Search results for: vertical in-plane shear strength capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9109

Search results for: vertical in-plane shear strength capacity

4609 The Fire Performance of Exposed Timber Panels

Authors: Bernice V. Y. Wong, Kong Fah Tee

Abstract:

Cross-laminated timber is increasingly being used in the construction of high-rise buildings due to its simple manufacturing system. In term of fire resistance, cross-laminated timber panels are promoted as having excellent fire resistance, comparable to that of non-combustible materials and to heavy timber construction, due to the ability of thick wood assemblies to char slowly at a predictable rate while maintaining most of their strength during the fire exposure. This paper presents an overview of fire performance of cross-laminated timber and evaluation of its resistance to elevated temperature in comparison to homogeneous timber panels. Charring rates for cross-laminated timber panels of those obtained experimentally were compared with those provided by Eurocode simplified calculation methods.

Keywords: timber structure, cross-laminated timber, charring rate, timber fire resistance

Procedia PDF Downloads 395
4608 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 steel, orthogonal array, optimization, surface roughness, Taguchi methodology

Procedia PDF Downloads 528
4607 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna

Authors: Amit Kumar Baghel, Sisir Kumar Nayak

Abstract:

The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.

Keywords: metamaterial, side lobe level, front to back ratio, beam forming

Procedia PDF Downloads 236
4606 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling

Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh

Abstract:

Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.

Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy

Procedia PDF Downloads 197
4605 Physical, Textural and Sensory Properties of Noodles Supplemented with Tilapia Bone Flour (Tilapia nilotica)

Authors: Supatchalee Sirichokworrakit

Abstract:

Fishbone of Nile tilapia (Tilapia nilotica), waste from the frozen Nile tilapia fillet factory, is one of calcium sources. In order to increase fish bone powder value, this study aimed to investigate the effect of tilapia bone flour (TBF) addition (5, 10, 15% by flour weight) on cooking quality, texture and sensory attributes of noodles. The results indicated that tensile strength, color value (a*) and water absorption of noodles significantly decreased (p≤0.05) as the levels of TBF increased from 0-15%. While cooking loss, cooking time and color values (L* and b*) of noodles significantly increased (p≤0.05). Sensory evaluation indicated that noodles with 5% TBF received the highest overall acceptability score.

Keywords: tilapia bone flour, noodles, cooking quality, calcium

Procedia PDF Downloads 392
4604 Modeling of Anode Catalyst against CO in Fuel Cell Using Material Informatics

Authors: M. Khorshed Alam, H. Takaba

Abstract:

The catalytic properties of metal usually change by intermixturing with another metal in polymer electrolyte fuel cells. Pt-Ru alloy is one of the much-talked used alloy to enhance the CO oxidation. In this work, we have investigated the CO coverage on the Pt2Ru3 nanoparticle with different atomic conformation of Pt and Ru using a combination of material informatics with computational chemistry. Density functional theory (DFT) calculations used to describe the adsorption strength of CO and H with different conformation of Pt Ru ratio in the Pt2Ru3 slab surface. Then through the Monte Carlo (MC) simulations we examined the segregation behaviour of Pt as a function of surface atom ratio, subsurface atom ratio, particle size of the Pt2Ru3 nanoparticle. We have constructed a regression equation so as to reproduce the results of DFT only from the structural descriptors. Descriptors were selected for the regression equation; xa-b indicates the number of bonds between targeted atom a and neighboring atom b in the same layer (a,b = Pt or Ru). Terms of xa-H2 and xa-CO represent the number of atoms a binding H2 and CO molecules, respectively. xa-S is the number of atom a on the surface. xa-b- is the number of bonds between atom a and neighboring atom b located outside the layer. The surface segregation in the alloying nanoparticles is influenced by their component elements, composition, crystal lattice, shape, size, nature of the adsorbents and its pressure, temperature etc. Simulations were performed on different size (2.0 nm, 3.0 nm) of nanoparticle that were mixing of Pt and Ru atoms in different conformation considering of temperature range 333K. In addition to the Pt2Ru3 alloy we also considered pure Pt and Ru nanoparticle to make comparison of surface coverage by adsorbates (H2, CO). Hence, we assumed the pure and Pt-Ru alloy nanoparticles have an fcc crystal structures as well as a cubo-octahedron shape, which is bounded by (111) and (100) facets. Simulations were performed up to 50 million MC steps. From the results of MC, in the presence of gases (H2, CO), the surfaces are occupied by the gas molecules. In the equilibrium structure the coverage of H and CO as a function of the nature of surface atoms. In the initial structure, the Pt/Ru ratios on the surfaces for different cluster sizes were in range of 0.50 - 0.95. MC simulation was employed when the partial pressure of H2 (PH2) and CO (PCO) were 70 kPa and 100-500 ppm, respectively. The Pt/Ru ratios decrease as the increase in the CO concentration, without little exception only for small nanoparticle. The adsorption strength of CO on the Ru site is higher than the Pt site that would be one of the reason for decreasing the Pt/Ru ratio on the surface. Therefore, our study identifies that controlling the nanoparticle size, composition, conformation of alloying atoms, concentration and chemical potential of adsorbates have impact on the steadiness of nanoparticle alloys which ultimately and also overall catalytic performance during the operations.

