Search results for: power factor correction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11233

Search results for: power factor correction

10813 Design and Study of a Low Power High Speed Full Adder Using GDI Multiplexer

Authors: Biswarup Mukherjee, Aniruddha Ghosal

Abstract:

In this paper, we propose a new technique for implementing a low power full adder using a set of GDI multiplexers. Full adder circuits are used comprehensively in Application Specific Integrated Circuits (ASICs). Thus it is desirable to have low power operation for the sub components. The explored method of implementation achieves a low power design for the full adder. Simulated results using state-of-art Tanner tool indicates the superior performance of the proposed technique over conventional CMOS full adder. Detailed comparison of simulated results for the conventional and present method of implementation is presented.

Keywords: low power full adder, 2-T GDI MUX, ASIC (application specific integrated circuit), 12-T FA, CMOS (complementary metal oxide semiconductor)

Procedia PDF Downloads 326
10812 Cross Ventilation in Waterfront Urban Canyons: The Case Study of Alexandria

Authors: Bakr Gomaa

Abstract:

Cross ventilation is an important and practical mean to achieve thermal comfort and conserve energy. This is especially true in the breezy waterfront settings. However, due to a number of factors, cross ventilation in buildings is usually studied by using oversimplified scenarios. It is then reasonable to study the impact of complex set of factors on the accuracy of predicting air flow rate because of wind driven cross ventilation. The objective of this paper is to provide architects with the tools necessary to achieve natural ventilation for cooling purposes in a waterfront urban canyon context. Also, urban canyons have not received much attention in terms of their impact on cross ventilation, and while we know how the wind flows between buildings in different urban canyon settings, the effect of the parallel-to-the-wind urban canyon on cross ventilation in buildings remains unclear. For this, we use detailed weather data, boundary layer correction factor, and CFD simulations to study the pressure patterns that form on the canyons surfaces in the case study of Alexandria. We found that the simplified numerical methods of calculating the cross ventilation in buildings can lead to inaccurate design decisions.

Keywords: cross ventilation, Alexandria, CFD, urban canyon

Procedia PDF Downloads 231
10811 Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices

Authors: M. Habibi

Abstract:

The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy.

Keywords: plasmoids, p11B fuel, ion viscous heating, quantum magnetic field, plasma focus device

Procedia PDF Downloads 432
10810 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube

Authors: Abolfazl Hosseinkhani, Sepehr Sanaye

Abstract:

Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.

Keywords: vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction

Procedia PDF Downloads 112
10809 Evaluation of Response Modification Factor and Behavior of Seismic Base-Isolated RC Structures

Authors: Mohammad Parsaeimaram, Fang Congqi

Abstract:

In this paper, one of the significant seismic design parameter as response modification factor in reinforced concrete (RC) buildings with base isolation system was evaluated. The seismic isolation system is a capable approach to absorbing seismic energy at the base and transfer to the substructure with lower response modification factor as compared to non-isolated structures. A response spectrum method and static nonlinear pushover analysis in according to Uniform Building Code (UBC-97), have been performed on building models involve 5, 8, 12 and 15 stories building with fixed and isolated bases consist of identical moment resisting configurations. The isolation system is composed of lead rubber bearing (LRB) was designed with help UBC-97 parameters. The force-deformation behavior of isolators was modeled as bi-linear hysteretic behavior which can be effectively used to create the isolation systems. The obtained analytical results highlight the response modification factor of considered base isolation system with higher values than recommended in the codes. The response modification factor is used in modern seismic codes to scale down the elastic response of structures.

Keywords: response modification factor, base isolation system, pushover analysis, lead rubber bearing, bi-linear hysteretic

Procedia PDF Downloads 295
10808 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame

Authors: Saeed Javaherzadeh, Babak Dindar Safa

Abstract:

Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.

Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history

Procedia PDF Downloads 408
10807 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode

Authors: N. Ould cherchali, M. S. Boucherit, L. Barazane, A. Morsli

Abstract:

Photovoltaic power is widely used to supply isolated or unpopulated areas (lighting, pumping, etc.). Great advantage is that this source is inexhaustible, it offers great safety in use and it is clean. But the dynamic models used to describe a photovoltaic system are complicated and nonlinear and due to nonlinear I-V and P–V characteristics of photovoltaic generators, a maximum power point tracking technique (MPPT) is required to maximize the output power. In this paper, two online techniques of maximum power point tracking using robust controller for photovoltaic systems are proposed, the first technique use fuzzy logic controller (FLC) and the second use sliding mode controller (SMC) for photovoltaic systems. The two maximum power point tracking controllers receive the partial derivative of power as inputs, and the output is the duty cycle corresponding to maximum power. A Photovoltaic generator with Boost converter is developed using MATLAB/Simulink to verify the preferences of the proposed techniques. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.

Keywords: fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller

Procedia PDF Downloads 517
10806 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes

Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy

Abstract:

This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.

Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques

Procedia PDF Downloads 302
10805 Wind Energy Potential of Southern Sindh, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Maliha Afshan Siddiqui

Abstract:

A study has been carried out to see the prospect of wind power potential of southern Sindh namely Karachi, Hawksbay, Norriabad, Hyderabad, Ketibander and Shahbander using local wind speed data. The monthly average wind speed for these area ranges from 4.5m/sec to 8.5m/sec at 30m height from ground. Extractable wind power, wind energy and Weibul parameter for above mentioned areas have been examined. Furthermore, the power output using fast and slow wind machine using different blade diameter along with the 4Kw and 20 Kw aero-generator were examined to see the possible use for deep well pumping and electricity supply to remote villages. The analysis reveals that in this wind corridor of southern Sindh Hawksbay, Ketibander and Shahbander belongs to wind power class-3 Hyderabad and Nooriabad belongs to wind power class-5 and Karachi belongs to wind power class-2. The result shows that the that higher wind speed values occur between June till August. It was found that considering maximum wind speed location, Hawksbay,Noriabad are the best location for setting up wind machines for power generation.

Keywords: wind energy generation, Southern Sindh, seasonal change, Weibull parameter, wind machines

Procedia PDF Downloads 126
10804 Strategies to Achieve Deep Decarbonisation in Power Generation: A Review

Authors: Abdullah Alotaiq

Abstract:

The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across the heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.

Keywords: review, power generation, energy transition, decarbonisation

Procedia PDF Downloads 34
10803 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.

Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor

Procedia PDF Downloads 106
10802 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: congestion, distribution networks, loss reduction, particle swarm optimization, smart grid

Procedia PDF Downloads 415
10801 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: distributed generation (DG), interconnected mode, islanding mode, maximum power point tracking (mppt), power quality (PQ), unified power quality conditioner (UPQC), photovoltaic array (PV)

Procedia PDF Downloads 483
10800 Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft

Authors: Lucjan Setlak, Emil Ruda

Abstract:

The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future).

Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems)

Procedia PDF Downloads 469
10799 A Compared Approach between Moderate Islamic Values and Basic Human Values

Authors: Adel Bessadok

Abstract:

The theory of values postulates that each human has a set of values, or attractive and trans-situational goals, that drive their actions. The Basic Human Values as an incentive construct that apprehends human's values have been shown to govern a wide range of human behaviors. Individuals within and within societies have very different value preferences that reflect their enculturation, their personal experiences, their social places and their genetic heritage. Using a focus group composed by Islamic religious Preachers and a sample of 800 young students; this ongoing study will establish Moderate Islamic Values parameters. We analyze later, for the same students sample the difference between Moderate Islamic Values and Schwartz’s Basic Human Values. Keywords—Moderate Islamic Values, Basic Human Values, Exploratory Factor Analysis and Confirmatory Factor Analysis.

Keywords: moderate Islamic values, basic human values, exploratory factor analysis, confirmatory factor analysis

Procedia PDF Downloads 355
10798 Analysing Maximum Power Point Tracking in a Stand Alone Photovoltaic System

Authors: Osamede Asowata

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident in its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector; these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with maximum power point tracking (MPPT) from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0°N, with a corresponding tilt angle of 36°, 26°, and 16°. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.

