Search results for: solution of linear algebraic equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9914

Search results for: solution of linear algebraic equations

9494 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator

Procedia PDF Downloads 76
9493 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations

Authors: Gebreegziabher Hailu

Abstract:

This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.

Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods

Procedia PDF Downloads 22
9492 Existence Theory for First Order Functional Random Differential Equations

Authors: Rajkumar N. Ingle

Abstract:

In this paper, the existence of a solution of nonlinear functional random differential equations of the first order is proved under caratheodory condition. The study of the functional random differential equation has got importance in the random analysis of the dynamical systems of universal phenomena. Objectives: Nonlinear functional random differential equation is useful to the scientists, engineers, and mathematicians, who are engaged in N.F.R.D.E. analyzing a universal random phenomenon, govern by nonlinear random initial value problems of D.E. Applications of this in the theory of diffusion or heat conduction. Methodology: Using the concepts of probability theory, functional analysis, generally the existence theorems for the nonlinear F.R.D.E. are prove by using some tools such as fixed point theorem. The significance of the study: Our contribution will be the generalization of some well-known results in the theory of Nonlinear F.R.D.E.s. Further, it seems that our study will be useful to scientist, engineers, economists and mathematicians in their endeavors to analyses the nonlinear random problems of the universe in a better way.

Keywords: Random Fixed Point Theorem, functional random differential equation, N.F.R.D.E., universal random phenomenon

Procedia PDF Downloads 501
9491 An Impregnated Active Layer Mode of Solution Combustion Synthesis as a Tool for the Solution Combustion Mechanism Investigation

Authors: Zhanna Yermekova, Sergey Roslyakov

Abstract:

Solution combustion synthesis (SCS) is the unique method which multiple times has proved itself as an effective and efficient approach for the versatile synthesis of a variety of materials. It has significant advantages such as relatively simple handling process, high rates of product synthesis, mixing of the precursors on a molecular level, and fabrication of the nanoproducts as a result. Nowadays, an overwhelming majority of solution combustion investigations performed through the volume combustion synthesis (VCS) where the entire liquid precursor is heated until the combustion self-initiates throughout the volume. Less amount of the experiments devoted to the steady-state self-propagating mode of SCS. Under the beforementioned regime, the precursor solution is dried until the gel-like media, and later on, the gel substance is locally ignited. In such a case, a combustion wave propagates in a self-sustaining mode as in conventional solid combustion synthesis. Even less attention is given to the impregnated active layer (IAL) mode of solution combustion. An IAL approach to the synthesis is implying that the solution combustion of the precursors should be initiated on the surface of the third chemical or inside the third substance. This work is aiming to emphasize an underestimated role of the impregnated active layer mode of the solution combustion synthesis for the fundamental studies of the combustion mechanisms. It also serves the purpose of popularizing the technical terms and clarifying the difference between them. In order to do so, the solution combustion synthesis of γ-FeNi (PDF#47-1417) alloy has been accomplished within short (seconds) one-step reaction of metal precursors with hexamethylenetetramine (HTMA) fuel. An idea of the special role of the Ni in a process of alloy formation was suggested and confirmed with the particularly organized set of experiments. The first set of experiments were conducted in a conventional steady-state self-propagating mode of SCS. An alloy was synthesized as a single monophasic product. In two other experiments, the synthesis was divided into two independent processes which are possible under the IAL mode of solution combustion. The sequence of the process was changed according to the equations which are describing an Experiment A and B below: Experiment A: Step 1. Fe(NO₃)₃*9H₂O + HMTA = FeO + gas products; Step 2. FeO + Ni(NO₃)₂*6H₂O + HMTA = Ni + FeO + gas products; Experiment B: Step 1. Ni(NO₃)₂*6H₂O + HMTA = Ni + gas products; Step 2. Ni + Fe(NO₃)₃*9H₂O + HMTA = Fe₃Ni₂+ traces (Ni + FeO). Based on the IAL experiment results, one can see that combustion of the Fe(NO₃)₃9H₂O on the surface of the Ni is leading to the alloy formation while presence of the already formed FeO does not affect the Ni(NO₃)₂*6H₂O + HMTA reaction in any way and Ni is the main product of the synthesis.

