Search results for: support vector machine classifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10189

Search results for: support vector machine classifier

9769 Exploring Students' Alternative Conception in Vector Components

Authors: Umporn Wutchana

Abstract:

An open ended problem and unstructured interview had been used to explore students’ conceptual and procedural understanding of vector components. The open ended problem had been designed based on research instrument used in previous physics education research. Without physical context, we asked students to find out magnitude and draw graphical form of vector components. The open ended problem was given to 211 first year students of faculty of science during the third (summer) semester in 2014 academic year. The students spent approximately 15 minutes of their second time of the General Physics I course to complete the open ended problem after they had failed. Consequently, their responses were classified based on the similarity of errors performed in the responses. Then, an unstructured interview was conducted. 7 students were randomly selected and asked to reason and explain their answers. The study results showed that 53% of 211 students provided correct numerical magnitude of vector components while 10.9% of them confused and punctuated the magnitude of vectors in x- with y-components. Others 20.4% provided just symbols and the last 15.6% gave no answer. When asking to draw graphical form of vector components, only 10% of 211 students made corrections. A majority of them produced errors and revealed alternative conceptions. 46.5% drew longer and/or shorter magnitude of vector components. 43.1% drew vectors in different forms or wrote down other symbols. Results from the unstructured interview indicated that some students just memorized the method to get numerical magnitude of x- and y-components. About graphical form of component vectors, some students though that the length of component vectors should be shorter than those of the given one. So then, it could be combined to be equal length of the given vectors while others though that component vectors should has the same length as the given vectors. It was likely to be that many students did not develop a strong foundation of understanding in vector components but just learn by memorizing its solution or the way to compute its magnitude and attribute little meaning to such concept.

Keywords: graphical vectors, vectors, vector components, misconceptions, alternative conceptions

Procedia PDF Downloads 188
9768 Chinese Undergraduates’ Trust in And Usage of Machine Translation: A Survey

Authors: Bi Zhao

Abstract:

Neural network technology has greatly improved the output of machine translation in terms of both fluency and accuracy, which greatly increases its appeal for young users. The present exploratory study aims to find out how the Chinese undergraduates perceive and use machine translation in their daily life. A survey is conducted to collect data from 100 undergraduate students from multiple Chinese universities and with varied academic backgrounds, including arts, business, science, engineering, and medicine. The survey questions inquire about their use (including frequency, scenarios, purposes, and preferences) of and attitudes (including trust, quality assessment, justifications, and ethics) toward machine translation. Interviews and tasks of evaluating machine translation output are also employed in combination with the survey on a sample of selected respondents. The results indicate that Chinese undergraduate students use machine translation on a daily basis for a wide range of purposes in academic, communicative, and entertainment scenarios. Most of them have preferred machine translation tools, but the availability of machine translation tools within a certain scenario, such as the embedded machine translation tool on the webpage, is also the determining factor in their choice. The results also reveal that despite the reportedly limited trust in the accuracy of machine translation output, most students lack the ability to critically analyze and evaluate such output. Furthermore, the evidence is revealed of the inadequate awareness of ethical responsibility as machine translation users among Chinese undergraduate students.

Keywords: Chinese undergraduates, machine translation, trust, usage

Procedia PDF Downloads 139
9767 The Mental Workload of ICU Nurses in Performing Human-Machine Tasks: A Cross-sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit(ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance(ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload(MWL), nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 104
9766 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: audit, machine learning, assessment, metrics

Procedia PDF Downloads 271
9765 Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive

Authors: Marcel Lehr, Andreas Binder

Abstract:

This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior.

Keywords: doubly-salient-permanent-magnet-machine, flux-reversal-permanent-magnet-machine, flux-switching-permanent-magnet-machine, industrial drive

Procedia PDF Downloads 371
9764 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists

Authors: Sefik Can Karakaya, Ibrahim Demir

Abstract:

In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.

Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression

Procedia PDF Downloads 144
9763 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability

Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi

Abstract:

The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, this type of machines has always been used prudently and are non efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565µm, indicating that this machine tool is capable of producing higher product quality.

Keywords: frequency response, finite element, gantry machine, gantry design, static and dynamic analysis

Procedia PDF Downloads 357
9762 Semigroups of Linear Transformations with Fixed Subspaces: Green’s Relations and Ideals

Authors: Yanisa Chaiya, Jintana Sanwong

Abstract:

Let V be a vector space over a field and W a subspace of V. Let Fix(V,W) denote the set of all linear transformations on V with fix all elements in W. In this paper, we show that Fix(V,W) is a semigroup under the composition of maps and describe Green’s relations on this semigroup in terms of images, kernels and the dimensions of subspaces of the quotient space V/W where V/W = {v+W : v is an element in V} with v+W = {v+w : w is an element in W}. Let dim(U) denote the dimension of a vector space U and Vα = {vα : v is an element in V} where vα is an image of v under a linear transformation α. For any cardinal number a let a'= min{b : b > a}. We also show that the ideals of Fix(V,W) are precisely the sets. Fix(r) ={α ∊ Fix(V,W) : dim(Vα/W) < r} where 1 ≤ r ≤ a' and a = dim(V/W). Moreover, we prove that if V is a finite-dimensional vector space, then every ideal of Fix(V,W) is principle.

