Search results for: sustainable energy usage scenario
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13944

Search results for: sustainable energy usage scenario

13524 Renewable Energy and Environment: Design of a Decision Aided Tool for Sustainable Development

Authors: Mustapha Ouardouz, Mina Amharref, Abdessamed Bernoussi

Abstract:

The future energy, for limited energy resources countries, goes through renewable energies (solar, wind etc.). The renewable energies constitute a major component of the energy strategy to cover a substantial part of the growing needs and contribute to environmental protection by replacing fossil fuels. Indeed, sustainable development involves the promotion of renewable energy and the preservation of the environment by the use of clean energy technologies to limit emissions of greenhouse gases and reducing the pressure exerted on the forest cover. So the impact studies, of the energy use on the environment and farm-related risks are necessary. For that, a global approach integrating all the various sectors involved in such project seems to be the best approach. In this paper we present an approach based on the multi criteria analysis and the realization of one pilot to achieve the development of an innovative geo-intelligent environmental platform. An implementation of this platform will collect, process, analyze and manage environmental data in connection with the nature of used energy in the studied region. As an application we consider a region in the north of Morocco characterized by intense agricultural and industrials activities and using diverse renewable energy. The strategic goals of this platform are; the decision support for better governance, improving the responsiveness of public and private companies connected by providing them in real time with reliable data, modeling and simulation possibilities of energy scenarios, the identification of socio-technical solutions to introduce renewable energies and estimate technical and implantable potential by socio-economic analyzes and the assessment of infrastructure for the region and the communities, the preservation and enhancement of natural resources for better citizenship governance through democratization of access to environmental information, the tool will also perform simulations integrating environmental impacts of natural disasters, particularly those linked to climate change. Indeed extreme cases such as floods, droughts and storms will be no longer rare and therefore should be integrated into such projects.

Keywords: renewable energies, decision aided tool, environment, simulation

Procedia PDF Downloads 440
13523 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forword, membrane, solar, water treatment

Procedia PDF Downloads 63
13522 Reviving Sustainable Architecture in Non-Wester Culture

Authors: Khaled Asfour

Abstract:

Going for LEED certification is the latest concern in Egyptian practice that only materialized during the last 4 years. Egyptian Consultant Group (ECG) together with Credit Agricole had the vision to design a headquarters (Cairo) that delivers a serious sustainable design. The bank is a strong advocator of “green banking” and supports renewable energy and energy saving projects. Their HQ in Cairo has passed all the hurdles to become the first platinum LEED certificate holder in Egypt. With this design Egyptian practice has finally re-engaged in a serious way with its long-standing traditions in sustainable architecture. Perhaps the closest to our memory is the medieval houses of Cairo. Few centuries later these qualities disappeared with the advent of Modern Movement that focused more on standard modernist image making than real localized quality of living environments. The first person to note this disappearance was Hassan Fathy half a century ago. Despite international applaud for his efforts he had no effect on prevailing local practice that continued senselessly adopting recycled modernist templates. The Egyptian society was not ready to accept any reference to historic architecture. Disciples of Hassan Fathy, few decades later sought, of tackling the lack of interest in green architecture in a different way. Mohamed Awad introduced in his design sustainable ideals inspired from traditional architecture rather than recycling directly historic forms and images. Despite success, this approach did not go far enough to influence the prevailing practice. Since year 2000 Egyptian economy was ebbing and flowing dramatically. This staggering fluctuation coupled by energy crisis has disillusioned architects and clients on the issue of modern image making. No more shining architecture under the sun with high running cost of fossil fuel. They sought of adopting contemporary green measures that offer pleasant living while saving on energy. A revival is on its way but is very slow and timid. The paper will present this problem of reviving sustainable architecture. How this process can be accelerated in order to give stronger impact on current practice will be addressed through the works of Mario Cucinella and Norman Foster.

