Search results for: distributed sensor networks
1289 Phenolic Composition and Antioxidant Activity of Sorbus L. Fruits and Leaves
Authors: Raudone Lina, Raudonis Raimondas, Gaivelyte Kristina, Pukalskas Audrius, Janulis Valdimaras, Viskelis Pranas
Abstract:
Sorbus L. species are widely distributed in the Northern hemisphere and have been used for medicinal purposes in various traditional medicine systems and as food ingredients. Various Sorbus L. raw materials, fruits, leaves, inflorescences, barks, possess diuretic, anti-inflammatory, hypoglycemic, anti-diarrheal and vasoprotective activities. Phenolics, to whom main pharmacological activities are attributed, are compounds of interest due to their notable antioxidant activity. The aim of this study was to determine the antioxidant profiles of fruits and leaves of selected Sorbus L. species (S. anglica, S. aria f. latifolia, S. arranensis, S. aucuparia, S. austriaca, S. caucasica, S. commixta, S. discolor, S. gracilis, S. hostii, S. semi-incisa, S. tianschanica) and to identify the phenolic compounds with potent contribution to antioxidant activity. Twenty two constituents were identified in Sorbus L. species using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Reducing activity of individual constituents was determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP assay. Signicantly greatest trolox equivalent values corresponding up to 45% of contribution to antioxidant activity were assessed for neochlorogenic and chlorogenic acids, which were determined as markers of antioxidant activity in samples of leaves and fruits. Characteristic patterns of antioxidant profiles obtained using HPLC post-column FRAP assay significantly depend on specific Sorbus L. species and raw materials and are suitable for equivalency research of Sorbus L. fruits and leaves. Selecting species and target plant organs with richest phenolic composition and strongly expressed antioxidant power is the first step in further research of standardized extracts.Keywords: FRAP, antioxidant, phenolic, Sorbus L., chlorogenic acid, neochlorogenic acid
Procedia PDF Downloads 4621288 Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review
Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen
Abstract:
Ubiquitous learning and the use of ubiquitous learning environments herald a new era in higher education. Ubiquitous environments fuse together authentic learning situations and digital learning spaces where students can seamlessly immerse themselves into the learning process. Definitions of ubiquitous learning are wide and vary in the previous literature and learning environments are not systemically described. The aim of this scoping review was to identify the criteria and the use of ubiquitous learning environments in higher education contexts. The objective was to provide a clear scope and a wide view for this research area. The original studies were collected from nine electronic databases. Seven publications in total were defined as eligible and included in the final review. An inductive content analysis was used for the data analysis. The reviewed publications described the use of ubiquitous learning environments (ULE) in higher education. Components, contents and outcomes varied between studies, but there were also many similarities. In these studies, the concept of ubiquitousness was defined as context-awareness, embeddedness, content-personalization, location-based, interactivity and flexibility and these were supported by using smart devices, wireless networks and sensing technologies. Contents varied between studies and were customized to specific uses. Measured outcomes in these studies were focused on multiple aspects as learning effectiveness, cost-effectiveness, satisfaction, and usefulness. This study provides a clear scope for ULE used in higher education. It also raises the need for transparent development and publication processes, and for practical implications of ubiquitous learning environments.Keywords: higher education, learning environment, scoping review, ubiquitous learning, u-learning
Procedia PDF Downloads 2721287 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets
Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin
Abstract:
The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.Keywords: cooling speed, gravity, homogenous cooling, jet impingement
Procedia PDF Downloads 1261286 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.Keywords: AIS, ANN, ECG, hybrid classifiers, PSO
Procedia PDF Downloads 4511285 Combined Effect of Therapeutic Exercises and Shock Wave versus Therapeutic Exercises and Phonophoresis in Treatment of Shoulder Impingement Syndrome: A Randomized Controlled Trial
Authors: Mohamed M. Mashaly, Ahmed M. F. El Shiwi
Abstract:
Background: Shoulder impingement syndrome is an encroachment of subacromial tissues, rotator cuff, subacromial bursa, and the long head of the biceps tendon, as a result of narrowing of the subacromial space. Activities requiring repetitive or sustained use of the arms over head often predispose the rotator cuff tendon to injury. Purpose: To compare between Combined effect therapeutic exercises and Shockwave therapy versus therapeutic exercises and phonophoresis in the treatment of shoulder impingement syndrome. Methods: Thirty patients diagnosed as shoulder impingement syndrome stage II Neer classification due to mechanical causes. Patients were randomly distributed into two equal groups. The first group consisted of 15 patients with a mean age of (45.46+8.64) received therapeutic exercises (stretching exercise of posterior shoulder capsule and strengthening exercises of shoulder muscles) and shockwave therapy (6000 shocks, 2000/session, 3 sessions, 2 weeks apart, 0.22mJ/mm^2) years. The second group consisted of 15 patients with a mean age of 46.26 (+ 8.05) received same therapeutic exercises and phonophoresis (3 times per week, each other day, for 4 consecutive weeks). Patients were evaluated pretreatment and post treatment for shoulder pain severity, shoulder functional disability, shoulder flexion, abduction and internal rotation motions. Results: Patients of both groups showed significant improvement in all the measured variables. In between groups difference the shock wave group showed a significant improvement in all measured variables than phonophoresis group. Interpretation/Conclusion: Combined effect of therapeutic exercises and shock wave were more effective than therapeutic exercises and phonophoresis on decreasing shoulder pain severity, shoulder functional disability, increasing in shoulder flexion, abduction, internal rotation in patients with shoulder impingement syndrome.Keywords: shoulder impingement syndrome, therapeutic exercises, shockwave, phonophoresis
Procedia PDF Downloads 4771284 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 3771283 Spatial Dynamic of Pico- and Nano-Phytoplankton Communities in the Mouth of the Seine River
Authors: M. Schapira, S. Françoise, F. Maheux, O. Pierre-Duplessix, E. Rabiller, B. Simon, R. Le Gendre
Abstract:
Pico- and nano-phytoplankton are abundant and ecologically critical components of the autotrophic communities in the pelagic realm. While the role of physical forcing related to tidal cycle, water mass intrusion, nutrient availability, mixing and stratification on microphytoplankton blooms have been widely investigated, these are often overlooked for pico- and nano-phytoplankton especially in estuarine waters. This study investigates changes in abundances and community composition of pico- and nano-phytoplankton under different estuarine tidal conditions in the mouth of the Seine River in relation to nutrient availability, water column stratification and spatially localized currents. Samples were collected each day at high tide, over spring tide to neap tide cycle, from 21 stations homogeneously distributed in the Seine river month in May 2011. Vertical profiles of temperature, salinity and fluorescence were realized at each sampling station. Sub-surface water samples (i.e. 1 m depth) were collected for nutrients (i.e. N, P and Si), phytoplankton biomass (i.e. Chl a) and pico- and nano-phytoplankton enumeration and identification. Pico- and nano-phytoplankton populations were identified and quantified using flow cytometry. Total abundances tend to decrease from spring tide to neap tide. Samples were characterized by high abundances of Synechococcus and Cryptophyceae. The composition of the pico- and nano-phytoplankton varied greatly under the different estuarine tidal conditions. Moreover, at the scale of the river mouth, the pico- and nano-phytoplankton population exhibited patchy distribution patterns that were closely controlled by water mass intrusion from the Sea, freshwater inputs from the Seine River and the geomorphology of the river mouth. This study highlights the importance of physical forcing to the community composition of pico- and nano-phytoplankton that may be critical for the structure of the pelagic food webs in estuarine and adjacent coastal seas.Keywords: nanophytoplancton, picophytoplankton, physical forcing, river mouth, tidal cycle
Procedia PDF Downloads 3591282 Household Water Source Substitution and Demand for Water Connections
Authors: Elizabeth Spink
Abstract:
The United Nations' Sustainable Development Goal 6 sets a target for safe and affordable drinking water for all. Developing country governments aiming to achieve this goal often face significant challenges when trying to service last mile customers, particularly those in peri-urban and rural areas. Expansion of water networks often requires high connection fees from households, and demand for connections may be low if there are cheaper substitute sources of water available. This research studies the effect of the availability of substitute sources of water on demand for individual water connections in Livingstone, Zambia, using an event study analysis of metering campaigns. Metering campaigns reduce the share of a household's neighbors that can provide free water to the household if their water connection becomes disconnected due to nonpayment. The results show that household payments in newly metered regions increase by 10 percentage points in the months following metering events, with a decrease in disconnections of 6 percentage points for low-income households. To isolate the effect of changes in a household's substitution possibilities, a similar analysis is conducted among households that neighbor the metered region. These results show mixed evidence of the impact of substitutes on payment behavior and disconnections. The results suggest that metering may be effective in increasing household demand for individual water connections primarily through a lower monthly cost burden for newly metered households.Keywords: piped-water access, water demand, water utilities, water sharing
