Search results for: chemical vapour deposition
805 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective
Authors: Pallavi Gajjar, Vinayak Malhotra
Abstract:
Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.Keywords: combustion, acoustic energy, external energy sources, regression rate
Procedia PDF Downloads 144804 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications
Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand
Abstract:
Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate
Procedia PDF Downloads 109803 Sustainable Ecological Agricultural Systems in Bangladesh: Environmental, Economic and Social Perspective of Compost
Authors: Protima Chakraborty
Abstract:
The sustainability of conventional agriculture in Bangladesh is under threat from the continuous degradation of land and water resources, and from declining yields due to indiscriminate use of agrochemicals. NASL (Northern Agro Services Limited) is pursuing efforts to promote ecological agriculture with emphasis on better use of organic fertilizer resources and the reduction of external inputs. This paper examines the sustainability of two production systems in terms of their environmental soundness, economic viability and social acceptability based on empirical data collected through making demonstration land cultivation, a household survey, soil sample analysis, observations and discussions with key informants. Twelve indicators were selected to evaluate sustainability. Significant differences were found between the two systems in crop diversification, soil fertility management, pests and diseases management, and use of agrochemicals & Organic Compost. However, significant variations were found in other indicators such as land-use pattern, crop yield and stability, risk and uncertainties, and food security. Although crop yield and financial return were found to be slightly higher in the ecological system, the economic return and value addition per unit of land show the positive difference of using compost rather than chemical fertilizer. The findings suggest that ecological agriculture has a tendency towards becoming ecologically, economically and socially more sound than conventional agriculture, as it requires considerably fewer agro-chemicals, adds more organic matter to the soil, provides balanced food, and requires higher local inputs without markedly compromising output and financial benefits. Broad-policy measures, including the creation of mass awareness of adverse health effects of agrochemical-based products, are outlined for the promotion of ecological agriculture.Keywords: Bangladesh, compost, conventional agriculture, organic fertilizer, environmental sustainability, economic viability, social acceptability
Procedia PDF Downloads 246802 Investigation of the Technological Demonstrator 14x B in Different Angle of Attack in Hypersonic Velocity
Authors: Victor Alves Barros Galvão, Israel Da Silveira Rego, Antonio Carlos Oliveira, Paulo Gilberto De Paula Toro
Abstract:
The Brazilian hypersonic aerospace vehicle 14-X B, VHA 14-X B, is a vehicle integrated with the hypersonic airbreathing propulsion system based on supersonic combustion (scramjet), developing in Aerothermodynamics and hypersonic Prof. Henry T. Nagamatsu Laboratory, to conduct demonstration in atmospheric flight at the speed corresponding to Mach number 7 at an altitude of 30km. In the experimental procedure the hypersonic shock tunnel T3 was used, installed in that laboratory. This device simulates the flow over a model is fixed in the test section and can also simulate different atmospheric conditions. The scramjet technology offers substantial advantages to improve aerospace vehicle performance which flies at a hypersonic speed through the Earth's atmosphere by reducing fuel consumption on board. Basically, the scramjet is an aspirated aircraft engine fully integrated that uses oblique/conic shock waves generated during hypersonic flight, to promote the deceleration and compression of atmospheric air in scramjet inlet. During the hypersonic flight, the vehicle VHA 14-X will suffer atmospheric influences, promoting changes in the vehicle's angles of attack (angle that the mean line of vehicle makes with respect to the direction of the flow). Based on this information, a study is conducted to analyze the influences of changes in the vehicle's angle of attack during the atmospheric flight. Analytical theoretical analysis, simulation computational fluid dynamics and experimental investigation are the methodologies used to design a technological demonstrator prior to the flight in the atmosphere. This paper considers analysis of the thermodynamic properties (pressure, temperature, density, sound velocity) in lower surface of the VHA 14-X B. Also, it considers air as an ideal gas and chemical equilibrium, with and without boundary layer, considering changes in the vehicle's angle of attack (positive and negative in relation to the flow) and bi-dimensional expansion wave theory at the expansion section (Theory of Prandtl-Meyer).Keywords: angle of attack, experimental hypersonic, hypersonic airbreathing propulsion, Scramjet
Procedia PDF Downloads 412801 Design, Synthesis, and Catalytic Applications of Functionalized Metal Complexes and Nanomaterials for Selective Oxidation and Coupling Reactions
Authors: Roghaye Behroozi
Abstract:
The development of functionalized metal complexes and nanomaterials has gained significant attention due to their potential in catalyzing selective oxidation and coupling reactions. These catalysts play a crucial role in various industrial and pharmaceutical processes, enhancing the efficiency, selectivity, and sustainability of chemical reactions. This research aims to design and synthesize new functionalized metal complexes and nanomaterials to explore their catalytic applications in the selective oxidation of alcohols and coupling reactions, focusing on improving yield, selectivity, and catalyst reusability. The study involves the synthesis of a nickel Schiff base complex stabilized within 41-MCM as a heterogeneous catalyst. A Schiff base ligand derived from glycine was used to create a tin (IV) metal complex characterized through spectroscopic techniques and computational analysis. Additionally, iron-based magnetic nanoparticles functionalized with