Search results for: academic learning stress
8051 Cyber-Victimization among Higher Education Students as Related to Academic and Personal Factors
Authors: T. Heiman, D. Olenik-Shemesh
Abstract:
Over the past decade, with the rapid growth of electronic communication, the internet and, in particular, social networking has become an inseparable part of people's daily lives. Along with its benefits, a new type of online aggression has emerged, defined as cyber bullying, a form of interpersonal aggressive behavior that takes place through electronic means. Cyber-bullying is characterized by repetitive behavior over time of maladaptive authority and power usage using computers and cell phones via sending insulting messages and hurtful pictures. Preliminary findings suggest that the prevalence of involvement in cyber-bullying among higher education students varies between 10 and 35%. As to date, universities are facing an uphill effort in trying to restrain online misbehavior. As no studies examined the relationships between cyber-bullying involvement with personal aspects, and its impacts on academic achievement and work functioning, this present study examined the nature of cyber-bullying involvement among 1,052 undergraduate students (mean age = 27.25, S.D = 4.81; 66.2% female), coping with, as well as the effects of social support, perceived self-efficacy, well-being, and body-perception, in relation to cyber-victimization. We assume that students in higher education are a vulnerable population and at high risk of being cyber-victims. We hypothesize that social support might serve as a protective factor and will moderate the relationships between the socio-emotional variables and the occurrence of cyber- victimization. The findings of this study will present the relationships between cyber-victimization and the social-emotional aspects, which constitute risk and protective factors. After receiving approval from the Ethics Committee of the University, a Google Drive questionnaire was sent to a random sample of students, studying in the various University study centers. Students' participation was voluntary, and they completed the five questionnaires anonymously: Cyber-bullying, perceived self-efficacy, subjective well-being, social support and body perception. Results revealed that 11.6% of the students reported being cyber-victims during last year. Examining the emotional and behavioral reactions to cyber-victimization revealed that female emotional and behavioral reactions were significantly greater than the male reactions (p < .001). Moreover, females reported on a significant higher social support compared to men; male reported significantly on a lower social capability than female; and men's body perception was significantly more positive than women's scores. No gender differences were observed for subjective well-being scale. Significant positive correlations were found between cyber-victimization and fewer friends, lower grades, and work ineffectiveness (r = 0.37- .40, p < 0 .001). The results of the Hierarchical regression indicated significantly that cyber-victimization can be predicted by lower social support, lower body perception, and gender (female), that explained 5.6% of the variance (R2 = 0.056, F(5,1047) = 12.47, p < 0.001). The findings deepen our understanding of the students' involvement in cyber-bullying, and present the relationships of the social-emotional and academic aspects on cyber-victim students. In view of our findings, higher education policy could help facilitate coping with cyber-bullying incidents, and student support units could develop intervention programs aimed at reducing cyber-bullying and its impacts.Keywords: academic and personal factors, cyber-victimization, social support, higher education
Procedia PDF Downloads 2898050 Land Equivalent Ration of Chickpea - Barley as Affected by Mixed Cropping System and Vermicompost in Water Stress Condition
Authors: Masoud Rafiee
Abstract:
Study of the effect of vermin compost on yield, and Land equivalent ration (LER) of chickpea-barley mixed cropping under normal dry land condition can be useful in order to increase qualitative and quantitative performance. In this case, two factors include fertilizer (vermicompost biological fertilizer, ammonium phosphate chemical fertilizer, vermicompost + %75 chemical fertilizer) and chickpea + barley mixed cropping (sole chickpea, %75 chickpea: %25 barley, %50 chickpea: %50 barley, %25 chickpea: %75 barley, and sole barley) in RCBD in three replications in two experiments include normal and dry land conditions were studied. Result showed that total LER base on dry matter was affected by environment and mixed cropping interaction and was more than 1 in all mixed cropping treatments. In different mixed cropping rates, wet forage yield decreased by decreasing chickpea ratio as well as increasing barley ratio. Total LER mean in base on forage dry matter in mixed-, chemical-, and vermicompost fertilizer treatments were 1.12, 1.05 and 1.10 in normal condition and 1.15, 1.08 and 1.14 in dry land condition, respectively, represented the important of biological fertilizer in mixed cropping systems.Keywords: land equivalent ration, biological fertilizer, mixed cropping systems, water stress