Keywords: LEED certification, Hasan Fathy, Medieval architecture, Mario Cucinella, Norman Foster

Procedia PDF Downloads 468
13521 The Usage of Adobe in Historical Structures of Van City

Authors: Mustafa Gülen, Eylem Güzel, Soner Guler

Abstract:

The studies concentrated on the historical background of Van show the fact that Van has had a significant position as a settlement since ancient times and that it has hosted many civilizations during history. With the dominance of Ottoman Empire in 16th century, the region had been re-constructed by building new walls at the southern side of Van Castle. These construction activities had mostly been fulfilled by the usage of adobe which had been a fundamental material for thousands of years. As a result of natural disasters, battles and the move at the threshold of 20th century to the new settlement which is 9 kilometers away from the Ancient City Van is an open-air museum with the ruins of churches, mosques and baths. In this study, the usage of adobe in historical structures of Van city is evaluated in detail.

Keywords: historical structures, adobe, Van city, adobe

Procedia PDF Downloads 593
13520 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks

Authors: Jayesh M. Patel, Bharat P. Modi

Abstract:

The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.

Keywords: cellular, Wi-Fi, mobile, smart phone

Procedia PDF Downloads 342
13519 Feasibility Analysis of Active and Passive Technical Integration of Rural Buildings

Authors: Chanchan Liu

Abstract:

In the process of urbanization in China, the rapid development of urban construction has been achieved, but a large number of rural buildings still continue the construction mode many years ago. This paper mainly analyzes the rural residential buildings in the hot summer and cold winter regions analyze the active and passive technologies of the buildings. It explored the feasibility of realizing the sustainable development of rural buildings in an economically reasonable range, using mainly passive technologies, innovative building design methods, reducing the buildings’ demand for conventional energy, and supplementing them with renewable energy sources. On this basis, appropriate technology and regional characteristics are proposed to keep the rural architecture retain its characteristics in the development process. It is hoped that this exploration can provide reference and help for the development of rural buildings in the hot summer and cold winter regions.

Keywords: the rural building, active technology, passive technology, sustainable development

Procedia PDF Downloads 191
13518 Cycling Usage and Determinants on University Campus in Ghana: The Case of Kwame Nkrumah University of Science and Technology

Authors: Nicholas Anarfi Bofah, James Damsere- Derry

Abstract:

There is increasing interest among institutions, governments, and international organisations to combat congestion, reduce contribution to green gases and provide sustainable urban transportation. College campuses are a preeminent setting for promoting active commuting to ameliorate a community's healthy lifestyle. Cycling is an important physical activity and has a long-term effect on health, and it is considered one of the top five interventions to reduce the prevalence of non-communicable diseases. The main objectives of the research were: (i) to identify students’ attitudes and behavior toward cycling usage, (ii) to identify barriers and opportunities for cycling on a university campus, and (iii) to construct tangible policy recommendations for promoting cycling in the vicinity of the university. The data used in this study were obtained from a survey conducted among students at the Kwame Nkrumah University of Science and Technology (KNUST) in Kumasi between May 2022 and September 2022. A convenient sampling method was used to recruit and interview 398 participants. Two survey assistants who are former students of the university were engaged to administer the questionnaires randomly to students at the selected locations. Descriptive statistics were employed in the analysis of the data. Out of the 398 questionnaires, bicycle ridership and ownership among university students were 57% and 39%, respectively. Generally, the desire to use a bicycle as a mode of transport on campus was 36%. The desire to use a bicycle on campus was more prevalent among males 41% compared to females 30%. There is a high potential for increasing bicycle use among students. Recommendations include the provision of bicycle lanes, public education on the use of bicycles, and a campus bicycle-sharing program.