Keywords: anode catalysts, fuel cells, material informatics, Monte Carlo

Procedia PDF Downloads 176
4603 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals

Authors: Ying-chang Yu, Yuan-lung Lo

Abstract:

More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.

Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss

Procedia PDF Downloads 122
4602 UV Functionalised Short Implants as an Alternative to Avoid Crestal Sinus Lift Procedure: Controlled Case Series

Authors: Naira Ghambaryan, Gagik Hakobyan

Abstract:

Purpose:The study was to evaluate the survival rate of short implants (5-6 mm) functionalized with UV radiation placed in the posterior segments of the atrophied maxilla. Materials and Methods:The study included 47 patients with unilateral/bilateral missing teeth and vertical atrophy of the posterior maxillary area. A total of 64 short UV-functionalized implants and 62 standard implants over 10 mm in length were placed in patients. The clinical indices included the following parameters: ISQБ MBL, OHIP-G scale. Results: For short implants, the median ISQ at placement was 62.2 for primary stability, and the median ISQ at 5 months was 69.6 ISQ. For standart implant, the mean ISQ at placement was 64.3 ISQ, and ISQ after 5 months was 71.6 ISQ. Аfter 6 months mean MBL short implants 0.87 mm, after 1 year, 1.13 mm, after 5 year was 1.48 mm. Аfter 6 months, mean MBL standard implants 0.84 mm, after 1 year, 1.24 mm, after 5 year was 1.58 mm. Mean OHIP-G scores -patients satisfaction with the implant at 4.8 ± 0.3, satisfaction with the operation 4.6 ± 0.4; satisfaction with prosthetics 4.7 ± 0.5. Cumulative 5-year short implants rates was 96.7%, standard implants was 97.4%, and prosthesis cumulative survival rate was 97.2%. Conclusions: Short implants with ultraviolet functionalization for prosthetic rehabilitation of the posterior resorbed maxilla region is a reliable, reasonable alternative to sinus lift, demonstrating fewer complications, satisfactory survival of a 5-year follow-up period, and reducing the number of additional surgical interventions and postoperative complications.

Keywords: short implant, ultraviolet functionalization, atrophic posterior maxilla, prosthodontic rehabilitation

Procedia PDF Downloads 64
4601 The Effect of the Incorporation of Glass Powder into Cement Sorel

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement.

Keywords: cement sorel, photothermal deflection technique, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 408
4600 Spatial Variation of Groundwater Potential at Erusu-Arigidi in Ondo State

Authors: Onifade Yemi Sikiru, Vwoke Eruya

Abstract:

An investigation has been made of the groundwater potentials of Erusu-Arigidi, Ondo State, Nigeria and using an electrical resistivity survey. This study was motivated to determine the electrical resistivity parameters of the area. This work aims to use the electrical resistivity method to explore the groundwater potentials of the study area. A total of ten vertical electrical soundings (VES) were conducted with a maximum electrode spacing of 150 m. The data was acquired using ABEM SAS 1000 Terrameter and processed using WINRESIST. The interpreted and analyzed results reveal four to six geoelectric layers. The VES curves obtained were QH, H, AAA, HKH, and HA. Findings from the study revealed that the geoelectric layer ranges from 3 to 5 layers. From the result, the Dar Zarrouk parameters longitudinal conductance (S) and transverse resistance (Tr), average longitudinal resistance (), transverse resistivity (), coefficient of anisotropy (λ), and reflection coefficient ranges from 0.22 to 1.45mhos, 67.12 to 4262.91 Ω/m², 8.81 to 76.12 Ω-m, 12.0 to 243.5 Ωm², 1.01 to 1.78, and 0.72 to 0.99 respectively. Deduction from S suggested that groundwater tends to be slightly vulnerable to surface contamination. Further findings from Dar Zarrouk parameters revealed that southwest parts of the study area tend to have high groundwater potential when compared to other parts of the study area. While hydraulic conductivity and transmissivity range from 0.003 to 0.051m/day, and 11.16 to 158.30m²/day, results obtained from H and T revealed northwest parts of the study area are considered to be aquiferous when compared to other parts of the research area.

Keywords: variation, isoresistivity, hydraulic conductivity, groundwater

Procedia PDF Downloads 63
4599 Sustainability of Vernacular Architecture in Zegalli Houses in Northern Iran with Emphasis on Their Seismic Behavior

Authors: Mona Zaryoun, Mahmood Hosseini, Seyed Mohammad Hassan Khalkhali, Haniyeh Okhovat

Abstract:

Zegalli houses in Guilan province, northern Iran, are a type of vernacular houses which their foundation, skeleton and walls all have been made of wood. The only houses which could survive the major Manjil-Rudbar earthquake of 1990 with a magnitude of 7.2 were these houses. Regarding this fact, some researchers started thinking of this type of foundations used in these houses to benefit from rocking-wise behavior. On the one hand, the relatively light weight of the houses, have helped these houses to withstand well against seismic excitations. In this paper at first a brief description of Zegalli houses and their architectural features, with emphasis on their foundation is presented. in the next stage foundation of one of these houses is modeled as a sample by a using a computer program, which has been developed in MATLAB environment, and by using the horizontal and vertical accelerograms of a set of selected site compatible earthquakes, a series of time history analysis (THA) are carried out to investigate the behavior of this type of houses against earthquake. Based on numerical results of THA it can be said that even without no sliding at the foundation timbers, only due to the rocking which occurs in various levels of the foundation the seismic response of the house is significantly reduced., which results in their stability subjected to earthquakes with peak ground acceleration of around 0.35g. Therefore, it can be recommended the Zegalli houses are considered as sustainable Iranian vernacular architecture, and it can be recommended that the use of these houses and their architecture and their structural merits are reconsidered by architects as well as civil and structural engineers.

Keywords: MATLAB software, rocking behavior, time history analysis, Zegalli houses

Procedia PDF Downloads 273
4598 Light Weight Mortars Produced from Recycled Foam

Authors: Siwat Kamonkunanon

Abstract:

This paper presents results of an experimental study on the use of recycled foam with cement-based mixtures to produce light weight mortar. Several mortar grades were obtained by mixing cement with different amounts of recycled foam, aggregate and water. The physical and mechanical properties of the samples such as density, thermal conductivity, thermal resistivity and compressive strength were investigated. Results show that an increase in the amount of recycled foam affects the mortar, decreasing its density and mechanical properties while increasing its workability, permeability, and occluded air content. These results confirm that mortar produced with recycled foam is comparable to light weight mortar made with traditional materials.

Keywords: light weight, mortars, recycled foam, civil engineering

Procedia PDF Downloads 291
4597 Farm Diversification and the Corresponding Policy for Its Implementation in Georgia

Authors: E. Kharaishvili

Abstract:

The paper shows the necessity of farm diversification in accordance with the current trends in agricultural sector of Georgia. The possibilities for the diversification and the corresponding economic policy are suggested. The causes that hinder diversification of farms are revealed, possibilities of diversification are suggested and the ability of increasing employment through diversification is proved. Index of harvest diversification is calculated based on the areas used for cereals and legumes, potatoes and vegetables and other food crops. Crop and livestock production indexes are analyzed, correlation between crop capacity index and value-added per one worker and one ha is studied. Based on the research farm diversification strategies and priorities of corresponding economic policy are presented. Based on the conclusions relevant recommendations are suggested.