Procedia PDF Downloads 3118049 Track Initiation Method Based on Multi-Algorithm Fusion Learning of 1DCNN And Bi-LSTM
Abstract:
Aiming at the problem of high-density clutter and interference affecting radar detection target track initiation in ECM and complex radar mission, the traditional radar target track initiation method has been difficult to adapt. To this end, we propose a multi-algorithm fusion learning track initiation algorithm, which transforms the track initiation problem into a true-false track discrimination problem, and designs an algorithm based on 1DCNN(One-Dimensional CNN)combined with Bi-LSTM (Bi-Directional Long Short-Term Memory )for fusion classification. The experimental dataset consists of real trajectories obtained from a certain type of three-coordinate radar measurements, and the experiments are compared with traditional trajectory initiation methods such as rule-based method, logical-based method and Hough-transform-based method. The simulation results show that the overall performance of the multi-algorithm fusion learning track initiation algorithm is significantly better than that of the traditional method, and the real track initiation rate can be effectively improved under high clutter density with the average initiation time similar to the logical method.Keywords: track initiation, multi-algorithm fusion, 1DCNN, Bi-LSTM
Procedia PDF Downloads 958048 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 1068047 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7
Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit
Abstract:
In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety
Procedia PDF Downloads 688046 Explaining the Relationship between Religiosity and Resilience
Authors: Rita Phillips, Mark Burgess, Maga Berlinski
Abstract:
Although the positive impact of religiosity on well-being, health, and life-coping abilities is well known, up to date research has failed to provide scientific evidence for the relationship reasons. Therefore the present study took a qualitative approach by examining how religiosity interacts in coping with emotionally distressful situations, for which wedding preparations are an example. Wedding preparations, related to the experience of ambiguous emotions, can be the reason for phases of high distress. Although being per-se religious ceremonies, they are also socially-scripted and characterized by people’s striving for personally meaningful celebrations. The negotiation of these many influences can evoke conflicts. To reveal components of religiosity which contribute to stress-resolution, eight biographic-narrative interviews with recently married spouses were conducted. Participants were from different nationalities and Catholic deep-belief communities in order to determine factors independent from national-culture and social-subgroup. The audio-tape recorded, transcribed and translated interviews were analyzed by Interpretative Phenomenological Analysis. Opposing previous research on wedding-related conflicts but in-line with the quantitative account on the relation between stress-resilience and religiosity, the present study found participants reporting very low levels of distress and ambiguity. Although similar areas of potential conflicts were revealed, deep-belief Christians seemed to handle them in a different way. Participants freed themselves from own and others’ rigor mundane expectations by their spiritual preparation and the focus on a divine instance. This evoked a feeling of perceived closeness to God and of unconditional love, resulting in acceptance of oneself and others. Through relativizing mundane goods, participants perceived absolute freedom. Thus belief did not supplement coping strategies, previously defined in the literature, but substituted them. The paper implies that in explaining the connection between stress-resilience and religiosity, one’s perception and experience of unconditional love might outweigh other social or personal factors. However, further qualitative investigations are needed to fully explain the phenomenon.Keywords: deep-belief, religiosity, resilience, wedding
Procedia PDF Downloads 2458045 Quality of Education in Dilla Zone
Authors: Gezahegn Bekele Welldgiyorgise
Abstract:
It is obvious that the economics, politics and social conditions of a country are determined by the quality and standard of its education. Indeed, education plays a vital role in changing the consciousness and awareness of society and transforming it on a large scale. Moreover, education contributes a lot to the advancement of science and technology, information and communication, and above all, it speeds up its progress in no time if it focuses mainly on the qualitative approach to education. Education brings about universal change and transformation and lightens mankind in all dimensions. It creates an educated, enlightened and brightened generation in society. The generation will be sharped, sharpened and well-oriented if it gets modern, sophisticated and standardized education in its field of study. The