Keywords: poly-crystalline PV panels, solar chargers, tilt and orientation angles, maximum power point tracking, MPPT, Pulse Width Modulation (PWM).

Procedia PDF Downloads 137
10797 Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India

Authors: Pardhasaradhi Gudla, Imanual A.

Abstract:

The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network.

Keywords: offshore wind power, optimized techniques, power system, sub sea cable

Procedia PDF Downloads 162
10796 Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Authors: Seshi Reddy Kasu, Florian Misoc

Abstract:

The use of hydroelectric pump-storage system at large scale, MW-size systems, is already widespread around the world. Designed for large scale applications, pump-storage station can be scaled-down for small, remote residential applications. Given the cost and complexity associated with installing a substation further than 100 miles from the main transmission lines, a remote, independent and self-sufficient system is by far the most feasible solution. This article is aiming at the design of wind and solar power generating system, by means of pumped-storage to replace the wind and/or solar power systems with a battery bank energy storage. Wind and solar pumped-storage power generating system can reduce the cost of power generation system, according to the user's electricity load and resource condition and also can ensure system reliability of power supply. Wind and solar pumped-storage power generation system is well suited for remote residential applications with intermittent wind and/or solar energy. This type of power systems, installed in these locations, could be a very good alternative, with economic benefits and positive social effects. The advantage of pumped storage power system, where wind power regulation is calculated, shows that a significant smoothing of the produced power is obtained, resulting in a power-on-demand system’s capability, concomitant to extra economic benefits.

Keywords: battery bank, photo-voltaic, pump-storage, wind energy

Procedia PDF Downloads 571
10795 A Wideband CMOS Power Amplifier with 23.3 dB S21, 10.6 dBm Psat and 12.3% PAE for 60 GHz WPAN and 77 GHz Automobile Radar Systems

Authors: Yo-Sheng Lin, Chien-Chin Wang, Yun-Wen Lin, Chien-Yo Lee

Abstract:

A wide band power amplifier (PA) for 60 GHz and 77 GHz direct-conversion transceiver using standard 90 nm CMOS technology is reported. The PA comprises a cascode input stage with a wide band T-type input-matching network and inductive interconnection and load, followed by a common-source (CS) gain stage and a CS output stage. To increase the saturated output power (PSAT) and power-added efficiency (PAE), the output stage adopts a two-way power dividing and combining architecture. Instead of the area-consumed Wilkinson power divider and combiner, miniature low-loss transmission-line inductors are used at the input and output terminals of each of the output stages for wide band input and output impedance matching to 100 ohm. This in turn results in further PSAT and PAE enhancement. The PA consumes 92.2 mW and achieves maximum power gain (S21) of 23.3 dB at 56 GHz, and S21 of 21.7 dB and 14 dB, respectively, at 60 GHz and 77 GHz. In addition, the PA achieves excellent saturated output power (PSAT) of 10.6 dB and maximum power added efficiency (PAE) of 12.3% at 60 GHz. At 77 GHz, the PA achieves excellent PSAT of 10.4 dB and maximum PAE of 6%. These results demonstrate the proposed wide band PA architecture is very promising for 60 GHz wireless personal local network (WPAN) and 77 GHz automobile radar systems.

Keywords: 60 GHz, 77 GHz, PA, WPAN, automotive radar

Procedia PDF Downloads 552
10794 Evaluating Reliability Indices in 3 Critical Feeders at Lorestan Electric Power Distribution Company

Authors: Atefeh Pourshafie, Homayoun Bakhtiari

Abstract:

The main task of power distribution companies is to supply the power required by customers in an acceptable level of quality and reliability. Some key performance indicators for electric power distribution companies are those evaluating the continuity of supply within the network. More than other problems, power outages (due to lightning, flood, fire, earthquake, etc.) challenge economy and business. In addition, end users expect a reliable power supply. Reliability indices are evaluated on an annual basis by the specialized holding company of Tavanir (Power Produce, Transmission& distribution company of Iran) . Evaluation of reliability indices is essential for distribution companies, and with regard to the privatization of distribution companies, it will be of particular importance to evaluate these indices and to plan for their improvement in a not too distant future. According to IEEE-1366 standard, there are too many indices; however, the most common reliability indices include SAIFI, SAIDI and CAIDI. These indices describe the period and frequency of blackouts in the reporting period (annual or any desired timeframe). This paper calculates reliability indices for three sample feeders in Lorestan Electric Power Distribution Company and defines the threshold values in a ten-month period. At the end, strategies are introduced to reach the threshold values in order to increase customers' satisfaction.