Keywords: alloy, hexamethylenetetramine, impregnated active layer mode, mechanism, solution combustion synthesis

Procedia PDF Downloads 134
9490 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde

Abstract:

A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 570
9489 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters

Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi

Abstract:

A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.

Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation

Procedia PDF Downloads 540
9488 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles

Authors: Ismail Rahama Adam Hamid

Abstract:

This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.

Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation

Procedia PDF Downloads 56
9487 The Generalized Lemaitre-Tolman-Bondi Solutions in Modeling the Cosmological Black Holes

Authors: Elena M. Kopteva, Pavlina Jaluvkova, Zdenek Stuchlik

Abstract:

In spite of the numerous attempts to close the discussion about the influence of cosmological expansion on local gravitationally bounded systems, this question arises in literature again and again and remains still far from its final resolution. Here one of the main problems is the problem of obtaining a physically adequate model of strongly gravitating object immersed in non-static cosmological background. Such objects are usually called ‘cosmological’ black holes and are of great interest in wide set of cosmological and astrophysical areas. In this work the set of new exact solutions of the Einstein equations is derived for the flat space that generalizes the known Lemaitre-Tolman-Bondi solution for the case of nonzero pressure. The solutions obtained are pretending to describe the black hole immersed in nonstatic cosmological background and give a possibility to investigate the hot problems concerning the effects of the cosmological expansion in gravitationally bounded systems, the structure formation in the early universe, black hole thermodynamics and other related problems. It is shown that each of the solutions obtained contains either the Reissner-Nordstrom or the Schwarzschild black hole in the central region of the space. It is demonstrated that the approach of the mass function use in solving of the Einstein equations allows clear physical interpretation of the resulting solutions, that is of much benefit to any their concrete application.

Keywords: exact solutions of the Einstein equations, cosmological black holes, generalized Lemaitre-Tolman-Bondi solutions, nonzero pressure

Procedia PDF Downloads 423
9486 Solving Extended Linear Complementarity Problems (XLCP) - Wood and Environment

Authors: Liberto Pombal, Christian Dieter Jaekel

Abstract:

The objective of this work is to establish theoretical and numerical conditions for Solving Extended Linear Complementarity Problems (XLCP), with emphasis on the Horizontal Linear Complementarity Problem (HLCP). Two new strategies for solving complementarity problems are presented, using differentiable and penalized functions, which resulted in a natural formalization for the Linear Horizontal case. The computational results of all suggested strategies are also discussed in depth in this paper. The implication in practice allows solving and optimizing, in an innovative way, the (forestry) problems of the value chain of the industrial wood sector in Angola.

Keywords: complementarity, box constrained, optimality conditions, wood and environment

Procedia PDF Downloads 56
9485 A Study of Flow near the Leading Edge of a Flat Plate by New Idea in Analytical Methods

Authors: M. R. Akbari, S. Akbari, L. Abdollahpour

Abstract:

The present paper is concerned with calculating the 2-dimensional velocity profile of a viscous flow for an incompressible fluid along the leading edge of a flat plate by using the continuity and motion equations with a simple and innovative approach. A Comparison between Numerical method and AGM has been made and the results have been revealed that AGM is very accurate and easy and can be applied for a wide variety of nonlinear problems. It is notable that most of the differential equations can be solved in this approach which in the other approaches they do not have this capability. Moreover, there are some valuable benefits in this method of solving differential equations, for instance: Without any dimensionless procedure, we can solve many differential equation(s), that is, differential equations are directly solvable by this method. In addition, it is not necessary to convert variables into new ones. According to the afore-mentioned expressions which will be proved in this literature, the process of solving nonlinear differential equation(s) will be very simple and convenient in contrast to the other approaches.