Keywords: sustainable development, cycling, university campus, bicycle

Procedia PDF Downloads 61
13517 Energy Efficiency as a Mean to Increase Energy Access in Sub-Saharan Africa

Authors: Joseph Levodo, Ndimbarafine Young Tobin, E. Messina

Abstract:

Energy efficiency can contribute significantly towards increasing clean energy access to modern energy services. Many developing countries have largely focused on expanding energy access by increasing supply. This is due to the fact the links between energy efficiency and clean energy access are often unnoticed. Energy efficiency measures offer the promise of reducing energy use and saving money on electricity bills, as well as reducing negative environmental externalities associated with the production of electricity. This paper seeks to address the economic and effectiveness of reducing energy consumption by integrating energy efficiency as a priority to meet energy access examines the barriers to energy efficient in sub-Saharan African countries. The findings from this study reveal that an appropriate policy can promote the development of more energy-efficient buildings, products and strengthen incentives for consumers, businesses, and industrial customers to pursue cost-effective; energy-efficiency measures and to make investments that will provide future energy-efficiency improvements.

Keywords: barriers, Sub-Saharan Africa, cost effective, energy savings, clean energy

Procedia PDF Downloads 15
13516 Further Development of Offshore Floating Solar and Its Design Requirements

Authors: Madjid Karimirad

Abstract:

Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology.

Keywords: floating solar, offshore renewable energy, wind and wave loading, design space

Procedia PDF Downloads 50
13515 Influence of Humidity on Environmental Sustainability, Air Quality and Occupant Health

Authors: E. Cintura, M. I. Gomes

Abstract:

Nowadays, sustainable development issues have a key role in the planning of the man-made environment. Ensuring this development means limiting the impact of human activity on nature. It is essential to secure healthy places and good living conditions. For these reasons, indoor air quality and building materials play a fundamental role in sustainable architectural projects. These factors significantly affect human health: they can radically change the quality of the internal environment and energy consumption. The use of natural materials such as earth has many beneficial aspects in comfort and indoor air quality. As well as advantages in the environmental impact of the construction, they ensure a low energy consumption. Since they are already present in nature, their production and use do not require a high-energy consumption. Furthermore, they have a high thermo-hygrometric capacity, being able to absorb moisture, contributing positively to indoor conditions. Indoor air quality is closely related to relative humidity. For these reasons, it can be affirmed that the use of earth materials guarantees a sustainable development and at the same time improves the health of the building users. This paper summarizes several researches that demonstrate the importance of indoor air quality for human health and how it strictly depends on the building materials used. Eco-efficient plasters are also considered: earth and ash mortar. The bibliography consulted has the objective of supporting future experimental and laboratory analyzes. It is necessary to carry on with research by the use of simulations and testing to confirm the hygrothermal properties of eco-efficient plasters and therefore their ability to improve indoor air quality.

Keywords: hygroscopicity, hygrothermal comfort, mortar, plaster

Procedia PDF Downloads 120
13514 A Simple Approach to Establish Urban Energy Consumption Map Using the Combination of LiDAR and Thermal Image

Authors: Yu-Cheng Chen, Tzu-Ping Lin, Feng-Yi Lin, Chih-Yu Chen

Abstract:

Due to the urban heat island effect caused by highly development of city, the heat stress increased in recent year rapidly. Resulting in a sharp raise of the energy used in urban area. The heat stress during summer time exacerbated the usage of air conditioning and electric equipment, which caused more energy consumption and anthropogenic heat. Therefore, an accurate and simple method to measure energy used in urban area can be helpful for the architectures and urban planners to develop better energy efficiency goals. This research applies the combination of airborne LiDAR data and thermal imager to provide an innovate method to estimate energy consumption. Owing to the high resolution of remote sensing data, the accurate current volume and total floor area and the surface temperature of building derived from LiDAR and thermal imager can be herein obtained to predict energy used. In the estimate process, the LiDAR data will be divided into four type of land cover which including building, road, vegetation, and other obstacles. In this study, the points belong to building were selected to overlay with the land use information; therefore, the energy consumption can be estimated precisely with the real value of total floor area and energy use index for different use of building. After validating with the real energy used data from the government, the result shows the higher building in high development area like commercial district will present in higher energy consumption, caused by the large quantity of total floor area and more anthropogenic heat. Furthermore, because of the surface temperature can be warm up by electric equipment used, this study also applies the thermal image of building to find the hot spots of energy used and make the estimation method more complete.