Keywords: power, distribution network, reliability, outage

Procedia PDF Downloads 445
10793 Investigation of Optical Requirements for Power System Assets Monitoring with Unmanned Aerial Vehicles

Authors: Ioana Pisica, Dimitrios Gkritzapis

Abstract:

The significance of UAS in scientific applications has been amply demonstrated in recent years. The combinations of portability and quasi-static positioning by means of flying in close loop path make them versatile and efficient in the inspection of power systems infrastructure. In this paper, we critically assess several platforms and sensor capabilities to identify their pros and cons in relation to the power systems assets to be monitored. In this respect, it is paramount the flights to be conducted by using UAS which bear certain suitable features, such as responsive and easy control, video capturing in real time, autonomous routing of pre-planned flight programming with differentiating payloads. The outcome of this research is a set of optimal requirements for power system assets monitoring with UAS.

Keywords: platforms, power system, sensors, UAVs

Procedia PDF Downloads 259
10792 Intrabody Communication Using Different Ground Configurations in Digital Door Lock

Authors: Daewook Kim, Gilwon Yoon

Abstract:

Intrabody communication (IBC) is a new way of transferring data using human body as a medium. Minute current can travel though human body without any harm. IBC can remove electrical wires for human area network. IBC can be also a secure communication network system unlike wireless networks which can be accessed by anyone with bad intentions. One of the IBC systems is based on frequency shift keying modulation where individual data are transmitted to the external devices for the purpose of secure access such as digital door lock. It was found that the quality of IBC data transmission was heavily dependent on ground configurations of electronic circuits. Reliable IBC transmissions were not possible when both of the transmitter and receiver used batteries as circuit power source. Transmission was reliable when power supplies were used as power source for both transmitting and receiving sites because the common ground was established through the grounds of instruments such as power supply and oscilloscope. This was due to transmission dipole size and the ground effects of floor and AC power line. If one site used battery as power source and the other site used the AC power as circuit power source, transmission was possible.

Keywords: frequency shift keying, ground, intrabody, communication, door lock

Procedia PDF Downloads 398
10791 Exploration and Evaluation of the Effect of Multiple Countermeasures on Road Safety

Authors: Atheer Al-Nuaimi, Harry Evdorides

Abstract:

Every day many people die or get disabled or injured on roads around the world, which necessitates more specific treatments for transportation safety issues. International road assessment program (iRAP) model is one of the comprehensive road safety models which accounting for many factors that affect road safety in a cost-effective way in low and middle income countries. In iRAP model road safety has been divided into five star ratings from 1 star (the lowest level) to 5 star (the highest level). These star ratings are based on star rating score which is calculated by iRAP methodology depending on road attributes, traffic volumes and operating speeds. The outcome of iRAP methodology are the treatments that can be used to improve road safety and reduce fatalities and serious injuries (FSI) numbers. These countermeasures can be used separately as a single countermeasure or mix as multiple countermeasures for a location. There is general agreement that the adequacy of a countermeasure is liable to consistent losses when it is utilized as a part of mix with different countermeasures. That is, accident diminishment appraisals of individual countermeasures cannot be easily added together. The iRAP model philosophy makes utilization of a multiple countermeasure adjustment factors to predict diminishments in the effectiveness of road safety countermeasures when more than one countermeasure is chosen. A multiple countermeasure correction factors are figured for every 100-meter segment and for every accident type. However, restrictions of this methodology incorporate a presumable over-estimation in the predicted crash reduction. This study aims to adjust this correction factor by developing new models to calculate the effect of using multiple countermeasures on the number of fatalities for a location or an entire road. Regression models have been used to establish relationships between crash frequencies and the factors that affect their rates. Multiple linear regression, negative binomial regression, and Poisson regression techniques were used to develop models that can address the effectiveness of using multiple countermeasures. Analyses are conducted using The R Project for Statistical Computing showed that a model developed by negative binomial regression technique could give more reliable results of the predicted number of fatalities after the implementation of road safety multiple countermeasures than the results from iRAP model. The results also showed that the negative binomial regression approach gives more precise results in comparison with multiple linear and Poisson regression techniques because of the overdispersion and standard error issues.