main goal of education is to produce well-qualified, well-trained and disciplined young offers in a given community. If the youth is well trained and well-mannered, he will certainly be enlightened, problem solvers and solution seekers, researchers, and innovators. In this respect, we have to provide the youth with modern education, a teaching-learning process led by active learning and a participatory approach with a new curriculum preparation for the age of children supported by modern facilities (ICT).In addition to that, the curriculum should have to give attention to mathematics and science lessons that include international experience in a comfortable school and classrooms. Therefore, the generation that will be created through such kinds of the guided education system will make the students active participants, self-confident, researchers and problem solvers, besides that result in changed life standards and a developed country. Similarly, our country, Ethiopia, has aimed to get such change in youth (generation) through modern education, designing a new educational policy and curriculum which was implemented for many years, although the goal of education has not reached the required level. To get the main idea of the article, I should have answered the question of why our country's educational goal had not reached the desired level because it is necessary to lay the foundation for research in finding out problems seen through students learning performance, the first task is selecting primary-school as a sample. Therefore, we selected “Dilla primary school (5-8)” which is a workplace for a teacher and gives me a chance to recognize students’ learning performance to recognize their learning grades (internal and external) and measure performance (achievement) of students easily’.Keywords: curriculum, performance, innovation, learning
Procedia PDF Downloads 778044 Biosynthesized Selenium Nanoparticles to Rescue Coccidiosis-mediated Oxidative Stress, Apoptosis and Inflammation in the Jejunum Of Mice
Authors: Esam Mohammed Al-shaebi
Abstract:
One of the most crucial approaches for treating human diseases, particularly parasite infections, is nanomedicine. One of the most significant protozoan diseases that impact farm and domestic animals is coccidiosis. While, amprolium is one of the traditional anticoccidial medication, the advent of drug-resistant strains of Eimeria necessitates the development of novel treatments. The goal of the current investigation was to determine whether biosynthesized selenium nanoparticles (Bio-SeNPs) using Azadirachta indica leaves extract might treat mice with Eimeria papillata infection in the jejunal tissue. Five groups of seven mice each were used, as follows: Group 1: Non-infected-non-treated (negative control). Group 2: Non-infected treated group with Bio-SeNPs (0.5 mg/kg of body weight). Groups 3-5 were orally inoculated with 1×103 sporulated oocysts of E. papillata. Group 3: Infected-non-treated (positive control). Group 4: Infected and treated group with Bio-SeNPs (0.5 mg/kg). Group 5: Infected and treated group with the Amprolium. Groups 4 and 5 daily received oral administration (for 5 days) of Bio-SeNPs and anticoccidial medication, respectively, after infection. Bio-SeNPs caused a considerable reduction in oocyst output in mice feces (97.21%). This was also accompanied by a significant reduction in the number of developmental parasitic stages in the jejunal tissues. Glutathione reduced (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were dramatically reduced by the Eimeria parasite, whereas, nitric oxide (NO) and malonaldehyde (MDA) levels were markedly elevated. The amount of goblet cells and MUC2 gene expression were used as apoptotic indicators, and both were considerably downregulated by infection. However, infection markedly increased the expression of inflammatory cytokines (IL-6 and TNF-α) and the apoptotic genes (Caspase-3 and BCL2). Bio-SeNPs were administrated to mice to drastically lower body weight, oxidative stress, and inflammatory and apoptotic indicators in the jejunal tissue. Our research thus showed the involvement of Bio-SeNPs in protecting mice with E. papillata infections against jejunal damage.Keywords: coccidiosis, nanoparticles, azadirachta indica, oxidative stress
Procedia PDF Downloads 928043 Translation as a Foreign Language Teaching Tool: Results of an Experiment with University Level Students in Spain
Authors: Nune Ayvazyan
Abstract:
Since the proclamation of monolingual foreign-language learning methods (the Berlitz Method in the early 20ᵗʰ century and the like), the dilemma has been to allow or not to allow learners’ mother tongue in the foreign-language learning process. The reason for not allowing learners’ mother tongue is reported to create a situation of immersion where students will only use the target language. It could be argued that this artificial monolingual situation is defective, mainly because there are very few real monolingual situations in the society. This is mainly due to the fact that societies are nowadays increasingly multilingual as plurilingual speakers are the norm rather than an exception. More recently, the use of learners’ mother tongue and translation has been put under the spotlight as valid foreign-language teaching tools. The logic dictates that if learners were permitted to use their mother tongue in the foreign-language learning process, that would not only be natural, but also would give them additional means of participation in class, which could eventually lead to learning. For example, when learners’ metalinguistic skills are poor in the target language, a question they might have could be asked in their mother tongue. Otherwise, that question might be left unasked. Attempts at empirically testing the role of translation as a didactic tool in foreign-language teaching are still very scant. In order to fill this void, this study looks into the interaction patterns between students in two kinds of English-learning classes: one with translation and the other in English only (immersion). The experiment was carried out with 61 students enrolled in a second-year university subject in English grammar in Spain. All the students underwent the two treatments, classes with translation and in English only, in order to see how they interacted under the different conditions. The analysis centered on four categories of interaction: teacher talk, teacher-initiated student interaction, student-initiated student-to-teacher interaction, and student-to-student interaction. Also, pre-experiment and post-experiment questionnaires and individual interviews gathered information about the students’ attitudes to translation. The findings show that translation elicited more student-initiated interaction than did the English-only classes, while the difference in teacher-initiated interactional turns was not statistically significant. Also, student-initiated participation was higher in comprehension-based activities (into L1) as opposed to production-based activities (into L2). As evidenced by the questionnaires, the students’ attitudes to translation were initially positive and mainly did not vary as a result of the experiment.Keywords: foreign language, learning, mother tongue, translation
Procedia PDF Downloads 1628042 'I Mean' in Teacher Questioning Sequences in Post-Task Discussions: A Conversation Analytic Study
Authors: Derya Duran, Christine Jacknick
Abstract:
Despite a growing body of research on classroom, especially language classroom interactions, much more is yet to be discovered on how interaction is organized in higher education settings. This study investigates how the discourse marker 'I mean' in teacher questioning turns functions as a resource to promote student participation as well as to enhance collective understanding in whole-class discussions. This paper takes a conversation analytic perspective, drawing on 30-hour video recordings of classroom interaction in an English as a medium of instruction university in Turkey. Two content classrooms (i.e., Guidance) were observed during an academic term. The course was offered to 4th year students (n=78) in the Faculty of Education; students were majoring in different subjects (i.e., Early Childhood Education, Foreign Language Education, Mathematics Education). Results of the study demonstrate the multi-functionality of discourse marker 'I mean' in teacher questioning turns. In the context of English as a medium of instruction classrooms where possible sources of confusion may occur, we found that 'I mean' is primarily used to indicate upcoming adjustments. More specifically, it is employed for a variety of interactional purposes such as elaboration, clarification, specification, reformulation, and reference to the instructional activity. The study sheds light on the multiplicity of functions of the discourse marker in academic interactions and it uncovers how certain linguistic resources serve functions to the organization of repair such as the maintenance of understanding in classroom interaction. In doing so, it also shows the ways in which participation is routinely enacted in shared interactional events through linguistic resources.Keywords: conversation analysis, discourse marker, English as a medium of instruction, repair
Procedia PDF Downloads 1618041 Integrating Flipped Instruction to Enhance Second Language Acquisition
Authors: Borja Ruiz de Arbulo Alonso
Abstract:
This paper analyzes the impact of flipped instruction in adult learners of Spanish as a second language in a face-to-face course at Boston University. Given the limited amount of contact hours devoted to studying world languages in the American higher education system, implementing strategies to free up classroom time for communicative language practice is key to ensure student success in their learning process. In an effort to improve the way adult learners acquire a second language, this paper examines the role that regular pre-class and web-based exposure to Spanish grammar plays in student performance at the end of the academic term. It outlines different types of web-based pre-class activities and compares this approach to more traditional classroom practice. To do so, this study works for three months with two similar groups of adult learners in an