Keywords: urban heat island, urban planning, LiDAR, thermal imager, energy consumption

Procedia PDF Downloads 225
13513 Renewable Energy and Energy Security in Malaysia: A Quantitative Analysis

Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet

Abstract:

Robust economic growth, increasing population, and personal consumption are the main drivers for the rapid increase of energy demand in Malaysia. Increasing demand has compounded the issue of national energy security due to over-dependence on fossil fuel, depleting indigenous domestic conventional energy resources which in turns has increased the country’s energy import dependence. In order to improve its energy security, Malaysia has seriously embarked on a renewable energy journey. Many initiatives on renewable energy have been introduced in the past decade. These strategies have resulted in the exploding growth of renewable energy deployment in Malaysia. Therefore, this study investigated the impact of renewable energy deployment on energy security. Secondary data was used to calculate the energy security indicators. The study also compared the results of applying different energy security indicators namely availability, applicability, affordability and acceptability dimension of energy resources. The evaluation shows that Malaysia will experience slight improvement in availability and acceptability dimension of energy security. This study suggests that energy security level could be further enhanced by efficient utilization of energy, reducing carbon content of energy and facilitating low-carbon industries.

Keywords: energy policy, energy security, Malaysia, renewable energy

Procedia PDF Downloads 220
13512 Use of Cassava Waste and Its Energy Potential

Authors: I. Inuaeyen, L. Phil, O. Eni

Abstract:

Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.

Keywords: bio-refinery, cassava waste, energy, process modelling

Procedia PDF Downloads 347
13511 Comfort Needs and Energy Practices in Low-Income, Tropical Housing from a Socio-Technical Perspective

Authors: Tania Sharmin

Abstract:

Energy use, overheating and thermal discomfort in low-income tropical housing remains an under-researched area. This research attempts to explore these aspects in the Loving Community, a housing colony created for former leprosy patients and their families in Ahmedabad in India. The living conditions in these households and working practices of the inhabitants in terms of how the building and its internal and external spaces are used, will be explored through interviews and monitoring which will be based on a household survey and a focus group discussion (FGD). The findings from the study will provide a unique and in-depth account of how the relocation of the affected households to the new, flood-resistant and architecturally-designed buildings may have affected the dwellers’ household routines (health and well-being, comfort, satisfaction and working practices) and overall living conditions compared to those living in poorly-designed, existing low-income housings. The new houses were built under an innovative building project supported by De Montfort University Leicester (DMU)’s Square Mile India project. A comparison of newly-built and existing building typologies will reveal how building design can affect people’s use of space and energy use. The findings will be helpful to design healthier, energy efficient and socially acceptable low-income housing in future, thus addressing United Nation’s sustainable development goals on three aspects: 3 (health and well-being), 7 (energy) and 11 (safe, resilient and sustainable human settlements). This will further facilitate knowledge exchange between policy makers, developers, designers and occupants focused on strategies to increase stakeholders’ participation in the design process.

Keywords: thermal comfort, energy use, low-income housing, tropical climate

Procedia PDF Downloads 108
13510 Classification of Opaque Exterior Walls of Buildings from a Sustainable Point of View

Authors: Michelle Sánchez de León Brajkovich, Nuria Martí Audi

Abstract:

The envelope is one of the most important elements when one analyzes the operation of the building in terms of sustainability. Taking this into consideration, this research focuses on setting a classification system of the envelopes opaque systems, crossing the knowledge and parameters of construction systems with requirements in terms of sustainability that they may have, to have a better understanding of how these systems work with respect to their sustainable contribution to the building. Therefore, this paper evaluates the importance of the envelope design on the building sustainability. It analyses the parameters that make the construction systems behave differently in terms of sustainability. At the same time it explains the classification process generated from this analysis that results in a classification where all opaque vertical envelope construction systems enter.

