing a theoretical understanding of how family businesses differ and are distinct as a business group. However, in practice, most business-owning families face challenges to transfer their business ownership from one family generation to the next. To date, researchers have paid little attention to how and when ownership is passed across family generations and what the dynamics of such transitions are. This is primarily due to the prevailing assumption that ownership transfer is an unimportant and legalistic issue that occurs within a wider family management succession process. Yet, the limited evidence available suggests that family ownership transfer occurs inside and outside of the management succession process and is a difficult process for business-owning families to navigate. As a result, many otherwise viable family businesses are closing, leading to unnecessary loss of jobs and knowledge. This qualitative paper examines how family members understand and navigate the ownership transfer process. This study uses an inductive qualitative research design, conducted through in-depth interviews within eight business-owning families. It draws on family development theory and shows how a wide range of family-related events and dynamics outside of family business involvement underlie and shape the ownership transfer process. The findings extend the theory on how these events trigger ownership transfer and how they shape the ownership meanings held within business-owning families. This study found that ownership transfer meanings extend beyond that of transferring the legal control and financial appropriation rights of shareholders. The study concludes there are three different stages in the process of ownership transfer -symbolic, re-balancing, and protectionist. Each stage creates distinct family social constructions of the rights of family members to hold business ownership, and each stage occurs within a specific family development phase.

Keywords: business-owning family, family development theory, ownership transfer, process

Procedia PDF Downloads 154
940 Numerical Investigations of Unstable Pressure Fluctuations Behavior in a Side Channel Pump

Authors: Desmond Appiah, Fan Zhang, Shouqi Yuan, Wei Xueyuan, Stephen N. Asomani

Abstract:

The side channel pump has distinctive hydraulic performance characteristics over other vane pumps because of its generation of high pressure heads in only one impeller revolution. Hence, there is soaring utilization and application in the fields of petrochemical, food processing fields, automotive and aerospace fuel pumping where high heads are required at low flows. The side channel pump is characterized by unstable flow because after fluid flows into the impeller passage, it moves into the side channel and comes back to the impeller again and then moves to the next circulation. Consequently, the flow leaves the side channel pump following a helical path. However, the pressure fluctuation exhibited in the flow greatly contributes to the unwanted noise and vibration which is associated with the flow. In this paper, a side channel pump prototype was examined thoroughly through numerical calculations based on SST k-ω turbulence model to ascertain the pressure fluctuation behavior. The pressure fluctuation intensity of the 3D unstable flow dynamics were carefully investigated under different working conditions 0.8QBEP, 1.0 QBEP and 1.2QBEP. The results showed that the pressure fluctuation distribution around the pressure side of the blade is greater than the suction side at the impeller and side channel interface (z=0) for all three operating conditions. Part-load condition 0.8QBEP recorded the highest pressure fluctuation distribution because of the high circulation velocity thus causing an intense exchanged flow between the impeller and side channel. Time and frequency domains spectra of the pressure fluctuation patterns in the impeller and the side channel were also analyzed under the best efficiency point value, QBEP using the solution from the numerical calculations. It was observed from the time-domain analysis that the pressure fluctuation characteristics in the impeller flow passage increased steadily until the flow reached the interrupter which separates low-pressure at the inflow from high pressure at the outflow. The pressure fluctuation amplitudes in the frequency domain spectrum at the different monitoring points depicted a gentle decreasing trend of the pressure amplitudes which was common among the operating conditions. The frequency domain also revealed that the main excitation frequencies occurred at 600Hz, 1200Hz, and 1800Hz and continued in the integers of the rotating shaft frequency. Also, the mass flow exchange plots indicated that the side channel pump is characterized with many vortex flows. Operating conditions 0.8QBEP, 1.0 QBEP depicted less and similar vortex flow while 1.2Q recorded many vortex flows around the inflow, middle and outflow regions. The results of the numerical calculations were finally verified experimentally. The performance characteristics curves from the simulated results showed that 0.8QBEP working condition recorded a head increase of 43.03% and efficiency decrease of 6.73% compared to 1.0QBEP. It can be concluded that for industrial applications where the high heads are mostly required, the side channel pump can be designed to operate at part-load conditions. This paper can serve as a source of information in order to optimize a reliable performance and widen the applications of the side channel pumps.

Keywords: exchanged flow, pressure fluctuation, numerical simulation, side channel pump

Procedia PDF Downloads 136
939 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 168
938 High and Low Salinity Polymer in Omani Oil Field

Authors: Intisar Al Busaidi, Rashid Al Maamari, Daowoud Al Mahroqi, Mahvash Karimi

Abstract:

In recent years, some research studies have been performed on the hybrid application of polymer and low salinity water flooding (LSWF). Numerous technical and economic benefits of low salinity polymer flooding (LSPF) have been reported. However, as with any EOR technology, there are various risks involved in using LSPF. Ions exchange between porous media and brine is one of the Crude oil/ brine/ rocks (COBR) reactions that is identified as a potential risk in LSPF. To the best of our knowledge, this conclusion was drawn based on bulk rheology measurements, and no explanation was provided on how water chemistry changed in the presence of polymer. Therefore, this study aimed to understand rock/ brine interactions with high and low salinity brine in the absence and presence of polymer with Omani reservoir core plugs. Many single-core flooding experiments were performed with low and high salinity polymer solutions to investigate the influence of partially hydrolyzed polyacrylic amide with different brine salinities on cation exchange reactions. Ion chromatography (IC), total organic carbon (TOC), rheological, and pH measurements were conducted for produced aqueous phase. A higher increase in pH and lower polymer adsorption was observed in LSPF compared with conventional polymer flooding. In addition, IC measurements showed that all produced fluids in the absence and presence of polymer showed elevated Ca²⁺, Mg²⁺, K+, Cl- and SO₄²⁻ ions compared to the injected fluids. However, the divalent cations levels, mainly Ca²⁺, were the highest and remained elevated for several pore volumes in the presence of LSP. The results are in line with rheological measurements where the highest viscosity reduction was recorded with the highest level of Ca²⁺ production. Despite the viscosity loss due to cation exchange reactions, LSP can be an attractive alternative to conventional polymer flooding in the Marmul field.

Keywords: polymer, ions, exchange, recovery, low salinity

Procedia PDF Downloads 114
937 Fabrication of Coatable Polarizer by Guest-Host System for Flexible Display Applications

Authors: Rui He, Seung-Eun Baik, Min-Jae Lee, Myong-Hoon Lee

Abstract:

The polarizer is one of the most essential optical elements in LCDs. Currently, the most widely used polarizers for LCD is the derivatives of the H-sheet polarizer. There is a need for coatable polarizers which are much thinner and more stable than H-sheet polarizers. One possible approach to obtain thin, stable, and coatable polarizers is based on the use of highly ordered guest-host system. In our research, we aimed to fabricate coatable polarizer based on highly ordered liquid crystalline monomer and dichroic dye ‘guest-host’ system, in which the anisotropic absorption of light could be achieved by aligning a dichroic dye (guest) in the cooperative motion of the ordered liquid crystal (host) molecules. Firstly, we designed and synthesized a new reactive liquid crystalline monomer containing polymerizable acrylate groups as the ‘host’ material. The structure was confirmed by 1H-NMR and IR spectroscopy. The liquid crystalline behavior was studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was confirmed that the monomers possess highly ordered smectic phase at relatively low temperature. Then, the photocurable ‘guest-host’ system was prepared by mixing the liquid crystalline monomer, dichroic dye and photoinitiator. Coatable polarizers were fabricated by spin-coating above mixture on a substrate with alignment layer. The in-situ photopolymerization was carried out at room temperature by irradiating UV light, resulting in the formation of crosslinked structure that stabilized the aligned dichroic dye molecules. Finally, the dichroic ratio (DR), order parameter (S) and polarization efficiency (PE) were determined by polarized UV/Vis spectroscopy. We prepared the coatable polarizers by using different type of dichroic dyes to meet the requirement of display application. The results reveal that the coatable polarizers at a thickness of 8μm exhibited DR=12~17 and relatively high PE (>96%) with the highest PE=99.3%, which possess potential for the LCD or flexible display applications.

Keywords: coatable polarizer, display, guest-host, liquid crystal

Procedia PDF Downloads 251
936 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe

Authors: H. Shokouhmand, M. Tajerian

Abstract:

A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.

Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor

Procedia PDF Downloads 271
935 Tourism as Benefactor to Peace amidst the Structural Conflict: An Exploratory Case Study of Nepal

Authors: Pranil Kumar Upadhayaya

Abstract:

While peace is dividend to tourism, tourism can also be a vital force for world peace. The existing body of knowledge on a tripartite complex nexus between tourism, peace and conflict reveals that tourism is benefactor to peace and sensitive to conflict. By contextualizing the ongoing sporadic structural conflict in the transitional phase in the aftermath of a decade long (1996-2006), Maoist armed conflict in Nepal, the purpose of this study is to explore the potentials of tourism in peace-building. The outcomes of this research paper is based on the mixed methods of research (qualitative and quantitative). Though the armed conflict ended with the comprehensive peace agreement in 2006 but there is constant manifestations of non-violent structural conflicts, which continue to threaten the sustainability of tourism industry. With the persistent application of coping strategies, tourism is found resilient during the ongoing structural political conflict. The strong coping abilities of the private sector of tourism industry have also intersected with peace-building efforts with more reactive and less proactive (pro-peace) engagements. This paper ascertains about the application of the ‘theory of tourism security’ by Nepalese tourism industry while coping with conflict and reviving, and sustaining. It reveals that the multiple verities of tourism at present has heterogeneous degree of peace potentials. The opportunities of ‘peace through tourism’ can be promoted subject to its molding with responsible, sustainable and participatory characteristics. This paper comes out with pragmatic policy recommendations for strengthening the position of tourism as a true peace-builder: (a) a broad shift from mainstream conventional tourism to the community based rural with local participation and ownership to fulfill Nepal’s potentials for peace, and (b) building and applications of the managerial and operational codes of conducts for owners and workers (labor unions) at all tourism enterprises and strengthen their practices.

Keywords: code of conduct, community based tourism, conflict, peace-building, tourism

Procedia PDF Downloads 264
934 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb

Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim

Abstract:

Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.

Keywords: Mg, texture, Pb, DRX

Procedia PDF Downloads 49