melamine were synthesized for catalytic evaluation. Lastly, a palladium (IV) complex was prepared, and its oxidative stability was analyzed. The nickel Schiff base catalyst showed high selectivity in converting primary and secondary alcohols to aldehydes and ketones, with yields ranging from 73% to 90%. The tin (IV) complex demonstrated accurate structural and electronic properties, with consistent results between experimental and computational data. The melamine-functionalized iron nanoparticles exhibited efficient catalytic activity in producing triazoles, with enhanced reaction speed and reusability. The palladium (IV) complex displayed remarkable stability and low reactivity towards C–C bond formation due to its symmetrical structure. The synthesized metal complexes and nanomaterials demonstrated significant potential as efficient, selective, and reusable catalysts for oxidation and coupling reactions. These findings pave the way for developing environmentally friendly and cost-effective catalytic systems for industrial applications.Keywords: catalysts, Schiff base complexes, metal-organic frameworks, oxidation reactions, nanoparticles, reusability
Procedia PDF Downloads 23800 Prediction of Ionic Liquid Densities Using a Corresponding State Correlation
Authors: Khashayar Nasrifar
Abstract:
Ionic liquids (ILs) exhibit particular properties exemplified by extremely low vapor pressure and high thermal stability. The properties of ILs can be tailored by proper selection of cations and anions. As such, ILs are appealing as potential solvents to substitute traditional solvents with high vapor pressure. One of the IL properties required in chemical and process design is density. In developing corresponding state liquid density correlations, scaling hypothesis is often used. The hypothesis expresses the temperature dependence of saturated liquid densities near the vapor-liquid critical point as a function of reduced temperature. Extending the temperature dependence, several successful correlations were developed to accurately correlate the densities of normal liquids from the triple point to a critical point. Applying mixing rules, the liquid density correlations are extended to liquid mixtures as well. ILs are not molecular liquids, and they are not classified among normal liquids either. Also, ILs are often used where the condition is far from equilibrium. Nevertheless, in calculating the properties of ILs, the use of corresponding state correlations would be useful if no experimental data were available. With well-known generalized saturated liquid density correlations, the accuracy in predicting the density of ILs is not that good. An average error of 4-5% should be expected. In this work, a data bank was compiled. A simplified and concise corresponding state saturated liquid density correlation is proposed by phenomena-logically modifying reduced temperature using the temperature-dependence for an interacting parameter of the Soave-Redlich-Kwong equation of state. This modification improves the temperature dependence of the developed correlation. Parametrization was next performed to optimize the three global parameters of the correlation. The correlation was then applied to the ILs in our data bank with satisfactory predictions. The correlation of IL density applied at 0.1 MPa and was tested with an average uncertainty of around 2%. No adjustable parameter was used. The critical temperature, critical volume, and acentric factor were all required. Methods to extend the predictions to higher pressures (200 MPa) were also devised. Compared to other methods, this correlation was found more accurate. This work also presents the chronological order of developing such correlations dealing with ILs. The pros and cons are also expressed.Keywords: correlation, corresponding state principle, ionic liquid, density
Procedia PDF Downloads 131799 The Comparison between bFGF and Small Molecules in Derivation of Chicken Primordial Germ Cells and Embryonic Germ Cells
Authors: Maryam Farzaneh, Seyyedeh Nafiseh Hassani, Hossein Baharvand
Abstract:
Objective: Chicken gonadal tissue has a two population such primordial germ cells (PGCs) and stromal cells (somatic cells). PGCs and embryonic germ cells (EGCs) that is a pluripotent type of PGCs in long-term culture are suitable sources for the production of chicken pluripotent stem cell lines, transgenic birds, vaccine and recombinant protein production. In general, the effect of growth factors such bFGF and mouse LIF on derivation of PGCs in vitro are important and in this study we could see the unique effect of small molecules such PD032 and SB43 as a chemical, in comparison to growth factors. Materials and Methods: After incubation of fertilized chicken egg up to 6 days and isolation of primary gonadal tissues and culture of mixed cells like PGCs and stromal cells. PGCs proliferate in the present of fetal calf serum (FCS) and small molecules and in another group bFGF, that these factors are important for PGCs culture and derivation. Somatic cells produce a multilayer feeder under the PGCs in primary culture and PGCs make a small cluster under these cells. Results: In present of small molecules and high volume of FCS (15%), the present of EGCs as a pluripotent stem cells were clear four weeks, that they had a positive immune-staining and periodic acid-Schiff staining (PAS), but in present of growth factors like bFGF without any chemicals, the present of PGCs were clear but after 7 until 10 days, there were disappear. Conclusion: Until now we have seen many researches about derivation and maintenance of chicken PGCs, in the hope of understanding the mechanisms that occur during germline development and production of a therapeutic product by transgenic birds. There are still many unknowns in this area and this project will try to have efficient conditions for identification of suitable culture medium for long-term culture of PGCs in vitro without serum and feeder cells.Keywords: chicken gonadal primordial germ cells, pluripotent stem cells, growth factors, small molecules, transgenic birds
Procedia PDF Downloads 439798 Beneficial Effects of Curcumin against Stress Oxidative and Mitochondrial Dysfunction Induced by Trinitrobenzene Sulphonic Acid in Colon
Authors: Souad Mouzaoui, Bahia Djerdjouri
Abstract:
Oxidative stress is one of the main factors involved in the onset and chronicity of inflammatory bowel disease (IBD). In this study, we investigated the beneficial effects of a potent natural antioxidant, curcumin (Cur) on colitis and mitochondrial dysfunction in trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Rectal instillation of the chemical irritant TNBS (30 mg kg-1) induced the disruption of distal colonic architecture and a massive inflammatory cells influx to the mucosa and submucosa layers. Under these conditions, daily administration of Cur (25 mg kg-1) efficiently decreased colitis scores in the inflamed distal colon by reducing leukocyte infiltrate as attested by reduced myeloperoxidase (MPO) activity. Moreover, the levels of nitrite, an end product of inducible NO synthase activity (iNOS) and malonyl dialdehyde (MDA), a marker of lipid peroxidation increased in a time depending manner in response to TNBS challenge. Conversely, the markers of the antioxidant pool, reduced glutathione (GSH) and catalase activity (CAT) were drastically reduced. Cur attenuated oxidative stress markers and partially restored CAT and GSH levels. Moreover, our results expanded the effect of Cur on TNBS-induced colonic mitochondrial dysfunction. In fact, TNBS induced mitochondrial swelling and lipids peroxidation. These events reflected in the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. TNBS inhibited also mitochondrial respiratory activity, caused overproduction of mitochondrial superoxide anion (O2-.) and reduced level of mitochondrial GSH. Nevertheless, Cur reduced the extent of mitochondrial oxidative stress induced by TNBS and restored colonic mitochondrial function. In conclusion, our results showed the critical role of oxidative stress in TNBS-induced colitis. They highlight the role of colonic mitochondrial dysfunction induced by TNBS, as a potential source of oxidative damages. Due to its potent antioxidant properties, Cur opens a promising therapeutic approach against oxidative inflammation in IBD.Keywords: colitis, curcumin, mitochondria, oxidative stress, TNBS
Procedia PDF Downloads 255797 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food
Authors: Paulomi (Polly) Burey, Zoe Lynch
Abstract:
In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.Keywords: chemistry, food science, future pedagogy, STEM Education
Procedia PDF Downloads 160796 Bioengineering of a Plant System to Sustainably Remove Heavy Metals and to Harvest Rare Earth Elements (REEs) from Industrial Wastes
Authors: Edmaritz Hernandez-Pagan, Kanjana Laosuntisuk, Alex Harris, Allison Haynes, David Buitrago, Michael Kudenov, Colleen Doherty
Abstract:
Rare Earth Elements (REEs) are critical metals for modern electronics, green technologies, and defense systems. However, due to their dispersed nature in the Earth’s crust, frequent co-occurrence with radioactive materials, and similar chemical properties, acquiring and purifying REEs is costly and environmentally damaging, restricting access to these metals. Plants could serve as resources for bioengineering REE mining systems. Although there is limited information on how REEs affect plants at a cellular and molecular level, plants with high REE tolerance and hyperaccumulation have been identified. This dissertation aims to develop a plant-based system for harvesting REEs from industrial waste material with a focus on Acid Mine Drainage (AMD), a toxic coal mining product. The objectives are 1) to develop a non-destructive, in vivo detection method for REE detection in Phytolacca plants (REE hyperaccumulator) plants utilizing fluorescence spectroscopy and with a primary focus on dysprosium, 2) to characterize the uptake of REE and Heavy Metals in Phytolacca americana and Phytolacca acinosa (REE hyperaccumulator) in AMD for potential implementation in the plant-based system, 3) to implement the REE detection method to identify REE-binding proteins and peptides for potential enhancement of uptake and selectivity for targeted REEs in the plants implemented in the plant-based system. The candidates are known REE-binding peptides or proteins, orthologs of known metal-binding proteins from REE hyperaccumulator plants, and novel proteins and peptides identified by comparative plant transcriptomics. Lanmodulin, a high-affinity REE-binding protein from methylotrophic bacteria, is used as a benchmark for the REE-protein binding fluorescence assays and expression in A. thaliana to test for changes in REE plant tolerance and uptake.Keywords: phytomining, agromining, rare earth elements, pokeweed, phytolacca
Procedia PDF Downloads 21795 A Comparative Study on the Hypoglycemic Effects of Hydroalcoholic Extracts from Silybum marianum, Camellia sinensis (Green Tea), and Urtica dioica Plants in Diabetic Rats
Authors: Sogand Moshfeghi, Alireza Biglari
Abstract:
Diabetes is an endocrine disorder that is commonly treated with insulin. However, long-term usage of insulin and hypoglycemic chemical drugs can result in various side effects. Therefore, it is crucial to explore effective compounds with minimal side effects for diabetes treatment. This study aimed to compare the hypoglycemic effects of hydroalcoholic extracts derived from Silybum marianum, Camellia sinensis (green tea), and Urtica dioica plants. Male Wistar rats were allocated to 5 groups. Group 1 received normal Salin. Other groups were diabetic (induced by Streptozotocin 65 mg/kg Ip), group 2 received normal Salin (Ip, qod. 21 days). Group 3 received Silybum Marianum L, hydroalcoholic extract (100 mg/kg, ip.qod, 21 days). Group 4 received Camellia sinesis L, hydroalcoholic extract (100mg/kg,ip,qod,21 days), and group 5 received Urtica dioica L. hydroalcoholic extract (100mg/kg, ip,qod,21 days). Blood samples were collected at 14 and 21 days after the initial injection to evaluate the blood glucose levels. On the fourteenth day, the blood glucose levels for the diabetic groups were as follows: Group 2: 424.7±34.5, Group 3: 390.7±10.5, Group 4: 350.4±16.9, and Group 5: 340±20.5. On the 21st day, the respective blood glucose levels were: Group 2: 432±5.0, Group 3: 410.16±5.0, Group 4: 264.3±17.5, and Group 5: 270.7±24.5. Statistical analysis using the Tukey Anova test indicated that on the fourteenth day, both the green tea and Urtica groups exhibited significant hypoglycemic effects. Furthermore, on the 21st day, Urtica dioica extract demonstrated comparable effects to Camellia Sinensis extract, while Silybum Marianum extract did not significantly lower blood glucose levels compared to the diabetic group. In conclusion, the hydroalcoholic extracts from Camellia sinensis and Urtica dioica plants exhibited promising hypoglycemic effects in diabetic rats. These findings provide valuable insights into the potential use of natural plant extracts as alternative or complementary treatments for diabetes, warranting further investigation to harness their therapeutic benefit effectively.Keywords: Camellia sinesis, glucose, Silybum marianum, Urtica dioica