Keywords: Green’s relations, ideals, linear transformation semi-groups, principle ideals

Procedia PDF Downloads 292
9761 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.

Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation

Procedia PDF Downloads 532
9760 Evaluation of Quick Covering Machine for Grain Drying Pavement

Authors: Fatima S. Rodriguez, Victorino T. Taylan, Manolito C. Bulaong, Helen F. Gavino, Vitaliana U. Malamug

Abstract:

In sundrying the quality of the grains are greatly reduced when paddy grains were caught by the rain unsacked and unstored resulting to reduced profit. The objectives of this study were to design and fabricate a quick covering machine for grain drying pavement; to test and evaluate the operating characteristics of the machine according to its deployment speed, recovery speed, deployment time, recovery time, power consumption, aesthetics of laminated sack; and to conduct partial budget and cost curve analysis. The machine was able to cover the grains in a 12.8 m x 22.5 m grain drying pavement at an average time of 17.13 s. It consumed 0.53 W-hr for the deployment and recovery of the cover. The machine entailed an investment cost of $1,344.40 and an annual cost charge of $647.32. Moreover, the savings per year using the quick covering machine was $101.83.

Keywords: quick covering machine, grain drying pavement, laminated polypropylene, recovery time

Procedia PDF Downloads 323
9759 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification

Authors: Babak Forouraghi

Abstract:

A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.

Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers

Procedia PDF Downloads 60
9758 The Mental Workload of Intensive Care Unit Nurses in Performing Human-Machine Tasks: A Cross-Sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit (ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance (ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload, nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 69
9757 Material Choice Driving Sustainability of 3D Printing

Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye

Abstract:

Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.

Keywords: 3D printing, additive manufacturing, sustainability, life-cycle assessment, design for environment

Procedia PDF Downloads 495
9756 Coal Preparation Plant:Technology Overview and New Adaptations

Authors: Amit Kumar Sinha

Abstract:

A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.

Keywords: intermediate circuit, overlapping process, reflux classifier

Procedia PDF Downloads 136
9755 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 95
9754 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 149
9753 Digital Platform of Crops for Smart Agriculture

Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye

Abstract:

In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.

Keywords: prediction, machine learning, artificial intelligence, digital agriculture

Procedia PDF Downloads 80
9752 Retrospective Evaluation of Vector-borne Infections in Cats Living in Germany (2012-2019)

Authors: I. Schäfer, B. Kohn, M. Volkmann, E. Müller

Abstract:

Introduction: Blood-feeding arthropods transmit parasitic, bacterial, or viral pathogens to domestic animals and wildlife. Vector-borne infections are gaining significance due to the increase of travel, import of domestic animals from abroad, and the changing climate in Europe. Aims of the study: The main objective of this retrospective study was to assess the prevalence of vector-borne infections in cats in which a ‘Feline Travel Profile’ had been conducted. Material and Methods: This retrospective study included test results from cats for which a ‘Feline Travel Profile’ established by LABOKLIN had been requested by veterinarians between April 2012 and December 2019. This profile contains direct detection methods via polymerase chain reaction (PCR) for Hepatozoon spp. and Dirofilaria spp. as well as indirect detection methods via immunofluorescence antibody test (IFAT) for Ehrlichia spp. and Leishmania spp. This profile was expanded to include an IFAT for Rickettsia spp. from July 2015 onwards. The prevalence of the different vector-borne infectious agents was calculated. Results: A total of 602 cats were tested using the ‘Feline Travel Profile’. Positive test results were as follows: Rickettsia spp. IFAT 54/442 (12.2%), Ehrlichia spp. IFAT 68/602 (11.3%), Leishmania spp. IFAT 21/602 (3.5%), Hepatozoon spp. PCR 51/595 (8.6%), and Dirofilaria spp. PCR 1/595 cats (0.2%). Co-infections with more than one pathogen could be detected in 22/602 cats. Conclusions: 170/602 cats (28.2%) were tested positive for at least one vector-borne pathogen. Infections with multiple pathogens could be detected in 3.7% of the cats. The data emphasizes the importance of considering vector-borne infections as potential differential diagnoses in cats.