Keywords: sustainable, exterior walls, envelope, facades, construction systems, energy efficiency

Procedia PDF Downloads 549
13509 Chinese Undergraduates’ Trust in And Usage of Machine Translation: A Survey

Authors: Bi Zhao

Abstract:

Neural network technology has greatly improved the output of machine translation in terms of both fluency and accuracy, which greatly increases its appeal for young users. The present exploratory study aims to find out how the Chinese undergraduates perceive and use machine translation in their daily life. A survey is conducted to collect data from 100 undergraduate students from multiple Chinese universities and with varied academic backgrounds, including arts, business, science, engineering, and medicine. The survey questions inquire about their use (including frequency, scenarios, purposes, and preferences) of and attitudes (including trust, quality assessment, justifications, and ethics) toward machine translation. Interviews and tasks of evaluating machine translation output are also employed in combination with the survey on a sample of selected respondents. The results indicate that Chinese undergraduate students use machine translation on a daily basis for a wide range of purposes in academic, communicative, and entertainment scenarios. Most of them have preferred machine translation tools, but the availability of machine translation tools within a certain scenario, such as the embedded machine translation tool on the webpage, is also the determining factor in their choice. The results also reveal that despite the reportedly limited trust in the accuracy of machine translation output, most students lack the ability to critically analyze and evaluate such output. Furthermore, the evidence is revealed of the inadequate awareness of ethical responsibility as machine translation users among Chinese undergraduate students.

Keywords: Chinese undergraduates, machine translation, trust, usage

Procedia PDF Downloads 109
13508 The Exploration of Sustainable Landscape in Iran: From Persian Garden to Modern Park

Authors: Honey Fadaie, Vahid Parhoodeh

Abstract:

This paper concentrates on the result of research based on studies on parameters of sustainability in Persian Garden design as a traditional Iranian landscape and in a contemporary park, Jamshidieh in Iran as a new experience of re-creation of Persian Gardens’ sustainable design. Since, sustainable development has three parts: social, economic and environmental. The complexities of each part are too great to discuss in a paper of this length, thus the authors decided to analyze the design of Persian garden by considering their environmental sustainability. By the analysis of sustainable features and characteristics of traditional gardens, and exploration of parameters of sustainability in Iranian modern landscape, Such as Jamshideh Park, the main objective of this research is to identify the strategies for sustainable landscaping and parameters of creating sustainable green spaces for contemporary cities. The results demonstrate that in Persian Gardens, sustainable parameters such as productive networks and local renewable materials have been used to achieve sustainable development. At the conclusion, guidelines and recommendations for sustainable landscaping are presented.

Keywords: Jamshidieh park, Persian garden, sustainable landscape, urban green space

Procedia PDF Downloads 448
13507 How Sustainable is Tourism Architecture in Uganda

Authors: Goodman Conrad Kazoroa

Abstract:

Among the most remarkable socioeconomic phenomena of the post-World War II era has been the expansion of the global tourism industry. Intensifying tourism activity is continuing to affect more and more places and there can no longer be any doubt as to the potential of this sector to affect fundamental economic, social-cultural and environmental change. A phenomenon with far reaching effects like this needs to be carefully controlled and planned so as not to compromise the chances for the future generations to enjoy this resource, therefore the issue of tourism sustainability, as a result, is unveiled. The concept of sustainable tourism remains vague in Uganda as the country has seen an increase in resorts, hotels and lodges especially in most of Uganda’s ecologically vulnerable areas National Parks. To many, sustainable tourism it is merely the application of the sustainable development idea to the sector of tourism. To others, it is the conservation of the environment and its natural resources, realising and appropriately using them to achieve sustainable built environments that promote tourism. Architecture and the built environment can be the first means to link the global dimension of this phenomenon of sustainable tourism to its local implications. The aim of this paper was to critically analyse the extent to which sustainability related considerations have been pursued in the built environments for Uganda’s national parks as means to achieving sustainable tourism. This was achieved by use of a sustainable architecture rating tool that was modified to fit Uganda’s context. The results of this are presented as the final results of the study. There are many examples of sustainable tourism resorts, or what tourism managers and developers claim are sustainable tourism resorts throughout the country. This paper reveals the truth, that is, true sustainable tourism resorts are very few and far between.