Procedia PDF Downloads 2031281 The Classification Accuracy of Finance Data through Holder Functions
Authors: Yeliz Karaca, Carlo Cattani
Abstract:
This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).Keywords: artificial neural networks, finance data, Holder regularity, multifractals
Procedia PDF Downloads 2511280 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece
Authors: Panagiotis Karadimos, Leonidas Anthopoulos
Abstract:
Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.Keywords: actual cost and duration, attribute selection, bridge construction, neural networks, predicting models, FANN TOOL, WEKA
Procedia PDF Downloads 1381279 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 4171278 Minimizing Unscheduled Maintenance from an Aircraft and Rolling Stock Maintenance Perspective: Preventive Maintenance Model
Authors: Adel A. Ghobbar, Varun Raman
Abstract:
The Corrective maintenance of components and systems is a problem plaguing almost every industry in the world today. Train operators’ and the maintenance repair and overhaul subsidiary of the Dutch railway company is also facing this problem. A considerable portion of the maintenance activities carried out by the company are unscheduled. This, in turn, severely stresses and stretches the workforce and resources available. One possible solution is to have a robust preventive maintenance plan. The other possible solution is to plan maintenance based on real-time data obtained from sensor-based ‘Health and Usage Monitoring Systems.’ The former has been investigated in this paper. The preventive maintenance model developed for train operator will subsequently be extended, to tackle the unscheduled maintenance problem also affecting the aerospace industry. The extension of the model to the aerospace sector will be dealt with in the second part of the research, and it would, in turn, validate the soundness of the model developed. Thus, there are distinct areas that will be addressed in this paper, including the mathematical modelling of preventive maintenance and optimization based on cost and system availability. The results of this research will help an organization to choose the right maintenance strategy, allowing it to save considerable sums of money as opposed to overspending under the guise of maintaining high asset availability. The concept of delay time modelling was used to address the practical problem of unscheduled maintenance in this paper. The delay time modelling can be used to help with support planning for a given asset. The model was run using MATLAB, and the results are shown that the ideal inspection intervals computed using the extended from a minimal cost perspective were 29 days, and from a minimum downtime, perspective was 14 days. Risk matrix integration was constructed to represent the risk in terms of the probability of a fault leading to breakdown maintenance and its consequences in terms of maintenance cost. Thus, the choice of an optimal inspection interval of 29 days, resulted in a cost of approximately 50 Euros and the corresponding value of b(T) was 0.011. These values ensure that the risk associated with component X being maintained at an inspection interval of 29 days is more than acceptable. Thus, a switch in maintenance frequency from 90 days to 29 days would be optimal from the point of view of cost, downtime and risk.Keywords: delay time modelling, unscheduled maintenance, reliability, maintainability, availability
Procedia PDF Downloads 1361277 A Survey for Different Approaches in the Diagnosis and Treatment of PCOS Among Adult and Pediatric Endocrinologist
Authors: Fariha Salman, Helmet Steinberg, Hiba Al-Zubeidi
Abstract:
OBJECTIVE: Polycystic ovary syndrome (PCOS) is the most common cause of infertility, with a prevalence of 5-10 % in women of reproductive age. There is evidence for differences between adult and pediatric endocrinologists and other specialists in their approach to the diagnosis and management of PCOS. METHODS: A survey consisting of 37 questions was distributed among adult and pediatric endocrinologists, aiming to understand the current practice for the diagnosis and management of PCOS. A total of 100 responses were available for final analysis; 36 % from adult endocrinologists (AE) and 64 % from pediatric endocrinologists(PE). RESULTS: The majority (64%) of respondents to the survey were endocrinologists from a multispecialty group. For both adults and adolescents with PCOS, the most commonly reported presenting symptoms were menstrual irregularities, obesity and hirsutism. The most common features used for diagnostic criteria were clinical or biochemical hyperandrogenism and ovulatory dysfunction. Most AE and PE screened for PCOS with total testosterone (83%) and free Testosterone (71%), screening