Keywords: farm diversification, diversification index, agricultural development policy

Procedia PDF Downloads 448
4596 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils

Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.

Keywords: copper, Klara, lime, N100, phytoextraction

Procedia PDF Downloads 133
4595 Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation

Authors: Y. C. Ching, K. H. Chong

Abstract:

The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed.

Keywords: kenaf fiber, polyester, tensile, thermal stability

Procedia PDF Downloads 343
4594 Experimental and Finite Element Forming Limit Diagrams for Interstitial Free Steels

Authors: Basavaraj Vadavadagi, Satishkumar Shekhawat

Abstract:

Interstitial free steels posses better formability and have many applications in automotive industries. Forming limit diagrams (FLDs) indicate the formability of materials which can be determined by experimental and finite element (FE) simulations. FLDs were determined experimentally by LDH test, utilizing optical strain measurement system for measuring the strains in different width specimens and by FE simulations in Interstitial Free (IF) and Interstitial Free High Strength (IFHS) steels. In this study, the experimental and FE simulated FLDs are compared and also the stress based FLDs were investigated.

Keywords: forming limit diagram, limiting dome height, optical strain measurement, interstitial

Procedia PDF Downloads 209
4593 Boundary Conditions for 2D Site Response Analysis in OpenSees

Authors: M. Eskandarighadi, C. R. McGann

Abstract:

It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristicssuch as frequency content, amplitude, and duration of seismic waves. The most common method for investigating site response is one-dimensional seismic site response analysis. The infinite horizontal length of the model and the homogeneous characteristic of the soil are crucial assumptions of this method. One boundary condition that can be used in the sides is tying the sides horizontally for vertical 1D wave propagation. However, 1D analysis cannot account for the 2D nature of wave propagation in the condition where the soil profile is not fully horizontal or has heterogeneity within layers. Therefore, 2D seismic site response analysis can be used to take all of these limitations into account for a better understanding of local site conditions. Different types of boundary conditions can be appliedin 2D site response models, such as tied boundary condition, massive columns, and free-field boundary condition. The tied boundary condition has been used in 1D analysis, which is useful for 1D wave propagation. Employing two massive columns at the sides is another approach for capturing the 2D nature of wave propagation. Free-field boundary condition can simulate the free-field motion that would exist far from the domain of interest. The goal for free-field boundary condition is to minimize the unwanted reflection from sides. This research focuses on the comparison between these methods with examples and discusses the details and limitations of each of these boundary conditions.

Keywords: boundary condition, free-field, massive columns, opensees, site response analysis, wave propagation

Procedia PDF Downloads 150
4592 Seismic Fragility Assessment of Continuous Integral Bridge Frames with Variable Expansion Joint Clearances

Authors: P. Mounnarath, U. Schmitz, Ch. Zhang

Abstract:

Fragility analysis is an effective tool for the seismic vulnerability assessment of civil structures in the last several years. The design of the expansion joints according to various bridge design codes is almost inconsistent, and only a few studies have focused on this problem so far. In this study, the influence of the expansion joint clearances between the girder ends and the abutment backwalls on the seismic fragility assessment of continuous integral bridge frames is investigated. The gaps (ranging from 60 mm, 150 mm, 250 mm and 350 mm) are designed by following two different bridge design code specifications, namely, Caltrans and Eurocode 8-2. Five bridge models are analyzed and compared. The first bridge model serves as a reference. This model uses three-dimensional reinforced concrete fiber beam-column elements with simplified supports at both ends of the girder. The other four models also employ reinforced concrete fiber beam-column elements but include the abutment backfill stiffness and four different gap values. The nonlinear time history analysis is performed. The artificial ground motion sets, which have the peak ground accelerations (PGAs) ranging from 0.1 g to 1.0 g with an increment of 0.05 g, are taken as input. The soil-structure interaction and the P-Δ effects are also included in the analysis. The component fragility curves in terms of the curvature ductility demand to the capacity ratio of the piers and the displacement demand to the capacity ratio of the abutment sliding bearings are established and compared. The system fragility curves are then obtained by combining the component fragility curves. Our results show that in the component fragility analysis, the reference bridge model exhibits a severe vulnerability compared to that of other sophisticated bridge models for all damage states. In the system fragility analysis, the reference curves illustrate a smaller damage probability in the earlier PGA ranges for the first three damage states, they then show a higher fragility compared to other curves in the larger PGA levels. In the fourth damage state, the reference curve has the smallest vulnerability. In both the component and the system fragility analysis, the same trend is found that the bridge models with smaller clearances exhibit a smaller fragility compared to that with larger openings. However, the bridge model with a maximum clearance still induces a minimum pounding force effect.

Keywords: expansion joint clearance, fiber beam-column element, fragility assessment, time history analysis

Procedia PDF Downloads 418
4591 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor

Procedia PDF Downloads 72
4590 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.

Keywords: open channel flow, Reynolds Number, roughness, turbulence

Procedia PDF Downloads 390
4589 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.

Keywords: earthquake, environment, reconstruction, sustainability

Procedia PDF Downloads 101
4588 Characteristics of Interaction Forces Acting on a Newly-Design Rotary Blade for Thai Walking Tractor

Authors: Sirisak Choedkiatphon, Tanya Niyamapa

Abstract:

This research aimed to indeed understand the soil-rotary blade interaction of the newly-design rotary blade for Thai walking tractor. Therefore, this study was carried out to clarify the characteristics of the horizontal and the vertical forces and the moment around a rotary shaft of prototype rotary blade 15 lengthwise slice angle. It was set up and tested in laboratory soil bin at Kasetsart University under sandy loam and clay soil at soil dry bulk density and soil specific weight of 9.81 kN/m3 and 11.3% (d.b.), respectively. The tests were conducted at travel speeds of 0.069 and 0.142 m/s and rotational speeds of 150, 250 and 350 rpm. The characteristic of pushing-forward and lifting-up forces and moment around a rotor shaft were obtained by using the EOR transducer. Also, the acting point of resultant force of these soil-blade reaction forces was determined. The pushing-forward and lifting-up forces, moment around a rotor shaft and resultant force increased at higher travel speed and higher soil moisture content. In tilling stage, the acting points of resultant force located inside the circumstance of the blade locus. The results showed that the variation of magnitude and direction of pushing-forward, lifting-up and resultant forces corresponded to soil-blade interaction of the newly-design in tilling stage.

Keywords: rotary blde, soil-blade interaction, walking tractor, clay, sandy loam

Procedia PDF Downloads 195
4587 Analysis of Operation System Reorganization for Load Balancing of Parcel Sorting

Authors: J. H. Lee

Abstract:

As the internet and smartphone use increases, the E-Commerce is constantly growing. Therefore, the parcel is increasing continuously every year. If the larger amount than the processing capacity of the current facilities is received, they do not process, and the delivery quality becomes low. In this paper, therefore, we analyze comparatively at the cost perspective between the case of building a new facility for the increasing parcel volumes and the case of reorganizing the current operating system. We propose the optimal discount policy per parcel by calculating the construction cost of new automated facility and manual facilities until the construction of the new automated facility, and discount price.

Keywords: system reorganization, load balancing, parcel sorting, discount policy

Procedia PDF Downloads 252
4586 Innovative Acoustic Emission Techniques for Concrete Health Monitoring

Authors: Rahmat Ali, Beenish Khan, Aftabullah, Abid A. Shah

Abstract:

This research is an attempt to investigate the wide range of events using acoustic emission (AE) sensors of the concrete cubes subjected to different stress condition loading and unloading of concrete cubes. A total of 27 specimens were prepared and tested including 18 cubic (6”x6”x6”) and nine cylindrical (4”x8”) specimens were molded from three batches of concrete using w/c of 0.40, 0.50, and 0.60. The compressive strength of concrete was determined from concrete cylinder specimens. The deterioration of concrete was evaluated using the occurrence of felicity and Kaiser effects at each stress condition. It was found that acoustic emission hits usually exceeded when damage increases. Additionally, the correlation between AE techniques and the load applied were determined by plotting the normalized values. The influence of w/c on sensitivity of the AE technique in detecting concrete damages was also investigated.