Keywords: sustainable tourism, tourism architecture, sustainable architecture, sustainable tourism resorts

Procedia PDF Downloads 354
13506 Micro Grids, Solution to Power Off-Grid Areas in Pakistan

Authors: M. Naveed Iqbal, Sheza Fatima, Noman Shabbir

Abstract:

In the presence of energy crisis in Pakistan, off-grid remote areas are not on priority list. The use of new large scale coal fired power plants will also make this situation worst. Therefore, the greatest challenge in our society is to explore new ways to power off grid remote areas with renewable energy sources. It is time for a sustainable energy policy which puts consumers, the environment, human health, and peace first. The renewable energy is one of the biggest growing sectors of the energy industry. Therefore, the large scale use of micro grid is thus described here with modeling, simulation, planning and operating of the micro grid. The goal of this research paper is to go into detail of a library of major components of micro grid. The introduction will go through the detail view of micro grid definition. Then, the simulation of Micro Grid in MATLAB/ Simulink including the Photo Voltaic Cell will be described with the detailed modeling. The simulation with the design and modeling will be introduced too.

Keywords: micro grids, distribution generation, PV, off-grid operations

Procedia PDF Downloads 283
13505 Sustainable Design in the Use of Deployable Structures

Authors: Umweni Osahon Joshua, Anton Ianakiev

Abstract:

Deployable structures have been used in various scenarios from moving roofs in stadia, space antennae or booms. There has been a lot of literature relating deployable structures but with main focus on space applications. The complexities in the design of deployable structures may be the reason only few have been constructed for earth based solutions. This paper intends to explore the possibilities of integrating sustainable design concepts in deployable structures. Key aspects of sustainable design of structures as applicable to deployable structures have not been explored. Sustainable design of structures have mainly been concerned with static structures in the built environment. However, very little literature, concepts or framework has been drafted as it relates to deployable structures or their integration to static structures as a model for sustainable design. This article seeks to address this flaw in sustainable design for structural engineering and to provide a framework for designing structures in a sustainable manner. This framework will apply to deployable structures for earth-based environments as a form of disaster relief measures and also as part of static structures in the built environment.

Keywords: deployable structures, sustainable design, framework, earth-based environments

Procedia PDF Downloads 513
13504 Developing a Framework to Aid Sustainable Assessment in Indian Buildings

Authors: P. Amarnath, Albert Thomas

Abstract:

Buildings qualify to be the major consumer of energy and resources thereby urging the designers, architects and policy makers to place a great deal of effort in achieving and implementing sustainable building strategies in construction. Green building rating systems help a great deal in this by measuring the effectiveness of these strategies along with the escalation of building performance in social, environmental and economic perspective, and construct new sustainable buildings. However, for a country like India, enormous population and its rapid rate of growth impose an increasing burden on the country's limited and continuously degrading natural resource base, which also includes the land available for construction. In general, the number of sustainable rated buildings in India is very minimal primarily due to the complexity and obstinate nature of the assessment systems/regulations that restrict the stakeholders and designers in proper implementation and utilization of these rating systems. This paper aims to introduce a data driven and user-friendly framework which cross compares the present prominent green building rating systems such as LEED, BREEAM, and GRIHA and subsequently help the users to rate their proposed building design as per the regulations of these assessment frameworks. This framework is validated using the input data collected from green buildings constructed globally. The proposed system has prospects to encourage the users to test the efficiency of various sustainable construction practices and thereby promote more sustainable buildings in the country.