for prolactin excess in 70 % and congenital adrenal hyperplasia (83 %), 66 % of AE will obtain pelvic US for evaluation vs 45 % of PE. Only 20 % of all respondents will obtain a midluteal progesterone for documentation of anovulation. In terms of treatment of hyperandrogenism and menstrual irregularities in adolescents, the most common form used is oral contraceptive pills, followed by metformin, then spironolactone. A similar approach was used in adults however the use of spironolactone was higher, 53 % vs 21 % in adolescents. The most common modality used for infertility was lifestyle interventions followed by metformin and clomiphene citrate. Screening of OSA and depression was not done by most of the endocrinologists (never + sometimes), 72 % and 76 %, respectively. Though screening for diabetes/metabolic syndrome and insulin resistance was done by most of the endocrinologists (always+often), 95 and 68 %, respectively. DISCUSSION: There are multiple diagnostic criteria used for PCOS diagnosis, however, given the wide variation in presentation and approach to diagnosis in adults and adolescents, there has not been a consensus on which is the gold standard criteria. CONCLUSION: Our survey showed the most common trends in diagnosing and treating PCOS among adult and pediatric endocrinologists. Further studies and trials need to be conducted to compare different treatment modalities used for hyperandrogenism, menstrual irregularities and infertility, as PCOS, if not treated earlier, can lead to long-term complications.Keywords: PCOS, adolescents, diagnosis, treatment
Procedia PDF Downloads 121276 Brain Networks and Mathematical Learning Processes of Children
Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke
Abstract:
Neurological findings provide foundational results for many different disciplines. In this article we want to discuss these with a special focus on mathematics education. The intention is to make neuroscience research useful for the description of cognitive mathematical learning processes. A key issue of mathematics education is that students often behave as if their mathematical knowledge is constructed in isolated compartments with respect to the specific context of the original learning situation; supporting students to link these compartments to form a coherent mathematical society of mind is a fundamental task not only for mathematics teachers. This aspect goes hand in hand with the question if there is such a thing as abstract general mathematical knowledge detached from concrete reality. Educational Neuroscience may give answers to the question why students develop their mathematical knowledge in isolated subjective domains of experience and if it is generally possible to think in abstract terms. To address these questions, we will provide examples from different fields of mathematics education e.g. students’ development and understanding of the general concept of variables or the mathematical notion of universal proofs. We want to discuss these aspects in the reflection of functional studies which elucidate the role of specific brain regions in mathematical learning processes. In doing this the paper addresses concept formation processes of students in the mathematics classroom and how to support them adequately considering the results of (educational) neuroscience.Keywords: brain regions, concept formation processes in mathematics education, proofs, teaching-learning processes
Procedia PDF Downloads 1541275 Comparative Analysis of Motor Insurance Claims using Machine Learning
Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah
Abstract:
From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability
Procedia PDF Downloads 91274 Evaluating and Improving Healthcare Staff Knowledge of the [NG179] NICE Guidelines on Elective Surgical Care during the COVID-19 Pandemic: A Quality Improvement Project
Authors: Stavroula Stavropoulou-Tatla, Danyal Awal, Mohammad Ayaz Hossain
Abstract:
The first wave of the COVID-19 pandemic saw several countries issue guidance postponing all non-urgent diagnostic evaluations and operations, leading to an estimated backlog of 28 million cases worldwide and over 4 million in the UK alone. In an attempt to regulate the resumption of elective surgical activity, the National Institute for Health and Care Excellence (NICE) introduced the ‘COVID-19 rapid guideline [NG179]’. This project aimed to increase healthcare staff knowledge of the aforementioned guideline to a targeted score of 100% in the disseminated questionnaire within 3 months at the Royal Free Hospital. A standardized online questionnaire was used to assess the knowledge of surgical and medical staff at baseline and following each 4-week-long Plan-Study-Do-Act (PDSA) cycle. During PDSA1, the A4 visual summary accompanying the guideline was visibly placed in all relevant clinical areas and the full guideline was distributed to the staff in charge together with a short briefing on the salient points. PDSA2 involved brief small-group teaching sessions. A total of 218 responses was collected. Mean percentage scores increased significantly from 51±19% at baseline to 81±16% after PDSA1 (t=10.32, p<0.0001) and further to 93±8% after PDSA2 (t=4.9, p<0.0001), with 54% of participants achieving a perfect score. In conclusion, the targeted distribution of guideline printouts and visual aids, combined with small-group teaching sessions, were simple and effective ways of educating healthcare staff about the new standards of elective surgical care at the time of COVID-19. This could facilitate the safe restoration of surgical activity, which is critical in order to mitigate the far-reaching consequences of surgical delays on an unprecedented scale during a time of great crisis and uncertainty.Keywords: COVID-19, elective surgery, NICE guidelines, quality improvement