Keywords: international road assessment program, negative binomial, road multiple countermeasures, road safety

Procedia PDF Downloads 216
10790 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications

Authors: Dejenie Birile Gemeda, Wilhelm Stork

Abstract:

The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.

Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines

Procedia PDF Downloads 112
10789 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems

Authors: Masato Sasaki, Masayoshi Yamamoto

Abstract:

The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.

Keywords: wireless power transfer, omni-directional, orthogonal, efficiency

Procedia PDF Downloads 295
10788 Working Title: Estimating the Power Output of Photovoltaics in Kuwait Using a Monte Carlo Approach

Authors: Mohammad Alshawaf, Rahmat Poudineh, Nawaf Alhajeri

Abstract:

The power generated from photovoltaic (PV) modules is non-dispatchable on demand due to the stochastic nature of solar radiation. The random variations in the measured intensity of solar irradiance are due to clouds and, in the case of arid regions, dust storms which decrease the intensity of intensity of solar irradiance. Therefore, modeling PV power output using average, maximum, or minimum solar irradiance values is inefficient to predict power generation reliably. The overall objective of this paper is to predict the power output of PV modules using Monte Carlo approach based the weather and solar conditions measured in Kuwait. Given the 250 Wp PV module used in study, the average daily power output is 1021 Wh/day. The maximum power was generated in April and the minimum power was generated in January 1187 Wh/day and 823 Wh/day respectively. The certainty of the daily predictions varies seasonally and according to the weather conditions. The output predictions were far more certain in the summer months, for example, the 80% certainty range for August is 89 Wh/day, whereas the 80% certainty range for April is 250 Wh/day.

Keywords: Monte Carlo, solar energy, variable renewable energy, Kuwait

Procedia PDF Downloads 112
10787 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications

Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel

Abstract:

An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.

Keywords: RFIC, PAE, RF CMOS, impedance matching

Procedia PDF Downloads 195
10786 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: RELAP5, TRACE, SNAP, BWR

Procedia PDF Downloads 397
10785 Design of Broadband Power Divider for 3G and 4G Applications

Authors: A. M. El-Akhdar, A. M. El-Tager, H. M. El-Hennawy

Abstract:

This paper presents a broadband power divider with equal power division ratio. Two sections of transmission line transformers based on coupled microstrip lines are applied to obtain broadband performance. In addition, design methodology is proposed for the novel structure. A prototype is designed, simulated to operate in the band from 2.1 to 3.8 GHz to fulfill the requirements of 3G and 4G applications. The proposed structure features reduced size and less resistors than other conventional techniques. Simulation verifies the proposed idea and design methodology.

Keywords: power dividers, coupled lines, microstrip, 4G applications

Procedia PDF Downloads 448
10784 Interfacing and Replication of Electronic Machinery Using MATLAB/SIMULINK

Authors: Abdulatif Abdulsalam, Mohamed Shaban

Abstract:

This paper introduces interfacing and replication of electronic tools based on the MATLAB/ SIMULINK mock-up package. Mock-up components contain dc-dc converters, power issue rectifiers, motivation machines, dc gear, synchronous gear, and more entire systems. Power issue rectifier model includes solid state device models. The tools are the clear-cut structure and mock-up of complex energetic systems connecting with power electronic machines.

Keywords: power electronics, machine, MATLAB, simulink

Procedia PDF Downloads 322