Keywords: BREEAM, GRIHA, green building rating systems, LEED, sustainable buildings

Procedia PDF Downloads 110
13503 Method for Evaluating the Monetary Value of a Customized Version of the Digital Twin for the Additive Manufacturing

Authors: Fabio Oettl, Sebastian Hoerbrand, Tobias Wittmeir, Johannes Schilp

Abstract:

By combining the additive manufacturing (AM)- process with digital concepts, like the digital twin (DT) or the downsized and basing concept of the digital part file (DPF), the competitiveness of additive manufacturing is enhanced and new use cases like decentral production are enabled. But in literature, one can´t find any quantitative approach for valuing the usage of a DT or DPF in AM. Out of this fact, such an approach will be developed within this paper in order to further promote or dissuade the usage of these concepts. The focus is set on the production as an early lifecycle phase, which means that the AM-production process gets analyzed regarding the potential advantages of using DPF in AM. These advantages are transferred to a monetary value with this approach. By calculating the costs of the DPF, an overall monetary value is a result. Thereon a tool, based on a simulation environment is constructed, where the algorithms are transformed into a program. The results of applying this tool show that an overall value of 20,81 € for the DPF can be realized for one special use case. For the future application of the DPF there is the recommendation to integrate especially sustainable information because out of this, a higher value of the DPF can be expected.

Keywords: additive manufacturing, digital concept costs, digital part file, digital twin, monetary value estimation

Procedia PDF Downloads 178
13502 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms

Authors: M. Dezvarei, S. Morovati

Abstract:

In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.

Keywords: clonal algorithm, proton exchange membrane fuel cell (PEMFC), particle swarm optimization (PSO), real-valued mutation (RVM)

Procedia PDF Downloads 328
13501 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 25
13500 Approaches to Eco-Friendly Architecture: Modules Assembled Specially to Conserve

Authors: Arshleen Kaur, Sarang Barbarwar, Madhusudan Hamirwasia

Abstract:

Sustainable architecture is going to be the soul of construction in the near future, with building material as a vital link connecting sustainability to construction. The priority in Architecture has shifted from having a lesser negative footprint to having a positive footprint on Earth. The design has to be eco-centric as well as anthro-centric so as to attain its true purpose. Brick holds the same importance like a cell holds in one’s body. The study focuses on this basic building block with an experimental material and technique known as Module Assembled Specially to Conserve (MASC). The study explores the usage and construction of these modules in the construction of buildings. It also shows the impact assessment of the modules on the environment and its significance in reducing the carbon footprint of the construction industry. The aspects like cost-effectiveness, ease of working and reusability of MASC have been studied as well.

Keywords: anthro-centric, carbon footprint, eco-centric, sustainable

Procedia PDF Downloads 159
13499 Trends of Change of Political Participation of Young Voters in Indonesia

Authors: Najmuddin Rasul

Abstract:

The purpose of this study is to determine whether media usage and change of citizenship norms influence trends of change of political participation of young voters in Indonesia. The focus of this study is to examine citizenship norms in the context of the development of information and communication technology influence political participation in the context of Indonesia's transition to democracy. The main theoretical framework is media and political participation. For data gathering, 384 young voters between the ages of 17 to 40 years were interviewed in Padang, West Sumatra, Indonesia. The results of this study reveal that gender, age and educational background of respondents did not influence significantly media usage and citizenship norms. The results also show that educational background is not a factor that distinguishes media usage but it becomes differentiating factor in citizenship norms. The results further show that media usage has a significant correlation with citizenship norms and citizenship norms has a significant relationship with political participation. In addition, media usage and citizenship norm significantly influence political participation. The sub-dimensions the citizenship norms (compliance, duty, and engaged citizenship) provides a significant contribution to the sub-dimensions of political participation (traditional political participation, modern political participation, civic political participation). Based on the findings it can be concluded that the political euphoria in the era of transition to democracy has changed pattern of media usage and citizenship norms among the young generation in Indonesia.