Procedia PDF Downloads 77794 Effect of Three Desensitizers on Dentinal Tubule Occlusion and Bond Strength of Dentin Adhesives
Authors: Zou Xuan, Liu Hongchen
Abstract:
The ideal dentin desensitizing agent should not only have good biological safety, simple clinical operation mode, the superior treatment effect, but also should have a durable effect to resist the oral environmental temperature change and oral mechanical abrasion, so as to achieve a persistent desensitization effect. Also, when using desensitizing agent to prevent the post-operative hypersensitivity, we should not only prevent it from affecting crowns’ retention, but must understand its effects on bond strength of dentin adhesives. There are various of desensitizers and dentin adhesives in clinical treatment. They have different chemical or physical properties. Whether the use of desensitizing agent would affect the bond strength of dentin adhesives still need further research. In this in vitro study, we built the hypersensitive dentin model and post-operative dentin model, to evaluate the sealing effects and durability on exposed tubule by three different dentin desensitizers and to evaluate the sealing effects and the bond strength of dentin adhesives after using three different dentin desensitizers on post-operative dentin. The result of this study could provide some important references for clinical use of dentin desensitizing agent. 1. As to the three desensitizers, the hypersensitive dentin model was built to evaluate their sealing effects on exposed tubule by SEM observation and dentin permeability analysis. All of them could significantly reduce the dentin permeability. 2. Test specimens of three groups treated by desensitizers were subjected to aging treatment with 5000 times thermal cycling and toothbrush abrasion, and then dentin permeability was measured to evaluate the sealing durability of these three desensitizers on exposed tubule. The sealing durability of three groups were different. 3. The post-operative dentin model was built to evaluate the sealing effects of the three desensitizers on post-operative dentin by SEM and methylene blue. All of three desensitizers could reduce the dentin permeability significantly. 4. The influences of three desensitizers on the bonding efficiency of total-etch and self-etch adhesives were evaluated with the micro-tensile bond strength study and bond interface morphology observation. The dentin bond strength for Green or group was significantly lower than the other two groups (P<0.05).Keywords: dentin, desensitizer, dentin permeability, thermal cycling, micro-tensile bond strength
Procedia PDF Downloads 397793 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane
Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua
Abstract:
Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability
Procedia PDF Downloads 326792 Eco-Friendly Softener Extracted from Ricinus communis (Castor) Seeds for Organic Cotton Fabric
Authors: Fisaha Asmelash
Abstract:
The processing of textiles to achieve a desired handle is a crucial aspect of finishing technology. Softeners can enhance the properties of textiles, such as softness, smoothness, elasticity, hydrophilicity, antistatic properties, and soil release properties, depending on the chemical nature used. However, human skin is sensitive to rough textiles, making softeners increasingly important. Although synthetic softeners are available, they are often expensive and can cause allergic reactions on human skin. This paper aims to extract a natural softener from Ricinus communis and produce an eco-friendly and user-friendly alternative due to its 100% herbal and organic nature. Crushed Ricinus communis seeds were soaked in a mechanical oil extractor for one hour with a 100g cotton fabric sample. The defatted cake or residue obtained after the extraction of oil from the seeds, also known as Ricinus communis meal, was obtained by filtering the raffinate and then dried at 1030c for four hours before being stored under laboratory conditions for the softening process. The softener was applied directly to 100% cotton fabric using the padding process, and the fabric was tested for stiffness, crease recovery, and drape ability. The effect of different concentrations of finishing agents on fabric stiffness, crease recovery, and drape ability was also analyzed. The results showed that the change in fabric softness depends on the concentration of the finish used. As the concentration of the finish was increased, there was a decrease in bending length and drape coefficient. Fabrics with a high concentration of softener showed a maximum decrease in drape coefficient and stiffness, comparable to commercial softeners such as silicon. The highest decrease in drape coefficient was found to be comparable with commercial softeners, silicon. Maximum increases in crease recovery were seen in fabrics treated with Ricinus communis softener at a concentration of 30gpl. From the results, the extracted softener proved to be effective in the treatment of 100% cotton fabricKeywords: ricinus communis, crease recovery, drapability, softeners, stiffness
Procedia PDF Downloads 95791 Spray Drying and Physico-Chemical Microbiological Evaluation of Ethanolic Extracts of Propolis
Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez
Abstract:
The propolis are substances obtained from the beehive have an action against pathogens, prooxidant substances and free radicals because of its polyphenols content, this has motivated the use of these compounds in the food and pharmaceutical industries. However, due to their organoleptic properties and their ability to react with other compounds, their application has been limited; therefore, the objective of this research was to propose a mechanism to protect propolis and mitigate side effects granted by its components. To achieve the stated purpose ethanolic extracts of propolis (EEP) from three samples from Santander were obtained and their antioxidant and antimicrobial activity were evaluated in order to choose the extract with the biggest potential. Subsequently mixtures of the extract with maltodextrin were prepared by spray drying varying concentration and temperature, finally the yield, the physicochemical, and antioxidant properties of the products were measured. It was concluded that Socorro propolis was the best for the production of microencapsulated due to their activity against pathogenic strains, for its large percentage of DPPH radical inactivation and for its high phenolic content. In spray drying, the concentration of bioactive had a greater impact than temperature and the conditions set allowed a good performance and the production of particles with high antioxidant potential and little chance of proliferation of microorganisms. Also, it was concluded that the best conditions that allowed us to obtain the best particles were obtained after drying a mixture 1:2 ( EEP: Maltodextrin), besides the concentration is the most important variable in the spray drying process, at the end we obtained particles of different sizes and shape and the uniformity of the surface depend on the temperature. After watching the previously mentioned microparticles by scanning electron microscopy (SEM) it was concluded that most of the particles produced during the spray dry process had a spherical shape and presented agglomerations due to the moisture content of the ethanolic extracts of propolis (EEP), the morphology of the microparticles contributed to the stability of the final product and reduce the loss of total phenolic content.Keywords: spray drying, propolis, maltodextrin, encapsulation, scanning electron microscopy
Procedia PDF Downloads 292790 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application
Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian
Abstract:
The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based
Procedia PDF Downloads 159789 Synthesis and Thermoluminescence Investigations of Doped LiF Nanophosphor
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
Thermoluminescence dosimetry (TLD) is one of the most effective methods for the assessment of dose during diagnostic radiology and radiotherapy applications. In these applications monitoring of absorbed dose is essential to prevent patient from undue exposure and to evaluate the risks that may arise due to exposure. LiF based thermoluminescence (TL) dosimeters are promising materials for the estimation, calibration and monitoring of dose due to their favourable dosimetric characteristics like tissue-equivalence, high sensitivity, energy independence and dose linearity. As the TL efficiency of a phosphor strongly depends on the preparation route, it is interesting to investigate the TL properties of LiF based phosphor in nanocrystalline form. LiF doped with magnesium (Mg), copper (Cu), sodium (Na) and silicon (Si) in nanocrystalline form has been prepared using chemical co-precipitation method. Cubical shape LiF nanostructures are formed. TL dosimetry properties have been investigated by exposing it to gamma rays. TL glow curve structure of nanocrystalline form consists of a single peak at 419 K as compared to the multiple peaks observed in microcrystalline form. A consistent glow curve structure with maximum TL intensity at annealing temperature of 573 K and linear dose response from 0.1 to 1000 Gy is observed which is advantageous for radiotherapy application. Good reusability, low fading (5 % over a month) and negligible residual signal (0.0019%) are observed. As per photoluminescence measurements, wide emission band at 360 nm - 550 nm is observed in an undoped LiF. However, an intense peak at 488 nm is observed in doped LiF nanophosphor. The phosphor also exhibits the intense optically stimulated luminescence. Nanocrystalline LiF: Mg, Cu, Na, Si phosphor prepared by co-precipitation method showed simple glow curve structure, linear dose response, reproducibility, negligible residual signal, good thermal stability and low fading. The LiF: Mg, Cu, Na, Si phosphor in nanocrystalline form has tremendous potential in diagnostic radiology, radiotherapy and high energy radiation application.Keywords: thermoluminescence, nanophosphor, optically stimulated luminescence, co-precipitation method
Procedia PDF Downloads 407788 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification
Authors: Chun Chen Yea, Wen Huei Chou
Abstract:
Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.Keywords: digital storytelling, visualization, ocean acidification, social advocacy
Procedia PDF Downloads 121787 Improving Enhanced Oil Recovery by Using Alkaline-Surfactant-Polymer Injection and Nanotechnology
Authors: Amir Gerayeli, Babak Moradi
Abstract:
The continuously declining oil reservoirs and reservoirs aging have created a huge demand for utilization of Enhanced Oil Recovery (EOR) methods recently. Primary and secondary oil recovery methods have various limitations and are not practical for all reservoirs. Therefore, it is necessary to use chemical methods to improve oil recovery efficiency by reducing oil and water surface tension, increasing sweeping efficiency, and reducing displacer phase viscosity. One of the well-known methods of oil recovery is Alkaline-Surfactant-Polymer (ASP) flooding that shown to have significant impact on enhancing oil recovery. As some of the biggest oil reservoirs including those of Iran’s are fractional reservoirs with substantial amount of trapped oil in their fractures, the use of Alkaline-Surfactant-Polymer (ASP) flooding method is increasingly growing, the method in which the impact of several parameters including type and concentration of the Alkaline, Surfactant, and polymer are particularly important. This study investigated the use of Nano particles to improve Enhanced Oil Recovery (EOR). The study methodology included performing several laboratory tests on drill cores extracted from Karanj Oil field Asmary Formation