Keywords: acoustic emission, concrete, felicity ratio, sensors

Procedia PDF Downloads 338
4585 Numerical Investigation of the Bio-fouling Roughness Effect on Tidal Turbine

Authors: O. Afshar

Abstract:

Unlike other renewable energy sources, tidal current energy is an extremely reliable, predictable and continuous energy source as the current pattern and speed can be predicted throughout the year. A key concern associated with tidal turbines is their long-term reliability when operating in the hostile marine environment. Bio-fouling changes the physical shape and roughness of turbine components, hence altering the overall turbine performance. This paper seeks to employ Computational Fluid Dynamics (CFD) method to quantify the effects of this problem based on the obtained flow field information. The simulation is carried out on a NACA 63-618 aerofoil. The Reynolds Averaged Navier-Stokes (RANS) equations with Shear Stress Transport (SST) turbulent model are used to simulate the flow around the model. Different levels of fouling are studied on 2D aerofoil surface with quantified fouling height and density. In terms of lift and drag coefficient results, numerical results show good agreement with the experiment which was carried out in wind tunnel. Numerical results of research indicate that an increase in fouling thickness causes an increase in drag coefficient and a reduction in lift coefficient. Moreover, pressure gradient gradually becomes adverse as height of fouling increases. In addition, result by turbulent kinetic energy contour reveals it increases with fouling height and it extends into wake due to flow separation.

Keywords: tidal energy, lift coefficient, drag coefficient, roughness

Procedia PDF Downloads 368
4584 Soil Penetration Resistance and Water Content Spatial Distribution Following Different Tillage and Crop Rotation in a Chinese Mollisol

Authors: Xuewen Chen, Aizhen Liang, Xiaoping Zhang

Abstract:

To better understand the spatial variability of soil penetration resistance (SPR) and soil water content (SWC) induced by different tillage and crop rotation in a Mollisol of Northeast China, the soil was sampled from the tillage experiment which was established in Dehui County, Jilin Province, Northeast China, in 2001. Effect of no-tillage (NT), moldboard plow (MP) and ridge tillage (RT) under corn-soybean rotation (C-S) and continuous corn (C-C) system on SPR and SWC were compared with horizontal and vertical variations. The results showed that SPR and SWC spatially varied across the ridge. SPR in the rows was higher than inter-rows, especially in topsoil (2.5-15 cm) of NT and RT plots. SPR of MP changed in the trend with the curve-shaped ridge. In contrast to MP, NT, and RT resulted in average increment of 166.3% and 152.3% at a depth of 2.5-17.5 cm in the row positions, respectively. The mean SPR in topsoil in the rows means soil compaction is not the main factor limiting plant growth and crop yield. SPR in the row of RT soil was lower than NT at a depth of 2.5-12.5 cm. The SWC in NT and RT soil was highest in the inter-rows and least in the rows or shoulders, respectively. However, the lateral variation trend of MP was opposite to NT. From the profile view of SWC, MP was greater than NT and RT in 0-20 cm of the rows. SWC in RT soil was higher than NT in the row of 0-20 cm. Crop rotation did not have a marked impact on SPR and SWC. In addition to the tillage practices, the factor which affects SPR greatly was depth but not position. These two factors have significant effects on SWC. These results indicated that the adoption of RT was a more suitable conservation tillage practices than NT in the black soil of Northeast China.

