Search results for: second order gradient descent
13938 Isolation, Structure Elucidation, and Biological Evaluation of Acetylated Flavonoid Glycosides from Centaurium spicatum
Authors: Abdelaaty A. Shahat, Mansour S. Alsaid
Abstract:
Four Acetylated flavonol glycosides were isolated from Centaurium spicatum (L.) Fritsch (Gentianaceae). Structure elucidation, especially the localization of the acetyl groups, and complete 1H and 13C NMR assignments of these biologically active compounds were carried out using one- and two-dimensional NMR methods, including CNMR, DEPT-135 and DEPT-90 and gradient-assisted experiments such as DQF-COSY, TOCSY, HSQC and HMBC experiments. The antioxidant activities of the new acetylated flavonoid glycosides using DPPH• assay were determined. The compounds tested showed a good DPPH• activity compared with control, but their activity was lower than that of their corresponding aglycone, quercetin.Keywords: Centaurium spicatum, flavonoids, biological activity, isolation, glycosides
Procedia PDF Downloads 40513937 Several Spectrally Non-Arbitrary Ray Patterns of Order 4
Authors: Ling Zhang, Feng Liu
Abstract:
A matrix is called a ray pattern matrix if its entries are either 0 or a ray in complex plane which originates from 0. A ray pattern A of order n is called spectrally arbitrary if the complex matrices in the ray pattern class of A give rise to all possible nth degree complex polynomial. Otherwise, it is said to be spectrally non-arbitrary ray pattern. We call that a spectrally arbitrary ray pattern A of order n is minimally spectrally arbitrary if any nonzero entry of A is replaced, then A is not spectrally arbitrary. In this paper, we find that is not spectrally arbitrary when n equals to 4 for any θ which is greater than or equal to 0 and less than or equal to n. In this article, we give several ray patterns A(θ) of order n that are not spectrally arbitrary for some θ which is greater than or equal to 0 and less than or equal to n. by using the nilpotent-Jacobi method. One example is given in our paper.Keywords: spectrally arbitrary, nilpotent matrix , ray patterns, sign patterns
Procedia PDF Downloads 18113936 Numerical Solutions of Fractional Order Epidemic Model
Authors: Sadia Arshad, Ayesha Sohail, Sana Javed, Khadija Maqbool, Salma Kanwal
Abstract:
The dynamical study of the carriers play an essential role in the evolution and global transmission of infectious diseases and will be discussed in this study. To make this approach novel, we will consider the fractional order model which is generalization of integer order derivative to an arbitrary number. Since the integration involved is non local therefore this property of fractional operator is very useful to study epidemic model for infectious diseases. An extended numerical method (ODE solver) is implemented on the model equations and we will present the simulations of the model for different values of fractional order to study the effect of carriers on transmission dynamics. Global dynamics of fractional model are established by using the reproduction number.Keywords: Fractional differential equation, Numerical simulations, epidemic model, transmission dynamics
Procedia PDF Downloads 59713935 Flow Field Optimization for Proton Exchange Membrane Fuel Cells
Authors: Xiao-Dong Wang, Wei-Mon Yan
Abstract:
The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection
Procedia PDF Downloads 29513934 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 17613933 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 11613932 A Sustainable Society and Its Order Principles: Implications of Common Grace and the Man as the Image of God
Authors: Wenfu Zheng, Guanghe Zheng
Abstract:
The discussion on the social sustainability in existing literature is limited to two-dimension epistemology space with only two elements: the human and nature. Using the revelation of the Bible God, the paper adds a moral component to the two-dimension space. With the new variable being introduced, the authors formulate a to three-dimension epistemology space and discuss its implications. Based on the space, the authors explore the hierarchical structure of order principles for a sustainable society. The social order principle system hierarchically consists of three principles: moral, relational, and rational. The justification of every principle is analyzed briefly. The paper concluded that all these order principles are necessary assurance of building a sustainable society.Keywords: common grace, saving grace, sustainable society, the image of God
Procedia PDF Downloads 18913931 Enhancement of Higher Order Thinking Skills among Teacher Trainers by Fun Game Learning Approach
Authors: Malathi Balakrishnan, Gananathan M. Nadarajah, Saraswathy Vellasamy, Evelyn Gnanam William George
Abstract:
The purpose of the study is to explore how the fun game-learning approach enhances teacher trainers’ higher order thinking skills. Two-day fun filled fun game learning-approach was introduced to teacher trainers as a Continuous Professional Development Program (CPD). 26 teacher trainers participated in this Transformation of Teaching and Learning Fun Way Program, organized by Institute of Teacher Education Malaysia. Qualitative research technique was adopted as the researchers observed the participants’ higher order thinking skills developed during the program. Data were collected from observational checklist; interview transcriptions of four participants and participants’ reflection notes. All the data were later analyzed with NVivo data analysis process. The finding of this study presented five main themes, which are critical thinking, hands on activities, creating, application and use of technology. The studies showed that the teacher trainers’ higher order thinking skills were enhanced after the two-day CPD program. Therefore, Institute of Teacher Education will have more success using the fun way game-learning approach to develop higher order thinking skills among its teacher trainers who can implement these skills to their trainee teachers in future. This study also added knowledge to Constructivism learning theory, which will further highlight the prominence of the fun way learning approach to enhance higher order thinking skills.Keywords: constructivism, game-learning approach, higher order thinking skill, teacher trainer
Procedia PDF Downloads 29213930 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems
Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen
Abstract:
Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis
Procedia PDF Downloads 56413929 High Order Block Implicit Multi-Step (Hobim) Methods for the Solution of Stiff Ordinary Differential Equations
Authors: J. P. Chollom, G. M. Kumleng, S. Longwap
Abstract:
The search for higher order A-stable linear multi-step methods has been the interest of many numerical analysts and has been realized through either higher derivatives of the solution or by inserting additional off step points, supper future points and the likes. These methods are suitable for the solution of stiff differential equations which exhibit characteristics that place a severe restriction on the choice of step size. It becomes necessary that only methods with large regions of absolute stability remain suitable for such equations. In this paper, high order block implicit multi-step methods of the hybrid form up to order twelve have been constructed using the multi-step collocation approach by inserting one or more off step points in the multi-step method. The accuracy and stability properties of the new methods are investigated and are shown to yield A-stable methods, a property desirable of methods suitable for the solution of stiff ODE’s. The new High Order Block Implicit Multistep methods used as block integrators are tested on stiff differential systems and the results reveal that the new methods are efficient and compete favourably with the state of the art Matlab ode23 code.Keywords: block linear multistep methods, high order, implicit, stiff differential equations
Procedia PDF Downloads 35713928 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions
Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin
Abstract:
In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography
Procedia PDF Downloads 26713927 Factors Associated With Poor Glycaemic Control Among Patients With Type 2 Diabetes at Gatundu Level 5 Hospital. Kiambu County, Kenya: Key Lessons and Way Forward
Authors: Carolyne Ndungu, Wesley Too, Diana Kassaman
Abstract:
Diabetes is a global public health problem with an increasing morbidity and mortality rate across the globe. It is reported that 422 million people worldwide have diabetes with type 2 diabetes more common in people of African descent. Whilst prevalence of diabetes is four times more than it was in the last three decades, making it the world's ninth greatest cause of mortality, treatment of complications resulting from poor glycemic control is still high, contributing to poverty level in sub-Saharan. Poor treatment adherence has also been identified as a major contributing factor poor glycemic control among diabetic patients and still remains a significant challenge especially among patients living in rural Kenya. This study therefore seeks to identify gaps, barriers and challenges towards medication non-adherence among diabetic patients on follow-up at Kiambu County Referral Hospital, Kenya. Methods: A cross- sectional descriptive study was carried out at Gatundu Level five Hospital in Kiambu County. The study population consisted of adult patients with type two diabetes mellitus (T2DM) on follow up, at the Diabetes clinic between the month of June to July 2022. Systematic sampling of 200 participants was carried out. Ethical approvals from relevant authorities were done and ethical aspects of the study were also observed. Data analysis is ongoing using logistic regression analysis. Results, recommendations -contribution of this study will be highlighted within the next one month.Keywords: adherence, diabetes, medication, Kenya
Procedia PDF Downloads 13213926 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture
Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko
Abstract:
Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.Keywords: classification, feature selection, texture analysis, tree algorithms
Procedia PDF Downloads 17613925 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem
Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto
Abstract:
We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.Keywords: robust optimization, inventory control, supply chain managment, second-order programming
Procedia PDF Downloads 40713924 Contested Visions of Exploration in IR: Theoretical Engagements, Reflections and New Agendas on the Dynamics of Global Order