Keywords: leading edge, new idea, flat plate, incompressible fluid

Procedia PDF Downloads 287
9484 Effect of Solution Heat Treatment on Intergranular Corrosion Resistance of Welded Stainless Steel AISI 321

Authors: Amir Mahmoudi

Abstract:

In this investigation, AISI321 steel after welding by Shilded Metal Arc Welding (SMAW) was solution heat treated in various temperatures and times, and then was sensitizied. Results indicated, increasing of temperature in solution heat treatment raises the sensitization and creates the cavity structure in grain boundaries. Besides, in order to examine the effect of time on solution heat treatment, all samples were solution heat treated at different times and fixed temperature (1050°C). By increasing the time, more chrome carbides were created due to dissolution of delta ferrite phase and reproduce titanium carbides. Additionally, the best process for solution heat treatment for this steel was suggested.

Keywords: stainless steel, solution heat treatment, intergranular corrosion, DLEPR

Procedia PDF Downloads 521
9483 Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-Time Quaternion Offset Linear Canonical Transform

Authors: Mohammad Younus Bhat

Abstract:

The quaternion offset linear canonical transform (QOLCT), which isa time-shifted and frequency-modulated version of the quaternion linear canonical transform (QLCT), provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion offset linear canonical transform (ST-QOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well-known uncertainty principles for the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s uncertainty principle, and the logarithmic uncertainty principle.

Keywords: Quaternion Fourier transform, Quaternion offset linear canonical transform, short-time quaternion offset linear canonical transform, uncertainty principle

Procedia PDF Downloads 211
9482 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.

Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis

Procedia PDF Downloads 417
9481 Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension.

Keywords: boundary conditions, liquid-liquid interfaces, low salinity water, residual oil mobilization

Procedia PDF Downloads 129
9480 Linear Codes Afforded by the Permutation Representations of Finite Simple Groups and Their Support Designs

Authors: Amin Saeidi

Abstract:

Using a representation-theoretic approach and considering G to be a finite primitive permutation group of degree n, our aim is to determine linear codes of length n that admit G as a permutation automorphism group. We can show that in some cases, every binary linear code admitting G as a permutation automorphism group is a submodule of a permutation module defined by a primitive action of G. As an illustration of the method, we consider the sporadic simple group M₁₁ and the unitary group U(3,3). We also construct some point- and block-primitive 1-designs from the supports of some codewords of the codes in the discussion.

Keywords: linear code, permutation representation, support design, simple group

Procedia PDF Downloads 77
9479 Iterative Solver for Solving Large-Scale Frictional Contact Problems

Authors: Thierno Diop, Michel Fortin, Jean Deteix

Abstract:

Since the precise formulation of the elastic part is irrelevant for the description of the algorithm, we shall consider a generic case. In practice, however, we will have to deal with a non linear material (for instance a Mooney-Rivlin model). We are interested in solving a finite element approximation of the problem, leading to large-scale non linear discrete problems and, after linearization, to large linear systems and ultimately to calculations needing iterative methods. This also implies that penalty method, and therefore augmented Lagrangian method, are to be banned because of their negative effect on the condition number of the underlying discrete systems and thus on the convergence of iterative methods. This is in rupture to the mainstream of methods for contact in which augmented Lagrangian is the principal tool. We shall first present the problem and its discretization; this will lead us to describe a general solution algorithm relying on a preconditioner for saddle-point problems which we shall describe in some detail as it is not entirely standard. We will propose an iterative approach for solving three-dimensional frictional contact problems between elastic bodies, including contact with a rigid body, contact between two or more bodies and also self-contact.