intermediate-level Spanish class. Both groups use the same course program and have the same previous language experience, but one receives an additional set of instructor-made online materials containing a variety of grammar explanations and online activities that need to be reviewed before attending class. Since the online activities cover material and concepts that have not yet been studied in class, students' oral and written production in both groups is measured by means of a writing activity and an audio recording at the end of the three-month period. These assessments will ascertain the effects of exposing the control group to the grammar of the target language prior to each lecture throughout and demonstrate where flipped instruction helps adult learners of Spanish achieve higher performance, but also identify potential problems.Keywords: educational technology, flipped classroom, second language acquisition, student success
Procedia PDF Downloads 1258040 Parental Involvement Among Host Community and Refugees in Iraqi Kurdistan
Authors: Peshawa Jalal Mohammed
Abstract:
Following the recent political conflict in the Middle East, the number of refugees and internally displaced people increased in the last decades. The flood of displaced people became a big issue for the host communities in the neighbouring countries and Europe. The need for research about the education and integration of the refugees became urgent. After the appearance of the Islamic State and displacing millions of Syrian people, the Kurdistan Region of Iraq became a safe shelter for hundreds of thousands of Syrians and international organisations helping the refugees. This study focuses on the factors of parental involvement among the host community and refugee parents and its role in the academic success of children. The setting is the three provinces of Iraqi Kurdistan (Erbil, Sulaimani, and Dohuk), including the refugee camps in the three provinces. Based on the purpose of the study, the study was designed as a descriptive survey study with a mixed approach, qualitative (open-ended), and quantitative (questionnaire) questions and both forms of data were integrated and analysed. The current study participants were 8th and 9th graders at the basic school level, studying at public schools and their parents. The sampling design was the selection of local schools and schools in the refugee camps in the region's three provinces. The number of participants for each of the two groups was 250 students and 250 parents. The results showed that parents' socioeconomic status, gender, and place of residency have significant roles in students' parental involvement and academic success of their students. The results also show the characteristics of parental inspiration to their children's future and their expectations from education.Keywords: refugee, education, parental involvement, socioeconomic
Procedia PDF Downloads 1928039 Detecting Manipulated Media Using Deep Capsule Network
Authors: Joseph Uzuazomaro Oju
Abstract:
The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media
Procedia PDF Downloads 1348038 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 848037 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 1288036 The Dark Side of Tourism's Implications: A Structural Equation Modeling Study of the 2016 Earthquake in Central Italy
Authors: B. Kulaga, A. Cinti, F. J. Mazzocchini
Abstract:
Despite the fact that growing academic attention on dark tourism is a fairly recent phenomenon, among the various reasons for travelling death-related ones, are very ancient. Furthermore, the darker side of human nature has always been fascinated and curious regarding death, or at least, man has always tried to learn lessons from death. This study proposes to describe the phenomenon of dark tourism related to the 2016 earthquake in Central Italy, deadly for 302 people and highly destructive for the rural areas of Lazio, Marche, and Umbria Regions. The primary objective is to examine the motivation-experience relationship in a dark tourism site, using the structural equation model, applied for the first time to a dark tourism research in 2016, in a study conducted after the Beichuan earthquake. The findings of the current study are derived from the calculations conducted on primary data compiled from 350 tourists in the areas mostly affected by the 2016 earthquake, including the town of Amatrice, near the epicenter, Castelluccio, Norcia, Ussita and Visso, through conducting a Likert scale survey. Furthermore, we use the structural equation model to examine the motivation behind dark travel and how this experience can influence the motivation and emotional reaction of tourists. Expected findings are in line with the previous study mentioned above, indicating that: not all tourists visit the thanatourism sites for dark tourism purpose, tourists’ emotional reactions influence more heavily the emotional tourist experience than cognitive experiences do, and curious visitors are likely to engage cognitively by learning about the incident or related issues.Keywords: dark tourism, emotional reaction, experience, motivation, structural equation model