Keywords: arthopod-transmitted infections, feline vector-borne infections, Germany, laboratory diagnostics

Procedia PDF Downloads 166
9751 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
9750 An Application of a Machine Monitoring by Using the Internet of Things to Improve a Preventive Maintenance: Case Study of an Automated Plastic Granule-Packing Machine

Authors: Anek Apipatkul, Paphakorn Pitayachaval

Abstract:

Preventive maintenance is a standardized procedure to control and prevent risky problems affecting production in order to increase work efficiency. Machine monitoring also routinely works to collect data for a scheduling maintenance period. This paper is to present the application of machine monitoring by using the internet of things (IOTs) and a lean technique in order to manage with complex maintenance tasks of an automated plastic granule packing machine. To organize the preventive maintenance, there are several processes that the machine monitoring was applied, starting with defining a clear scope of the machine, establishing standards in maintenance work, applying a just-in-time (JIT) technique for timely delivery in the maintenance work, solving problems on the floor, and also improving the inspection process. The result has shown that wasted time was reduced, and machines have been operated as scheduled. Furthermore, the efficiency of the scheduled maintenance period was increased by 95%.

Keywords: internet of things, preventive maintenance, machine monitoring, lean technique

Procedia PDF Downloads 102
9749 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters

Authors: Satish Kumar Peddapelli

Abstract:

This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have become popular and considerable interest by researcher are given on them. A fast Space-Vector Pulse Width Modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analysed.

Keywords: five-level inverter, space vector pulse wide modulation, diode clamped inverter, electrical engineering

Procedia PDF Downloads 388
9748 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326
9747 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)

Authors: Wafa' Slaibi Alsharafat

Abstract:

Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.

Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection

Procedia PDF Downloads 474
9746 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 249
9745 Post-Earthquake Road Damage Detection by SVM Classification from Quickbird Satellite Images

Authors: Moein Izadi, Ali Mohammadzadeh

Abstract:

Detection of damaged parts of roads after earthquake is essential for coordinating rescuers. In this study, an approach is presented for the semi-automatic detection of damaged roads in a city using pre-event vector maps and both pre- and post-earthquake QuickBird satellite images. Damage is defined in this study as the debris of damaged buildings adjacent to the roads. Some spectral and texture features are considered for SVM classification step to detect damages. Finally, the proposed method is tested on QuickBird pan-sharpened images from the Bam City earthquake and the results show that an overall accuracy of 81% and a kappa coefficient of 0.71 are achieved for the damage detection. The obtained results indicate the efficiency and accuracy of the proposed approach.

Keywords: SVM classifier, disaster management, road damage detection, quickBird images

Procedia PDF Downloads 623
9744 Identification of Spam Keywords Using Hierarchical Category in C2C E-Commerce

Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park

Abstract:

Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like e-bay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C e-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C e-commerce.

Keywords: spam keyword, e-commerce, keyword features, spam filtering

Procedia PDF Downloads 294
9743 Image Compression Based on Regression SVM and Biorthogonal Wavelets

Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane

Abstract:

In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.

Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding

Procedia PDF Downloads 381
9742 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes

Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez

Abstract:

Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.

Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability

Procedia PDF Downloads 233
9741 Possibility of Creating Polygon Layers from Raster Layers Obtained by using Classic Image Processing Software: Case of Geological Map of Rwanda

Authors: Louis Nahimana

Abstract:

Most maps are in a raster or pdf format and it is not easy to get vector layers of published maps. Faced to the production of geological simplified map of the northern Lake Tanganyika countries without geological information in vector format, I tried a method of obtaining vector layers from raster layers created from geological maps of Rwanda and DR Congo in pdf and jpg format. The procedure was as follows: The original raster maps were georeferenced using ArcGIS10.2. Under Adobe Photoshop, map areas with the same color corresponding to a lithostratigraphic unit were selected all over the map and saved in a specific raster layer. Using the same image processing software Adobe Photoshop, each RGB raster layer was converted in grayscale type and improved before importation in ArcGIS10. After georeferencing, each lithostratigraphic raster layer was transformed into a multitude of polygons with the tool "Raster to Polygon (Conversion)". Thereafter, tool "Aggregate Polygons (Cartography)" allowed obtaining a single polygon layer. Repeating the same steps for each color corresponding to a homogeneous rock unit, it was possible to reconstruct the simplified geological constitution of Rwanda and the Democratic Republic of Congo in vector format. By using the tool «Append (Management)», vector layers obtained were combined with those from Burundi to achieve vector layers of the geology of the « Northern Lake Tanganyika countries ».

Keywords: creating raster layer under image processing software, raster to polygon, aggregate polygons, adobe photoshop

Procedia PDF Downloads 442
9740 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320