in Khuzestan, Iran. In the experiments performed, Sodium dodecyl benzenesulfonate (SDBS) and 1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) were used as surfactant, hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer, Sodium hydroxide (NaOH) as alkaline, and Silicon dioxide (SiO2) and Magnesium oxide (MgO) were used as Nano particles. The experiment findings suggest that water viscosity increased from 1 centipoise to 5 centipoise when hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer. The surface tension between oil and water was initially measured as 25.808 (mN/m). The optimum surfactant concentration was found to be 500 p, at which the oil and water tension surface was measured to be 2.90 (mN/m) when [C12mim] [Cl] was used, and 3.28 (mN/m) when SDBS was used. The Nano particles concentration ranged from 100 ppm to 1500 ppm in this study. The optimum Nano particle concentration was found to be 1000 ppm for MgO and 500 ppm for SiO2.Keywords: alkaline-surfactant-polymer, ionic liquids, relative permeability, reduced surface tension, tertiary enhanced oil recovery, wettability change
Procedia PDF Downloads 157786 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries
Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani
Abstract:
Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation
Procedia PDF Downloads 522785 Identification of the Usage of Some Special Places in the Prehistoric Site of Tapeh Zagheh through Multi-Elemental Chemical Analysis of the Soil Samples
Authors: Iraj Rezaei, Kamal Al Din Niknami
Abstract:
Tapeh Zagheh is an important prehistoric site located in the central plateau of Iran, which has settlement layers of the Neolithic and Chalcolithic periods. For this research, 38 soil samples were collected from different parts of the site, as well as two samples from its outside as witnesses. Then the samples were analyzed by XRF. The purpose of this research was to identify some places with special usage for human activities in Tapeh Zagheh by measuring the amount of some special elements in the soil. The result of XRF analysis shows a significant amount of P and K in samples No.3 (fourth floor) and No.4 (third floor), probably due to certain activities such as food preparation and consumption. Samples No.9 and No.10 can be considered suitable examples of the hearths of the prehistoric period in the central plateau of Iran. The color of these samples was completely darkened due to the presence of ash, charcoal, and burnt materials. According to the XRF results, the soil of these hearths has very high amounts of elements such as P, Ca, Mn, S, K, and significant amounts of Ti, Fe, and Na. In addition, the elemental composition of sample No. 14, which was taken from a home waster, also has very high amounts of P, Mn, Mg, Ti, and Fe and high amounts of K and Ca. Sample No. 11, which is related to soil containing large amounts of waster of the kiln, along with a very strong increase in Cl and Na, the amount of elements such as K, Mg, and S has also increased significantly. It seems that the reason for the increase of elements such as Ti and Fe in some Tapeh Zagheh floors (for example, samples number 1, 2, 3, 4, 5) was the use of materials such as ocher mud or fire ash in the composition of these floors. Sample No. 13, which was taken from an oven located in the FIX trench, has very high amounts of Mn, Ti, and Fe and high amounts of P and Ca. Sample No. 15, which is related to House No. VII (probably related to a pen or a place where animals were kept) has much more phosphate compared to the control samples, which is probably due to the addition of animal excrement and urine to the soil. Sample No. 29 was taken from the north of the industrial area of Zagheh village (place of pottery kilns). The very low amount of index elements in sample No. 29 shows that the industrial activities did not extend to the mentioned point, and therefore, the range of this point can be considered as the boundary between the residential part of the Zagheh village and its industrial part.Keywords: prehistory, multi-elemental analysis, Tapeh Zagheh, XRF
Procedia PDF Downloads 96784 Ancient Egyptian Industry Technology of Canopic Jars, Analytical Study and Conservation Processes of Limestone Canopic Jar
Authors: Abd El Rahman Mohamed
Abstract:
Canopic jars made by the ancient Egyptians from different materials were used to preserve the viscera during the mummification process. The canopic jar studied here dates back to the Late Period (712-332 BC). It is found in the Grand Egyptian Museum (GEM), Giza, Egypt. This jar was carved from limestone and covered with a monkey head lid with painted eyes and ears with red pigment and surrounded with black pigment. The jar contains bandages of textile containing mummy viscera with resin and black resin blocks. The canopic jars were made using the sculpting tools that were used by the ancient Egyptians, such as metal chisels (made of copper) and hammers and emptying the mass of the jar from the inside using a tool invented by the ancient Egyptians, which called the emptying drill. This study also aims to use analytical techniques to identify the components of the jar, its contents, pigments, and previous restoration materials and to understand its deterioration aspects. Visual assessment, isolation and identification of fungi, optical microscopy (OM), scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used in our study. The jar showed different signs of deterioration, such as dust, dirt, stains, scratches, classifications, missing parts, and breaks; previous conservation materials include using iron wire, completion mortar and an adhesive for assembly. The results revealed that the jar was carved from Dolomite Limestone, red Hematite pigment, Mastic resin, and Linen textile bandages. The previous adhesive was Animal Glue and used Gypsum for the previous completion. The most dominant Microbial infection on the jar was found in the fungi of (Penicillium waksmanii), (Nigrospora sphaerica), (Actinomycetes sp) and (Spore-Forming Gram-Positive Bacilli). Conservation procedures have been applied with high accuracy to conserve the jar, including mechanical and chemical cleaning, re-assembling, completion and consolidation.Keywords: Canopic jar, Consolidation, Mummification, Resin, Viscera.