Keywords: row, soil penetration resistance, spatial variability, tillage practice

Procedia PDF Downloads 115
4583 A Quantitative Study on the “Unbalanced Phenomenon” of Mixed-Use Development in the Central Area of Nanjing Inner City Based on the Meta-Dimensional Model

Authors: Yang Chen, Lili Fu

Abstract:

Promoting urban regeneration in existing areas has been elevated to a national strategy in China. In this context, because of the multidimensional sustainable effect through the intensive use of land, mixed-use development has become an important objective for high-quality urban regeneration in the inner city. However, in the long period of time since China's reform and opening up, the "unbalanced phenomenon" of mixed-use development in China's inner cities has been very serious. On the one hand, the excessive focus on certain individual spaces has led to an increase in the level of mixed-use development in some areas, substantially ahead of others, resulting in a growing gap between different parts of the inner city; On the other hand, the excessive focus on a one-dimensional element of the spatial organization of mixed-use development, such as the enhancement of functional mix or spatial capacity, has led to a lagging phenomenon or neglect in the construction of other dimensional elements, such as pedestrian permeability, green environmental quality, social inclusion, etc. This phenomenon is particularly evident in the central area of the inner city, and it clearly runs counter to the need for sustainable development in China's new era. Therefore, a rational qualitative and quantitative analysis of the "unbalanced phenomenon" will help to identify the problem and provide a basis for the formulation of relevant optimization plans in the future. This paper builds a dynamic evaluation method of mixed-use development based on a meta-dimensional model and then uses spatial evolution analysis and spatial consistency analysis with ArcGIS software to reveal the "unbalanced phenomenon " in over the past 40 years of the central city area in Nanjing, a China’s typical city facing regeneration. This study result finds that, compared to the increase in functional mix and capacity, the dimensions of residential space mix, public service facility mix, pedestrian permeability, and greenness in Nanjing's city central area showed different degrees of lagging improvement, and the unbalanced development problems in each part of the city center are different, so the governance and planning plan for future mixed-use development needs to fully address these problems. The research methodology of this paper provides a tool for comprehensive dynamic identification of mixed-use development level’s change, and the results deepen the knowledge of the evolution of mixed-use development patterns in China’s inner cities and provide a reference basis for future regeneration practices.

Keywords: mixed-use development, unbalanced phenomenon, the meta-dimensional model, over the past 40 years of Nanjing, China

Procedia PDF Downloads 85
4582 Robotic Logging Technology: The Future of Oil Well Logging

Authors: Nitin Lahkar, Rishiraj Goswami

Abstract:

“Oil Well Logging” or the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole is an important practice in the Oil and Gas industry. Although a lot of research has been undertaken in this field, some basic limitations still exist. One of the main arenas or venues where plethora of problems arises is in logistically challenged areas. Accessibility and availability of efficient manpower, resources and technology is very time consuming, restricted and often costly in these areas. So, in this regard, the main challenge is to decrease the Non Productive Time (NPT) involved in the conventional logging process. The thought for the solution to this problem has given rise to a revolutionary concept called the “Robotic Logging Technology”. Robotic logging technology promises the advent of successful logging in all kinds of wells and trajectories. It consists of a wireless logging tool controlled from the surface. This eliminates the need for the logging truck to be summoned which in turn saves precious rig time. The robotic logging tool here, is designed such that it can move inside the well by different proposed mechanisms and models listed in the full paper as TYPE A, TYPE B and TYPE C. These types are classified on the basis of their operational technology, movement and conditions/wells in which the tool is to be used. Thus, depending on subsurface conditions, energy sources available and convenience the TYPE of Robotic model will be selected. Advantages over Conventional Logging Techniques: Reduction in Non-Productive time, lesser energy requirements, very fast action as compared to all other forms of logging, can perform well in all kinds of well trajectories (vertical/horizontal/inclined).

Keywords: robotic logging technology, innovation, geology, geophysics

Procedia PDF Downloads 282
4581 Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties

Authors: Roshank Haghighat, Laleh Maleknia

Abstract:

In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing.

Keywords: electrospinning, hydrophilicity, antimicrobial, nanocomposite, nylon-6/TiO2

Procedia PDF Downloads 334
4580 Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer

Authors: Bhavya Tripathi, Bhupendra Kumar Sharma

Abstract:

In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients.

Keywords: two phase blood flow, radiation, magnetohydrodynamics (MHD), stenosis

Procedia PDF Downloads 183