Procedia PDF Downloads 1448035 Status of Participative Governance Practices in Higher Education: Implications for Stakeholders' Transformative Role-Assumption
Authors: Endalew Fufa Kufi
Abstract:
The research investigated the role of stakeholders such as students, teachers and administrators in the practices of good governance in higher education by looking into the special contributions of top-officials, teachers and students in ensuring workable ties and productive interchanges in Adama Science and Technology University. Attention was given to participation, fairness and exemplariness as key indicators of good governance. The target university was chosen for its familiarity for the researcher to get dependable data, access to respondent and management of the processing of data. Descriptive survey design was used for the purpose of describing concerned roles the stakeholders in the university governance in order to reflect on the nature of participation of the practices. Centres of the research were administration where supportive groups such as central administrators and underlying service-givers had parts and academia where teachers and students were target. Generally, 60 teachers, 40 students and 15 administrative officers were referents. Data were collected in the form of self-report through open-ended questionnaires. The findings indicated that, while vertical interchanges in terms of academic and administrative routines were had normal flow on top-down basis, planned practices of stakeholders in decision-making and reasonably communicating roles and changes in decisions with top-officials were not efficiently practiced. Moreover, the practices of good modelling were not witnessed to have existed to the fullest extent. Rather, existence of a very wide gap between the academic and administrative staffs was witnessed as was reflected the case between teachers and students. The implication was such that for shortage in participative atmosphere and weaning of fairness in governance, routine practices have been there as the vicious circles of governance.Keywords: governance, participative, stakeholders, transformative, role-assumption
Procedia PDF Downloads 3988034 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 1618033 The Quantity and Quality of Teacher Talking Time in EFL Classroom
Authors: Hanan Abufares Elkhimry
Abstract:
Looking for more effective teaching and learning approaches, teaching instructors have been telling trainee teachers to decrease their talking time, but the problem is how best to do this. Doing classroom research, specifically in the area of teacher talking time (TTT), is worthwhile, as it could improve the quality of teaching languages, as the learners are the ones who should be practicing and using the language. This work hopes to ascertain if teachers consider this need in a way that provides the students with the opportunities to increase their production of language. This is a question that is worthwhile answering. As many researchers have found, TTT should be decreased to 30% of classroom talking time and STT should be increased up to 70%. Other researchers agree with this, but add that it should be with awareness of the quality of teacher talking time. Therefore, this study intends to investigate the balance between quantity and quality of teacher talking time in the EFL classroom. For this piece of research and in order to capture the amount of talking in a four classrooms. The amount of talking time was measured. A Checklist was used to assess the quality of the talking time In conclusion, In order to improve the quality of TTT, the results showed that teachers may use more or less than 30% of the classroom talking time and still produce a successful classroom learning experience. As well as, the important factors that can affect TTT is the English level of the students. This was clear in the classroom observations, where the highest TTT recorded was with the lowest English level group.Keywords: teacher talking time TTT, learning experience, classroom research, effective teaching
Procedia PDF Downloads 4158032 Antidiabetic Activity of Cedrus deodara Aqueous Extract and Its Relationship with Its Antioxidant Properties
Authors: Sourabh Jain, Vikas Jain, Dharmendra Kumnar
Abstract:
The present study investigated the antidiabetic potential of Cedrus deodara heart wood aqueous extract and its relationship in alloxan-induced diabetic rats. Aqueous extract of Cedrus deodara was found to reduce blood sugar level in alloxan induced diabetic rats. Reduction in blood sugar could be seen from 5th day after continuous administration of the extract and on 21st day sugar levels were found to be reduced by 40.20%. Oxidative stress produced by alloxan was found to be significantly lowered by the administration of Cedrus deodara aqueous extract (500 mg/kg). This was evident from a significant decrease in lipid per oxidation level in liver induced by alloxan. The level of Glutathione, Catalase, Superoxide dismutase and Glutathione-S-Transferase in liver, kidney and pancreas tissue were found to be increased significantly after drug administration. The results obtained in the present study suggest that the Cedrus deodara aqueous extract effectively and significantly reduced the oxidative stress induced by alloxan and produced a reduction in blood sugar level.Keywords: Cedrus deodara, heartwood, antioxidant, anti-diabetic, anti-inflammatory