Authors: Ananya Sharma
Abstract:
International Relations is a discipline of paradoxes. The State is the dominant political institution, with mainstream analysis theorizing the State, but theory remains at best a reactionary monolith. Critical Theorists have been pushing the envelope and to that extent, there has been a clear shift in the dominant discourse away from State-centrism to individuals and group-level behaviour. This paradigm shift has been accompanied with more nuanced conceptualizations of other variables at play–power, security, and trust, to name a few. Yet, the ambit of “what is discussed” remains primarily embedded in realist conceptualizations. With this background in mind, this paper will attempt to understand, juxtapose and evaluate how “order” has been conceptualized in International Relations theory. This paper is a tentative attempt to present a “state of the art” and in the process, set the stage for a deeper study to draw attention to what the author feels is a gaping lacuna in IR theory. The paper looks at how different branches of international relations theory envisage world order and the silences embedded therein. Further, by locating order and disorder inhabiting the same reality along a continuum, alternative readings of world orders are drawn from the critical theoretical traditions, in which various articulations of justice impart the key normative pillar to the world order.Keywords: global justice, international relations theory, legitimacy, world order
Procedia PDF Downloads 34513923 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil
Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang
Abstract:
Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.Keywords: catabolic gene, diesel, diversity, edaphic algae
Procedia PDF Downloads 27813922 Safety and Feasibility of Distal Radial Balloon Aortic Valvuloplasty - The DR-BAV Study
Authors: Alexandru Achim, Tamás Szűcsborus, Viktor Sasi, Ferenc Nagy, Zoltán Jambrik, Attila Nemes, Albert Varga, Călin Homorodean, Olivier F. Bertrand, Zoltán Ruzsa
Abstract:
Aim: Our study aimed to establish the safety and the technical success of distal radial access for balloon aortic valvuloplasty (DR-BAV). The secondary objective was to determine the effectiveness and appropriate role of DR-BAV within half year follow-up. Methods: Clinical and angiographic data from 32 consecutive patients with symptomatic aortic stenosis were evaluated in a prospective pilot single-center study. Between 2020 and 2021, the patients were treated utilizing dual distal radial access with 6-10F compatible balloons. The efficacy endpoint was divided into technical success (successful valvuloplasty balloon inflation at the aortic valve and absence of intra- or periprocedural major complications), hemodynamic success (a reduction of the mean invasive gradient >30%), and clinical success (an improvement of at least one clinical category in the NYHA classification). The safety endpoints were vascular complications (major and minor Valve Academic Research Consortium (VARC)-2 bleeding, diminished or lost arterial pulse or the presence of any pseudo-aneurysm or arteriovenous fistula during the clinical follow-up) and major adverse events, MAEs (the composite of death, stroke, myocardial infarction, and urgent major aortic valve replacement or implantation during the hospital stay and or at one-month follow-up). Results: 32 patients (40 % male, mean age 80 ± 8,5) with severe aortic valve stenosis were included in the study and 4 patients were excluded. Technical success was achieved in all patients (100%). Hemodynamic success was achieved in 30 patients (93,75%). Invasive max and mean gradients were reduced from 73±22 mm Hg and 49±22 mm Hg to 49±19 mm Hg and 20±13 mm Hg, respectively (p = <.001). Clinical success was achieved in 29 patients (90,6%). In total, no major adverse cardiac or cerebrovascular event nor vascular complications (according to VARC 2 criteria) occurred during the intervention. All-cause death at 6 months was 12%. Conclusion: According to our study, dual distal radial artery access is a safe and effective option for balloon aortic valvuloplasty in patients with severe aortic valve stenosis and can be performed in all patients with sufficient lumen diameter. Future randomized studies are warranted to investigate whether this technique is superior to other approaches.Keywords: mean invasive gradient, distal radial access for balloon aortic valvuloplasty (DR-BAV), aortic valve stenosis, pseudo-aneurysm, arteriovenous fistula, valve academic research consortium (VARC)-2
Procedia PDF Downloads 9413921 Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System
Authors: Guillermo Manuel Flores Figueroa, Juan Alejandro Vazquez Feijoo, Jose Navarro Antonio
Abstract:
A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel.Keywords: Volterra series, frequency response functions FRF, associated linear equations ALEs, unitary response function, Voterra kernel
Procedia PDF Downloads 66713920 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India
Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah
Abstract:
Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method
Procedia PDF Downloads 23713919 Understanding the Association between Altruism, Personality, and Birth Order among Indian Young Adults