Procedia PDF Downloads 76783 In-silico DFT Study, Molecular Docking, ADMET Predictions, and DMS of Isoxazolidine and Isoxazoline Analogs with Anticancer Properties
Authors: Moulay Driss Mellaoui, Khadija Zaki, Khalid Abbiche, Abdallah Imjjad, Rachid Boutiddar, Abdelouahid Sbai, Aaziz Jmiai, Souad El Issami, Al Mokhtar Lamsabhi, Hanane Zejli
Abstract:
This study presents a comprehensive analysis of six isoxazolidine and isoxazoline derivatives, leveraging a multifaceted approach that combines Density Functional Theory (DFT), AdmetSAR analysis, and molecular docking simulations to explore their electronic, pharmacokinetic, and anticancer properties. Through DFT analysis, using the B3LYP-D3BJ functional and the 6-311++G(d,p) basis set, we optimized molecular geometries, analyzed vibrational frequencies, and mapped Molecular Electrostatic Potentials (MEP), identifying key sites for electrophilic attacks and hydrogen bonding. Frontier Molecular Orbital (FMO) analysis and Density of States (DOS) plots revealed varying stability levels among the compounds, with 1b, 2b, and 3b showing slightly higher stability. Chemical potential assessments indicated differences in binding affinities, suggesting stronger potential interactions for compounds 1b and 2b. AdmetSAR analysis predicted favorable human intestinal absorption (HIA) rates for all compounds, highlighting compound 3b superior oral effectiveness. Molecular docking and molecular dynamics simulations were conducted on isoxazolidine and 4-isoxazoline derivatives targeting the EGFR receptor (PDB: 1JU6). Molecular docking simulations confirmed the high affinity of these compounds towards the target protein 1JU6, particularly compound 3b, among the isoxazolidine derivatives, compound 3b exhibited the most favorable binding energy, with a g score of -8.50 kcal/mol. Molecular dynamics simulations over 100 nanoseconds demonstrated the stability and potential of compound 3b as a superior candidate for anticancer applications, further supported by structural analyses including RMSD, RMSF, Rg, and SASA values. This study underscores the promising role of compound 3b in anticancer treatments, providing a solid foundation for future drug development and optimization efforts.Keywords: isoxazolines, DFT, molecular docking, molecular dynamic, ADMET, drugs.
Procedia PDF Downloads 52782 Use of Multivariate Statistical Techniques for Water Quality Monitoring Network Assessment, Case of Study: Jequetepeque River Basin
Authors: Jose Flores, Nadia Gamboa
Abstract:
A proper water quality management requires the establishment of a monitoring network. Therefore, evaluation of the efficiency of water quality monitoring networks is needed to ensure high-quality data collection of critical quality chemical parameters. Unfortunately, in some Latin American countries water quality monitoring programs are not sustainable in terms of recording historical data or environmentally representative sites wasting time, money and valuable information. In this study, multivariate statistical techniques, such as principal components analysis (PCA) and hierarchical cluster analysis (HCA), are applied for identifying the most significant monitoring sites as well as critical water quality parameters in the monitoring network of the Jequetepeque River basin, in northern Peru. The Jequetepeque River basin, like others in Peru, shows socio-environmental conflicts due to economical activities developed in this area. Water pollution by trace elements in the upper part of the basin is mainly related with mining activity, and agricultural land lost due to salinization is caused by the extensive use of groundwater in the lower part of the basin. Since the 1980s, the water quality in the basin has been non-continuously assessed by public and private organizations, and recently the National Water Authority had established permanent water quality networks in 45 basins in Peru. Despite many countries use multivariate statistical techniques for assessing water quality monitoring networks, those instruments have never been applied for that purpose in Peru. For this reason, the main contribution of this study is to demonstrate that application of the multivariate statistical techniques could serve as an instrument that allows the optimization of monitoring networks using least number of monitoring sites as well as the most significant water quality parameters, which would reduce costs concerns and improve the water quality management in Peru. Main socio-economical activities developed and the principal stakeholders related to the water management in the basin are also identified. Finally, water quality management programs will also be discussed in terms of their efficiency and sustainability.Keywords: PCA, HCA, Jequetepeque, multivariate statistical
Procedia PDF Downloads 358781 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability
Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher
Abstract:
Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectivelyKeywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge
Procedia PDF Downloads 80780 In vitro Method to Evaluate the Effect of Steam-Flaking on the Quality of Common Cereal Grains
Authors: Wanbao Chen, Qianqian Yao, Zhenming Zhou
Abstract:
Whole grains with intact pericarp are largely resistant to digestion by ruminants because entire kernels are not conducive to bacterial attachment. But processing methods makes the starch more accessible to microbes, and increases the rate and extent of starch degradation in the rumen. To estimate the feasibility of applying a steam-flaking as the processing technique of grains for ruminants, cereal grains (maize, wheat, barley and sorghum) were processed by steam-flaking (steam temperature 105°C, heating time, 45 min). And chemical analysis, in vitro gas production, volatile fatty acid concentrations, and energetic values were adopted to evaluate the effects of steam-flaking. In vitro cultivation was conducted for 48h with the rumen fluid collected from steers fed a total mixed ration consisted of 40% hay and 60% concentrates. The results showed that steam-flaking processing had a significant effect on the contents of neutral detergent fiber and acid detergent fiber (P < 0.01). The concentration of starch gelatinization degree in all grains was also great improved in steam-flaking grains, as steam-flaking processing disintegrates the crystal structure of cereal starch, which may subsequently facilitate absorption of moisture and