Procedia PDF Downloads 4098031 Instructional Design Strategy Based on Stories with Interactive Resources for Learning English in Preschool
Authors: Vicario Marina, Ruiz Elena, Peredo Ruben, Bustos Eduardo
Abstract:
the development group of Educational Computing of the National Polytechnic (IPN) in Mexico has been developing interactive resources at preschool level in an effort to improve learning in the Child Development Centers (CENDI). This work describes both a didactic architecture and a strategy for teaching English with digital stories using interactive resources available through a Web repository designed to be used in mobile platforms. It will be accessible initially to 500 children and worldwide by the end of 2015.Keywords: instructional design, interactive resources, digital educational resources, story based English teaching, preschool education
Procedia PDF Downloads 4758030 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data
Authors: S. Jurado, E. Pazmino
Abstract:
Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.Keywords: medial axis, pore-throat distribution, porosity, porous media
Procedia PDF Downloads 1168029 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 1698028 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Clement Yeboah, Eva Laryea
Abstract:
A pretest-posttest within subjects experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant, indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant, indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop an interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, computer game-based learning, statistics achievement, statistics anxiety
Procedia PDF Downloads 778027 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 2928026 A Simple Technique for Centralisation of Distal Femoral Nail to Avoid Anterior Femoral Impingement and Perforation
Authors: P. Panwalkar, K. Veravalli, M. Tofighi, A. Mofidi
Abstract:
Introduction: Anterior femoral perforation or distal anterior nail position is a known complication of femoral nailing specifically in pertrochantric fractures fixed with cephalomedullary nail. This has been attributed to wrong entry point for the femoral nail, nail with large radius of curvature or malreduced fracture. Left alone anterior perforation of femur or abutment of nail on anterior femur will result in pain and risk stress riser at distal femur and periprosthetic fracture. There have been multiple techniques described to avert or correct this problem ranging from using different nail, entry point change, poller screw to deflect the nail position, use of shorter nail or use of curved guidewire or change of nail to ensure a nail with large radius of curvature Methods: We present this technique which we have used in order to centralise the femoral nail either when the nail has been put anteriorly or when the guide wire has been inserted too anteriorly prior to the insertion of the nail. This technique requires the use of femoral reduction spool from the nailing set. This technique was used by eight trainees of different level of experience under supervision. Results: This technique was easily reproducible without any learning curve without a need for opening of fracture site or change in the entry point with three different femoral nailing sets in twenty-five cases. The process took less than 10 minutes even when revising a malpositioned femoral nail. Conclusion: Our technique of using femoral reduction spool is easily reproducible and repeatable technique for avoidance of non-centralised femoral nail insertion and distal anterior perforation of femoral nail.Keywords: femoral fracture, nailing, malposition, surgery
Procedia PDF Downloads 1428025 Effectiveness of Technology Enhanced Learning in Orthodontic Teaching
Authors: Mohammed Shaath
Abstract:
Aims Technological advancements in teaching and learning have made significant improvements over the past decade and have been incorporated in institutions to aid the learner’s experience. This review aims to assess whether Technology Enhanced Learning (TEL) pedagogy is more effective at improving students’ attitude and knowledge retention in orthodontic training than traditional methods. Methodology The searches comprised Systematic Reviews (SRs) related to the comparison of TEL and traditional teaching methods from the following databases: PubMed, SCOPUS, Medline, and Embase. One researcher performed the screening, data extraction, and analysis and assessed the risk of bias and quality using A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2). Kirkpatrick’s 4-level evaluation model was used to evaluate the educational values. Results A sum of 34 SRs was identified after the removal of duplications and irrelevant SRs; 4 fit the inclusion criteria. On Level 1, students showed positivity to TEL methods, although acknowledging that the harder the platforms to use, the less