Authors: Shruti Soudi, Anushka Nayak
Abstract:
Altruism is a voluntary helping behavior that is not motivated by rewards. The empathy-altruism hypothesis states that altruistic behavior results from empathy, a constant emotional response between the helper and the individual in need. Individual variances in familiar ways of thinking, feeling, and acting are called personalities. The personality of an individual determines their behavior. More importantly, Adler was among the first psychologists to document the importance of birth order on personality. The present study aims to understand the influence of personality and birth order on altruism. A questionnaire consisting of standardized tools to measure altruism (Hindi Self Report Altruism Scale) and personality (Big Five Personality Inventory) will aid in studying the relationship between these variables among young adults in India. A statistical analysis of the data will be completed using ANOVA and T-Test in the SPSS Software.Keywords: altruism, personality, birth order, ANOVA, young adults
Procedia PDF Downloads 7513918 Undirected Endo-Cayley Digraphs of Cyclic Groups of Order Primes
Authors: Chanon Promsakon, Sayan Panma
Abstract:
Let S be a finite semigroup, A a subset of S and f an endomorphism on S. The endo-Cayley digraph of a semigroup S corresponding to a connecting set A and an endomorphism f, denoted by endo − Cayf (S, A) is a digraph whose vertex set is S and a vertex u is adjacent to a vertex v if and only if v = f(u)a for some a ∈ A. A digraph D is called undirected if any edge uv in D, there exists an edge vu in D. We consider the undirectedness of an endo-Cayley of a cyclic group of order prime, Zp. In this work, we investigate conditions for connecting sets and endomorphisms to make endo-Cayley digraphs of cyclic groups of order primes be undirected. Moreover, we give some conditions for an undirected endo-Cayley of cycle group of any order.Keywords: endo-Cayley graph, undirected digraphs, cyclic groups, endomorphism
Procedia PDF Downloads 34813917 A Study on Stochastic Integral Associated with Catastrophes
Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan
Abstract:
We analyze stochastic integrals associated with a mutation process. To be specific, we describe the cell population process and derive the differential equations for the joint generating functions for the number of mutants and their integrals in generating functions and their applications. We obtain first-order moments of the processes of the two-way mutation process in first-order moment structure of X (t) and Y (t) and the second-order moments of a one-way mutation process. In this paper, we obtain the limiting behaviour of the integrals in limiting distributions of X (t) and Y (t).Keywords: stochastic integrals, single–server queue model, catastrophes, busy period
Procedia PDF Downloads 64113916 Non-Differentiable Mond-Weir Type Symmetric Duality under Generalized Invexity
Authors: Jai Prakash Verma, Khushboo Verma
Abstract:
In the present paper, a pair of Mond-Weir type non-differentiable multiobjective second-order programming problems, involving two kernel functions, where each of the objective functions contains support function, is formulated. We prove weak, strong and converse duality theorem for the second-order symmetric dual programs under η-pseudoinvexity conditions.Keywords: non-differentiable multiobjective programming, second-order symmetric duality, efficiency, support function, eta-pseudoinvexity
Procedia PDF Downloads 24713915 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 20613914 A Strategy for the Application of Second-Order Monte Carlo Algorithms to Petroleum Exploration and Production Projects
Authors: Obioma Uche
Abstract:
Due to the recent volatility in oil & gas prices as well as increased development of non-conventional resources, it has become even more essential to critically evaluate the profitability of petroleum prospects prior to making any investment decisions. Traditionally, simple Monte Carlo (MC) algorithms have been used to randomly sample probability distributions of economic and geological factors (e.g. price, OPEX, CAPEX, reserves, productive life, etc.) in order to obtain probability distributions for profitability metrics such as Net Present Value (NPV). In recent years, second-order MC algorithms have been shown to offer an advantage over simple MC techniques due to the added consideration of uncertainties associated with the probability distributions of the relevant variables. Here, a strategy for the application of the second-order MC technique to a case study is demonstrated to analyze its effectiveness as a tool for portfolio management.Keywords: Monte Carlo algorithms, portfolio management, profitability, risk analysis
Procedia PDF Downloads 33013913 An Evolutionary Approach for QAOA for Max-Cut
Authors: Francesca Schiavello
Abstract:
This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024.Keywords: evolutionary algorithm, max cut, parallel simulation, quantum optimization
Procedia PDF Downloads 5813912 Prismatic Bifurcation Study of a Functionally Graded Dielectric Elastomeric Tube Using Linearized Incremental Theory of Deformations
Authors: Sanjeet Patra, Soham Roychowdhury
Abstract:
In recent times, functionally graded dielectric elastomer (FGDE) has gained significant attention within the realm of soft actuation due to its dual capacity to exert highly localized stresses while maintaining its compliant characteristics on application of electro-mechanical loading. Nevertheless, the full potential of dielectric elastomer (DE) has not been fully explored due to their susceptibility to instabilities when subjected to electro-mechanical loads. As a result, study and analysis of such instabilities becomes crucial for the design and realization of dielectric actuators. Prismatic bifurcation is a type of instability that has been recognized in a DE tube. Though several studies have reported on the analysis for prismatic bifurcation in an isotropic DE tube, there is an insufficiency in studies related to prismatic bifurcation of FGDE tubes. Therefore, this paper aims to determine the onset of prismatic bifurcations on an incompressible FGDE tube when subjected to electrical loading across the thickness of the tube and internal pressurization. The analysis has been conducted by imposing two axial boundary conditions on the tube, specifically axially free ends and axially clamped ends. Additionally, the rigidity modulus of the tube has been linearly graded in the direction of thickness where the inner surface of the tube has a lower stiffness than the outer surface. The static equilibrium equations for deformation of the axisymmetric tube are derived and solved using numerical technique. The condition for prismatic bifurcation of the axisymmetric static equilibrium solutions has been obtained by using the linearized incremental constitutive equations. Two modes of bifurcations, corresponding to two different non-circular cross-sectional geometries, have been explored in this study. The outcomes reveal that the FGDE tubes experiences prismatic bifurcation before the Hessian criterion of failure is satisfied. It is observed that the lower mode of bifurcation can be triggered at a lower critical voltage as compared to the higher mode of bifurcation. Furthermore, the tubes with larger stiffness gradient require higher critical voltages for triggering the bifurcation. Moreover, with the increase in stiffness gradient, a linear variation of the critical voltage is observed with the thickness of the tube. It has been found that on applying internal pressure to a tube with low thickness, the tube becomes less susceptible to bifurcations. A thicker tube with axially free end is found to be more stable than the axially clamped end tube at higher mode of bifurcation.Keywords: critical voltage, functionally graded dielectric elastomer, linearized incremental approach, modulus of rigidity, prismatic bifurcation
Procedia PDF Downloads 7613911 Synthesis of (S)-Naproxen Based Amide Bond Forming Chiral Reagent and Application for Liquid Chromatographic Resolution of (RS)-Salbutamol
Authors: Poonam Malik, Ravi Bhushan
Abstract:
This work describes a very efficient approach for synthesis of activated ester of (S)-naproxen which was characterized by UV, IR, ¹HNMR, elemental analysis and polarimetric studies. It was used as a C-N bond forming chiral derivatizing reagent for further synthesis of diastereomeric amides of (RS)-salbutamol (a β₂ agonist that belongs to the group β-adrenolytic and is marketed as racamate) under microwave irradiation. The diastereomeric pair was separated by achiral phase HPLC, using mobile phase in gradient mode containing methanol and aqueous triethylaminephosphate (TEAP); separation conditions were optimized with respect to pH, flow rate, and buffer concentration and the method of separation was validated as per International Council for Harmonisation (ICH) guidelines. The reagent proved to be very effective for on-line sensitive detection of the diastereomers with very low limit of detection (LOD) values of 0.69 and 0.57 ng mL⁻¹ for diastereomeric derivatives of (S)- and (R)-salbutamol, respectively. The retention times were greatly reduced (2.7 min) with less consumption of organic solvents and large (α) as compared to literature reports. Besides, the diastereomeric derivatives were separated and isolated by preparative HPLC; these were characterized and were used as standard reference samples for recording ¹HNMR and IR spectra for determining absolute configuration and elution order; it ensured the success of diastereomeric synthesis and established the reliability of enantioseparation and eliminated the requirement of pure enantiomer of the analyte which is generally not available. The newly developed reagent can suitably be applied to several other amino group containing compounds either from organic syntheses or pharmaceutical industries because the presence of (S)-Npx as a strong chromophore would allow sensitive detection.This work is significant not only in the area of enantioseparation and determination of absolute configuration of diastereomeric derivatives but also in the area of developing new chiral derivatizing reagents (CDRs).Keywords: chiral derivatizing reagent, naproxen, salbutamol, synthesis
Procedia PDF Downloads 15113910 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order
Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao
Abstract:
In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution
Procedia PDF Downloads 14313909 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models
Authors: Ozan Kahraman, Hao Feng
Abstract:
Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7
Procedia PDF Downloads 361