Procedia PDF Downloads 1971273 Introducing Two Species of Parastagonospora (Phaeosphaeriaceae) on Grasses from Italy and Russia, Based on Morphology and Phylogeny
Authors: Ishani D. Goonasekara, Erio Camporesi, Timur Bulgakov, Rungtiwa Phookamsak, Kevin D. Hyde
Abstract:
Phaeosphaeriaceae comprises a large number of species occurring mainly on grasses and cereal crops as endophytes, saprobes and especially pathogens. Parastagonospora is an important genus in Phaeosphaeriaceae that includes pathogens causing leaf and glume blotch on cereal crops. Currently, there are fifteen Parastagonospora species described, including both pathogens and saprobes. In this study, one sexual morph species and an asexual morph species, occurring as saprobes on members of Poaceae are introduced based on morphology and a combined molecular analysis of the LSU, SSU, ITS, and RPB2 gene sequence data. The sexual morph species Parastagonospora elymi was isolated from a Russian sample of Elymus repens, a grass commonly known as couch grass, and important for grazing animals, as a weed and used in traditional Austrian medicine. P. elymi is similar to the sexual morph of P. avenae in having cylindrical asci, bearing 8, overlapping biseriate, fusiform ascospores but can be distinguished by its subglobose to conical shaped, wider ascomata. In addition, no sheath was observed surrounding the ascospores. The asexual morph species was isolated from a specimen from Italy, on Dactylis glomerata, a commonly found grass distributed in temperate regions. It is introduced as Parastagonospora macrouniseptata, a coelomycete, and bears a close resemblance to P. allouniseptata and P. uniseptata in having globose to subglobose, pycnidial conidiomata and hyaline, cylindrical, 1-septate conidia. However, the new species could be distinguished in having much larger conidiomata. In the phylogenetic analysis which consisted of a maximum likelihood and Bayesian analysis P. elymi showed low bootstrap support, but well segregated from other strains within the Parastagonospora clade. P. neoallouniseptata formed a sister clade with P. allouniseptata with high statistical support.Keywords: dothideomycetes, multi-gene analysis, Poaceae, saprobes, taxonomy
Procedia PDF Downloads 1221272 Resource Orchestration Based on Two-Sides Scheduling in Computing Network Control Sytems
Authors: Li Guo, Jianhong Wang, Dian Huang, Shengzhong Feng
Abstract:
Computing networks as a new network architecture has shown great promise in boosting the utilization of different resources, such as computing, caching, and communications. To maximise the efficiency of resource orchestration in computing network control systems (CNCSs), this work proposes a dynamic orchestration strategy of a different resource based on task requirements from computing power requestors (CPRs). Specifically, computing power providers (CPPs) in CNCSs could share information with each other through communication channels on the basis of blockchain technology, especially their current idle resources. This dynamic process is modeled as a cooperative game in which CPPs have the same target of maximising long-term rewards by improving the resource utilization ratio. Meanwhile, the task requirements from CPRs, including size, deadline, and calculation, are simultaneously considered in this paper. According to task requirements, the proposed orchestration strategy could schedule the best-fitting resource in CNCSs, achieving the maximum long-term rewards of CPPs and the best quality of experience (QoE) of CRRs at the same time. Based on the EdgeCloudSim simulation platform, the efficiency of the proposed strategy is achieved from both sides of CPRs and CPPs. Besides, experimental results show that the proposed strategy outperforms the other comparisons in all cases.Keywords: computing network control systems, resource orchestration, dynamic scheduling, blockchain, cooperative game
Procedia PDF Downloads 1211271 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011
Authors: S. Abera, T. Gidey, W. Terefe
Abstract:
Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.Keywords: data mining, HIV, testing, ethiopia
Procedia PDF Downloads 5031270 Rheological and Crystallization Properties of Dark Chocolate Formulated with Essential Oil of Orange and Carotene Extracted from Pineapple Peels
Authors: Mayra Pilamunga, Edwin Vera
Abstract:
The consumption of dark chocolate is beneficial due to its high content of flavonoids, catechins, and procyanidins. To improve its properties, fortification of chocolate with polyphenols, anthocyanins, soy milk powder and other compounds has been evaluated in several studies. However, to our best knowledge, the addition of carotenes to chocolate has not been tested. Carotenoids, especially ß-carotene and lutein, are widely distributed in fruits and vegetables so that they could be extracted from agro-industrial waste, such as fruit processing. On the other hand, limonene produces crystalline changes of cocoa butter and improves its consistency and viscosity. This study aimed to evaluate the production of dark chocolate with the addition of carotenes extracted from an agro industrial waste and to improve its rheological properties and crystallization, with orange essential oil. The dried and fermented cocoa beans were purchased in Puerto Quito, Ecuador, and had a fat content of 51%. Six types of chocolates were formulated, and two formulations were chosen, one at 65% cocoa and other at 70% cocoa, both with a solid: fat ratio of 1.4:1. With the formulations selected, the influence of the addition of 0.75% and 1.5% orange essential oil was evaluated, and analysis to measure the viscosity, crystallization and sensory analysis were done. It was found that essential oil does not generate significant changes in the properties of chocolate, but has an important effect on aroma and coloration, which changed from auburn to brown. The best scores on sensory analysis were obtained for the samples formulated with 0.75% essential oil. Prior to the formulation with carotenes, the extraction of these compounds from pineapple peels were performed. The process was done with and without a previous enzymatic treatment, with three solid-solvent ratios. The best treatment was using enzymes in a solids-solvent ratio of 1:12.5; the extract obtained under these conditions had 4.503 ± 0.214 μg Eq. β-carotene/mL. This extract was encapsulated with gum arabic and maltodextrin, and the solution was dried using a freeze dryer. The encapsulated carotenes were added to the chocolate in an amount of 1.7% however 60,8 % of them were lost in the final product.Keywords: cocoa, fat crystallization, limonene, carotenoids, pineapple peels
Procedia PDF Downloads 1651269 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network
Authors: Yinggang Guo, Zongchun Li
Abstract:
In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum
Procedia PDF Downloads 1951268 Histopathological, Proliferative, Apoptotic, and Hormonal Characteristics of Various Types of Leiomyomas
Authors: Kiknadze T, Tevdorashvili G, Muzashvili T, Gachechiladze M, Burkadze G
Abstract:
Uterine leiomyomas decrease the quality of life by causing significant morbidity among women of reproductive age. Histologically various types of leiomyoma's can be differentiated. We have analysed th histopathological, proliferation, apoptotic, and hormonal profile in different types of leiomyomas. Study included altogether140 cases distributed into the following groups: group I-normal myometrium (20cases), group II-classic leiomyoma (69 cases), group III-cellular leiomyoma (15 cases), group IV-bizarre cell/atypical leiomyoma (22cases), group V-smooth muscle tumors of uncertain malignancy potential (STUMP) (8 cases) and group VI-leiomyosarcoma (6 cases). Together with classic histopathological features such as nuclear atypia, cellularity, presence of mitoses, vasculature and necrosis, immunohistochemical phenotype using antibodies against Ki67,Cas3, ER, and PR were analysed. The results of our study showed that leiomyomas are charterised with variable histopathological and immunohistocthemical phenotype. Histopathological parameters mainly correlate with the degree of malignancy except for two bizarre/atypical leiomyoma and STUMP, where two distinct subgroups could be identified. In bizarre/ atipycal leiomyoma, 31% of cases are characterized with the features of classic leiomyoma, whilst the rest of the cases reveal more atipycal phenotype. In STUMP 37.5 % of cases are characterized with the features of atipycal leiomyomas. The result of the immunohistochemical study also reveald that half of bizarre/atipycal leiomyomas are characterized with the low proliferation index, high apoptotic index, and high ER and PR index, whilst another half is characterized with high proliferation index, low apoptotic index, and low ER and PR index. Similarly, part of the STUMP cases are characterized with low proliferation index, high Er, and PR index and whilst part of the cases are characterized whith high proliferation index, low apoptotic index and low ER and PR index. The results of the histopathological and immunohistochemical study indicate that these two entities represent the heterogenous group of diseases, which might be the explanation of their different prognosis. Presented histopathological and immunohistochemical features should be considered in the diagnosis of myometrial smooth muscle tumors.Keywords: proliferation, apoptosis, bizarre cell, leiomyosarcoma., leiomyoma
Procedia PDF Downloads 1131267 Detection of Atrial Fibrillation Using Wearables via Attentional Two-Stream Heterogeneous Networks
Authors: Huawei Bai, Jianguo Yao, Fellow, IEEE
Abstract:
Atrial fibrillation (AF) is the most common form of heart arrhythmia and is closely associated with mortality and morbidity in heart failure, stroke, and coronary artery disease. The development of single spot optical sensors enables widespread photoplethysmography (PPG) screening, especially for AF, since it represents a more convenient and noninvasive approach. To our knowledge, most existing studies based on public and unbalanced datasets can barely handle the multiple noises sources in the real world and, also, lack interpretability. In this paper, we construct a large- scale PPG dataset using measurements collected from PPG wrist- watch devices worn by volunteers and propose an attention-based two-stream heterogeneous neural network (TSHNN). The first stream is a hybrid neural network consisting of a three-layer one-dimensional convolutional neural network (1D-CNN) and two-layer attention- based bidirectional long short-term memory (Bi-LSTM) network to learn representations from temporally sampled signals. The second stream extracts latent representations from the PPG time-frequency spectrogram using a five-layer CNN. The outputs from both streams are fed into a fusion layer for the outcome. Visualization of the attention weights learned demonstrates the effectiveness of the attention mechanism against noise. The experimental results show that the TSHNN outperforms all the competitive baseline approaches and with 98.09% accuracy, achieves state-of-the-art performance.Keywords: PPG wearables, atrial fibrillation, feature fusion, attention mechanism, hyber network
Procedia PDF Downloads 1261266 Thorium-Doped PbS Thin Films for Radiation Damage Studies
Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel
Abstract:
We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.Keywords: thin films, doping, radiation damage, chemical bath deposition
Procedia PDF Downloads 3971265 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia
Authors: Halefom Kidane
Abstract:
This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.Keywords: artificial neural networks, forecasting, min-max normalization, wind speed
Procedia PDF Downloads 801264 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments
Authors: Rahul Paul, Peter Mctaggart, Luke Skinner
Abstract:
Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry
Procedia PDF Downloads 1041263 Clinicians’ Experiences with IT Systems in a UK District General Hospital: A Qualitative Analysis
Authors: Sunny Deo, Eve Barnes, Peter Arnold-Smith
Abstract:
Introduction: Healthcare technology is a rapidly expanding field in healthcare, with enthusiasts suggesting a revolution in the quality and efficiency of healthcare delivery based on the utilisation of better e-healthcare, including the move to paperless healthcare. The role and use of computers and programmes for healthcare have been increasing over the past 50 years. Despite this, there is no standardised method of assessing the quality of hardware and software utilised by frontline healthcare workers. Methods and subjects: Based on standard Patient Related Outcome Measures, a questionnaire was devised with the aim of providing quantitative and qualitative data on clinicians’ perspectives of their hospital’s Information Technology (IT). The survey was distributed via the Institution’s Intranet to all contracted doctors, and the survey's qualitative results were analysed. Qualitative opinions were grouped as positive, neutral, or negative and further sub-grouped into speed/usability, software/hardware, integration, IT staffing, clinical risk, and wellbeing. Analysis was undertaken on the basis of doctor seniority and by specialty. Results: There were 196 responses, with 51% from senior doctors (consultant grades) and the rest from junior grades, with the largest group of respondents 52% coming from medicine specialties. Differences in the proportion of principle and sub-groups were noted by seniority and specialty. Negative themes were by far the commonest stated opinion type, occurring in almost 2/3’s of responses (63%), while positive comments occurred less than 1 in 10 (8%). Conclusions: This survey confirms strongly negative attitudes to the current state of electronic documentation and IT in a large single-centre cohort of hospital-based frontline physicians after two decades of so-called progress to a paperless healthcare system. Greater use would provide further insights and potentially optimise the focus of development and delivery to improve the quality and effectiveness of IT for clinicians and their patients.Keywords: information technology, electronic patient records, digitisation, paperless healthcare
Procedia PDF Downloads 971262 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method
Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson
Abstract:
Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.Keywords: fault detection, ground robot, inverse simulation, rover
Procedia PDF Downloads 3101261 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors
Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam
Abstract:
Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.Keywords: construction safety, contractor selection, decision support system, relational database
Procedia PDF Downloads 2831260 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 423