Keywords: frictional contact, three-dimensional, large-scale, iterative method

Procedia PDF Downloads 210
9478 A Continuous Boundary Value Method of Order 8 for Solving the General Second Order Multipoint Boundary Value Problems

Authors: T. A. Biala

Abstract:

This paper deals with the numerical integration of the general second order multipoint boundary value problems. This has been achieved by the development of a continuous linear multistep method (LMM). The continuous LMM is used to construct a main discrete method to be used with some initial and final methods (also obtained from the continuous LMM) so that they form a discrete analogue of the continuous second order boundary value problems. These methods are used as boundary value methods and adapted to cope with the integration of the general second order multipoint boundary value problems. The convergence, the use and the region of absolute stability of the methods are discussed. Several numerical examples are implemented to elucidate our solution process.

Keywords: linear multistep methods, boundary value methods, second order multipoint boundary value problems, convergence

Procedia PDF Downloads 377
9477 The Impact of Distributed Epistemologies on Software Engineering

Authors: Thomas Smith

Abstract:

Many hackers worldwide would agree that, had it not been for linear-time theory, the refinement of Byzantine fault tolerance might never have occurred. After years of significant research into extreme programming, we validate the refinement of simulated annealing. Maw, our new framework for unstable theory, is the solution to all of these issues.

Keywords: distributed, software engineering, DNS, DHCP

Procedia PDF Downloads 355
9476 Dynamic Behavior of Brain Tissue under Transient Loading

Authors: Y. J. Zhou, G. Lu

Abstract:

In this paper, an analytical study is made for the dynamic behavior of human brain tissue under transient loading. In this analytical model the Mooney-Rivlin constitutive law is coupled with visco-elastic constitutive equations to take into account both the nonlinear and time-dependent mechanical behavior of brain tissue. Five ordinary differential equations representing the relationships of five main parameters (radial stress, circumferential stress, radial strain, circumferential strain, and particle velocity) are obtained by using the characteristic method to transform five partial differential equations (two continuity equations, one motion equation, and two constitutive equations). Analytical expressions of the attenuation properties for spherical wave in brain tissue are analytically derived. Numerical results are obtained based on the five ordinary differential equations. The mechanical responses (particle velocity and stress) of brain are compared at different radii including 5, 6, 10, 15 and 25 mm under four different input conditions. The results illustrate that loading curves types of the particle velocity significantly influences the stress in brain tissue. The understanding of the influence by the input loading cures can be used to reduce the potentially injury to brain under head impact by designing protective structures to control the loading curves types.

Keywords: analytical method, mechanical responses, spherical wave propagation, traumatic brain injury

Procedia PDF Downloads 269
9475 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography

Authors: C. Yin, B. Zhang, Y. Liu, J. Cai

Abstract:

Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects.

Keywords: 3D, Airborne EM, forward modeling, topographic effect

Procedia PDF Downloads 317
9474 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model

Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga

Abstract:

The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.

Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives

Procedia PDF Downloads 108
9473 Physics-Informed Convolutional Neural Networks for Reservoir Simulation

Authors: Jiangxia Han, Liang Xue, Keda Chen

Abstract:

Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.

Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation

Procedia PDF Downloads 143
9472 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias

Procedia PDF Downloads 85
9471 Finite Element Method for Solving the Generalized RLW Equation

Authors: Abdel-Maksoud Abdel-Kader Soliman

Abstract:

The General Regularized Long Wave (GRLW) equation is solved numerically by giving a new algorithm based on collocation method using quartic B-splines at the mid-knot points as element shape. Also, we use the Fourth Runge-Kutta method for solving the system of first order ordinary differential equations instead of finite difference method. Our test problems, including the migration and interaction of solitary waves, are used to validate the algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm.

Keywords: generalized RLW equation, solitons, quartic b-spline, nonlinear partial differential equations, difference equations

Procedia PDF Downloads 489
9470 Statistical Convergence for the Approximation of Linear Positive Operators

Authors: Neha Bhardwaj

Abstract:

In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators.