Keywords: political participation, media, citizenship norms, democracy, young voters, Indonesia

Procedia PDF Downloads 190
13498 Holistic Approach to Assess the Potential of Using Traditional and Advance Insulation Materials for Energy Retrofit of Office Buildings

Authors: Marco Picco, Mahmood Alam

Abstract:

Improving the energy performance of existing buildings can be challenging, particularly when facades cannot be modified, and the only available option is internal insulation. In such cases, the choice of the most suitable material becomes increasingly complex, as in addition to thermal transmittance and capital cost, the designer needs to account for the impact of the intervention on the internal spaces, and in particular the loss of usable space due to the additional layers of materials installed. This paper explores this issue by analysing a case study of an average office building needing to go through a refurbishment in order to reach the limits imposed by current regulations to achieve energy efficiency in buildings. The building is simulated through dynamic performance simulation under three different climate conditions in order to evaluate its energy needs. The use of Vacuum Insulated Panels as an option for energy refurbishment is compared to traditional insulation materials (XPS, Mineral Wool). For each scenario, energy consumptions are calculated and, in combination with their expected capital costs, used to perform a financial feasibility analysis. A holistic approach is proposed, taking into account the impact of the intervention on internal space by quantifying the value of the lost usable space and used in the financial feasibility analysis. The proposed approach highlights how taking into account different drivers will lead to the choice of different insulation materials, showing how accounting for the economic value of space can make VIPs an attractive solution for energy retrofitting under various climate conditions.

Keywords: vacuum insulated panels, building performance simulation, payback period, building energy retrofit

Procedia PDF Downloads 131
13497 Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas

Authors: Kemal Comakli, Meryem Terhan

Abstract:

In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.

Keywords: heat recovery from flue gas, energy analysis of flue gas, economical analysis, payback period

Procedia PDF Downloads 265
13496 Addressing Environmental Concerns and Sustainability: Towards a Greener and Resilient Future

Authors: Zaffar Hayat Nawaz Khan

Abstract:

In the face of growing environmental concerns, the need for sustainable practices has become increasingly urgent. This paper aims to explore the path towards a greener and more resilient future by examining key strategies and initiatives that address environmental challenges. The paper begins by analyzing the current state of the environment, highlighting the various concerns such as climate change, deforestation, pollution, and depletion of natural resources. It emphasizes the need for immediate action and proposes a comprehensive approach to tackle these issues. Furthermore, the paper delves into the concept of resilience and its importance in creating a sustainable future. It discusses the need to build resilient systems and communities that can withstand and adapt to environmental shocks and stresses. The paper highlights the role of innovation, technology, and policy frameworks in promoting resilience and fostering a greener and more sustainable future.

Keywords: environmental concerns, ustainable development, greener future, energy, waste management

Procedia PDF Downloads 61
13495 Discovering User Behaviour Patterns from Web Log Analysis to Enhance the Accessibility and Usability of Website

Authors: Harpreet Singh

Abstract:

Finding relevant information on the World Wide Web is becoming highly challenging day by day. Web usage mining is used for the extraction of relevant and useful knowledge, such as user behaviour patterns, from web access log records. Web access log records all the requests for individual files that the users have requested from the website. Web usage mining is important for Customer Relationship Management (CRM), as it can ensure customer satisfaction as far as the interaction between the customer and the organization is concerned. Web usage mining is helpful in improving website structure or design as per the user’s requirement by analyzing the access log file of a website through a log analyzer tool. The focus of this paper is to enhance the accessibility and usability of a guitar selling web site by analyzing their access log through Deep Log Analyzer tool. The results show that the maximum number of users is from the United States and that they use Opera 9.8 web browser and the Windows XP operating system.

Keywords: web usage mining, web mining, log file, data mining, deep log analyzer

Procedia PDF Downloads 228