favourable. Nonetheless, the students still showed high levels of acceptability. Level 2 showed there is no significant overall advantage of increased knowledge when it comes to TEL methods. One SR showed that certain aspects of study within orthodontics deliver a statistical improvement with TEL. Level 3 was the least reported on. Results showed that if left without time restrictions, TEL methods may be advantageous. Level 4 shows that both methods are equally as effective, but TEL has the potential to overtake traditional methods in the future as a form of active, student-centered approach. Conclusion TEL has a high level of acceptability and potential to improve learning in orthodontics. Current reviews have potential to be improved, but the biggest aspect that needs to be addressed is the primary study, which shows a lower level of evidence and heterogeneity in their results. As it stands, the replacement of traditional methods with TEL cannot be fully supported in an evidence-based manner. The potential of TEL methods has been recognized and is already starting to show some evidence of the ability to be more effective in some aspects of learning to cater for a more technology savvy generation.Keywords: TEL, orthodontic, teaching, traditional
Procedia PDF Downloads 428024 Impact of Blended Learning in Interior Architecture Programs in Academia: A Case Study of Arcora Garage Academy from Turkey
Authors: Arzu Firlarer, Duygu Gocmen, Gokhan Uysal
Abstract:
There is currently a growing trend among universities towards blended learning. Blended learning is becoming increasingly important in higher education, with the aims of better accomplishing course learning objectives, meeting students’ changing needs and promoting effective learning both in a theoretical and practical dimension like interior architecture discipline. However, the practical dimension of the discipline cannot be supported in the university environment. During the undergraduate program, the practical training which is tried to be supported by two different internship programs cannot fully meet the requirements of the blended learning. The lack of education program frequently expressed by our graduates and employers is revealed in the practical knowledge and skills dimension of the profession. After a series of meetings for curriculum studies, interviews with the chambers of profession, meetings with interior architects, a gap between the theoretical and practical training modules is seen as a problem in all interior architecture departments. It is thought that this gap can be solved by a new education model which is formed by the cooperation of University-Industry in the concept of blended learning. In this context, it is considered that theoretical and applied knowledge accumulation can be provided by the creation of industry-supported educational environments at the university. In the application process of the Interior Architecture discipline, the use of materials and technical competence will only be possible with the cooperation of industry and participation of students in the production/manufacture processes as observers and practitioners. Wood manufacturing is an important part of interior architecture applications. Wood productions is a sustainable structural process where production details, material knowledge, and process details can be observed in the most effective way. From this point of view, after theoretical training about wooden materials, wood applications and production processes are given to the students, practical training for production/manufacture planning is supported by active participation and observation in the processes. With this blended model, we aimed to develop a training model in which theoretical and practical knowledge related to the production of wood works will be conveyed in a meaningful, lasting way by means of university-industry cooperation. The project is carried out in Ankara with Arcora Architecture and Furniture Company and Başkent University Department of Interior Design where university-industry cooperation is realized. Within the scope of the project, every week the video of that week’s lecture is recorded and prepared to be disseminated by digital medias such as Udemy. In this sense, the program is not only developed by the project participants, but also other institutions and people who are trained and practiced in the field of design. Both academicians from University and at least 15-year experienced craftsmen in the wood metal and dye sectors are preparing new training reference documents for interior architecture undergraduate programs. These reference documents will be a model for other Interior Architecture departments of the universities and will be used for creating an online education module.Keywords: blended learning, interior design, sustainable training, effective learning.
Procedia PDF Downloads 1368023 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination
Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq
Abstract:
Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing
Procedia PDF Downloads 908022 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 156