Keywords: Poisson distribution, Voronovskaya, modulus of continuity, a-statistical convergence

Procedia PDF Downloads 333
9469 Thiourea: Single Crystal with Non Linear Optical Characteristics

Authors: Kishor C. Poria, Deepak Adroja, Arvind Bajaj

Abstract:

During the last few decades, the growth of single crystals has attained enormous importance for both academic research and technology. Single crystals are pillars of modern technology. In recent emerging trends of photonics and optoelectronics technology, there has been increased need for organic and semi organic materials for Non-Linear Optical (NLO) applications. The paper dealt with the initiation of good single crystals of thiourea and metal doped thiourea. The authors have successfully grown thiourea (pure) and metal doped thiourea crystals using relatively simple and inexpensive slow evaporation of aqueous solution technique. Pure thiourea crystals were grown with different light intensities and frequencies as there growth conditions. Metals (Cu, Co, Ni, Fe) doped crystals were grown using a simple evaporation technique. The paper explains growth methods and associated grown parameters in detail. The average size of the crystal is varied in size from 40 mm x 1mm to 1.5 mm x 1.5 mm to 0.5 mm. Crystals obtained are hexagonal, tetragonal, and rectangular in shape with different optical qualities. All grown crystals are characterized using X-Ray Diffraction Analysis (XRD), Ultra Violet Visible analysis, and Fourier Transform Infrared Spectrometry. Their non-linear optical characteristics were determined by Second Harmonic Generation (SHG) and their Laser Dispersive analysis. The grown crystals are characterized using Nd:YAG laser and the highest conversion efficiency of the signal pass light are calculated. It shows 58 % of standard values for KDP crystals. All results are summarized in this work.

Keywords: crystal, metal-doped thiourea, non-linear optical, NLO, thiourea

Procedia PDF Downloads 142
9468 A Reactive Flexible Job Shop Scheduling Model in a Stochastic Environment

Authors: Majid Khalili, Hamed Tayebi

Abstract:

This paper considers a stochastic flexible job-shop scheduling (SFJSS) problem in the presence of production disruptions, and reactive scheduling is implemented in order to find the optimal solution under uncertainty. In this problem, there are two main disruptions including machine failure which influences operation time, and modification or cancellation of the order delivery date during production. In order to decrease the negative effects of these difficulties, two derived strategies from reactive scheduling are used; the first one is relevant to being able to allocate multiple machine to each job, and the other one is related to being able to select the best alternative process from other job while some disruptions would be created in the processes of a job. For this purpose, a Mixed Integer Linear Programming model is proposed.

Keywords: flexible job-shop scheduling, reactive scheduling, stochastic environment, mixed integer linear programming

Procedia PDF Downloads 360
9467 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification

Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui

Abstract:

The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.

Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor

Procedia PDF Downloads 143
9466 Causal Relationship between Corporate Governance and Financial Information Transparency: A Simultaneous Equations Approach

Authors: Maali Kachouri, Anis Jarboui

Abstract:

We focus on the causal relationship between governance and information transparency as well as interrelation among the various governance mechanisms. This paper employs a simultaneous equations approach to show this relationship in the Tunisian context. Based on an 8-year dataset, our sample covers 28 listed companies over 2006-2013. Our findings suggest that internal and external governance mechanisms are interdependent. Moreover, in order to analyze the causal effect between information transparency and governance mechanisms, we found evidence that information transparency tends to increase good corporate governance practices.

Keywords: simultaneous equations approach, transparency, causal relationship, corporate governance

Procedia PDF Downloads 353
9465 Three Dimensional Vibration Analysis of Carbon Nanotubes Embedded in Elastic Medium

Authors: M. Shaban, A. Alibeigloo

Abstract:

This paper studies free vibration behavior of single-walled carbon nanotubes (SWCNTs) embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, nonlocal theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radius-to-length ratio.

Keywords: carbon nanotubes, embedded, nonlocal, free vibration

Procedia PDF Downloads 450