swelling. Theoretical maximum gas production after steam-flaking processing showed no great difference. However, compared with intact grains, total gas production at 48 h and the rate of gas production were significantly (P < 0.01) increased in all types of grain. Furthermore, there was no effect of steam-flaking processing on total volatile fatty acid, but a decrease in the ratio between acetate and propionate was observed in the current in vitro fermentation. The present study also found that steam-flaking processing increased (P < 0.05) organic matter digestibility and energy concentration of the grains. The collective findings of the present study suggest that steam-flaking processing of grains could improve their rumen fermentation and energy utilization by ruminants. In conclusion, the utilization of steam-flaking would be practical to improve the quality of common cereal grains.Keywords: cereal grains, gas production, in vitro rumen fermentation, steam-flaking processing
Procedia PDF Downloads 276779 Evaluation of Immune Responses of Gamma-Irradiated, Electron Beam Irradiated FMD Virus Type O/IRN/2007 Vaccines and DNA Vaccine- Based on the VP1 Gene by a Prime-Boost Strategy in a Mouse Model
Authors: Farahnaz Motamedi Sedeh, Homayoon Mahravani, Parvin Shawrang, Mehdi Behgar
Abstract:
Most countries use inactivated binary ethylenimine (BEI) vaccines to control and prevent Foot-and-Mouth Disease (FMD). However, this vaccine induces a short-term humoral immune response in animals. This study investigated the cellular and humoral immune responses in homologous and prime-boost (PB) groups in the BALB/c mouse model. FMDV strain O/IRN/1/2007 was propagated in the BHK-21 cell line and inactivated by three methods, including a chemical with BEI to produce a conventional vaccine (CV), a gamma irradiation vaccine (GIV), and an electron irradiated vaccine (EIV). Three vaccines were formulated with the adjuvant aluminum hydroxide gel. In addition, a DNA vaccine was prepared by amplifying the virus VP1 gene pcDNA3.1 plasmid. In addition, the plasmid encoding the granulocyte-macrophage colony-stimulating factor gene (GM-CSF) was used as a molecular adjuvant. Eleven groups of five mice each were selected, and the vaccines were administered as homologous and heterologous strategy prime-boost (PB) in three doses two weeks apart. After the evaluation of neutralizing antibodies, interleukin (IL)-2, IL-4, IL-10, interferon-gamma (INF-γ), and MTT assays were compared in the different groups. The pcDNA3.1+VP1 cassette was prepared and confirmed as a DNA vaccine. The virus was inactivated by gamma rays and electron beams at 50 and 55 kGy as GIV and EIV, respectively. Splenic lymphocyte proliferation in the inactivated vaccinated homologous groups was significantly lower (P≤0.05) compared with the heterologous prime-boosts (PB1, PB2, PB3) and DNA + GM-CSF groups (P≤0.05). The highest SNT titer was observed in the inactivated vaccine groups. IFN-γ and IL-2 were higher in the vaccinated groups. It was found that although there was a protective humoral immune response in the groups with inactivated vaccine, there was adequate cellular immunity in the group with the DNA vaccine. However, the strongest cellular and humoral immunity was observed in the PB groups. The primary injection was accompanied by DNA vaccine + GM-CSF and boosted injection with GIV or CV.Keywords: foot and mouth disease, irradiated vaccine, immune responses, DNA vaccine, prime boost strategy
Procedia PDF Downloads 22778 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities
Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb
Abstract:
Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network
Procedia PDF Downloads 63777 Applications of Greenhouse Data in Guatemala in the Analysis of Sustainability Indicators
Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.
Abstract:
In 2015, Guatemala officially adopted the Sustainable Development Goals (SDG) according to the 2030 Agenda agreed by the United Nations Organization. In 2016, these objectives and goals were reviewed, and the National Priorities were established within the K'atún 2032 National Development Plan. In 2019 and 2021, progress was evaluated with 120 defined indicators, and the need to improve quality and availability of statistical data necessary for the analysis of sustainability indicators was detected, so the values to be reached in 2024 and 2032 were adjusted. The need for greater agricultural technology is one of the priorities established within SDG 2 "Zero Hunger". Within this area, protected agricultural production provides greater productivity throughout the year, reduces the use of chemical products to control pests and diseases, reduces the negative impact of climate and improves product quality. During the crisis caused by Covid-19, there was an increase in exports of fruits and vegetables produced in greenhouses from Guatemala. However, this information has not been considered in the 2021 revision of the Plan. The objective of this study is to evaluate the information available on Greenhouse Agricultural Production and its integration into the Sustainability Indicators for Guatemala. This study was carried out in four phases: 1. Analysis of the Goals established for SDG 2 and the indicators included in the K'atún Plan. 2. Analysis of Environmental, Social and Economic Indicator Models. 3. Definition of territorial levels in 2 geographic scales: Departments and Municipalities. 4. Diagnosis of the available data on technological agricultural production with emphasis on Greenhouses at the 2 geographical scales. A summary of the results is presented for each phase and finally some recommendations for future research are added. The main contribution of this work is to improve the available data that allow the incorporation of some agricultural technology indicators in the established goals, to evaluate their impact on Food Security and Nutrition, Employment and Investment, Poverty, the use of Water and Natural Resources, and to provide a methodology applicable to other production models and other geographical areas.Keywords: greenhouses, protected agriculture, sustainable indicators, Guatemala, sustainability, SDG
Procedia PDF Downloads 88776 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves
Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman
Abstract:
The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.Keywords: Ficus, ultrasounds, vitexin, isovitexin
Procedia PDF Downloads 420