Search results for: organic reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4574

Search results for: organic reaction

4154 An Organocatalytic Construction of Vicinal Tetrasubstituted Stereocenters via Mannich Reaction of 2-Substituted Benzofuran-3-One with Isatin-Derived Ketimine

Authors: Koilpitchai Sivamuthuraman, Venkitasamy Kesavan

Abstract:

3-substituted 3-amino-2-oxindole skeleton bearing adjacent tetrasubstituted stereogenic centers is of great importance because of these heterocyclic motifs possess a wide range of pharmacological activity. The catalytic asymmetric construction of multi functionalised heterocyclic compound with adjacent tetrasubstituted stereocenters is one of the most difficult tasks in organic synthesis. To date, the most straightforward methodologies have been developed for synthesis of chiral 3-substituted 3-amino-2-oxindoles through the addition of carbon nucleophiles to isatin-derived ketimines. However, only a few successful examples have been described for the assembly of vicinal tetrasubstituted stereocenters using isatin derived ketimines as electrophiles. On the other hand, 2,2-Disubstituted benzofuran-3(2H)-ones and related frameworks are characteristic of a quaternary stereogenic center at C2 position present in quite a number of natural products and bioactive Molecules.Despite the intensive efforts devoted for the construction of 2,2-Disubstituted Benzofuran-3[2H]-one, there are only a few asymmetric methods such as organocatalytic Michael addition and enantioselective halogenations were reported till now. Due to the biological importance of oxindole and benzofuran-3-one, it is proposed here with the synthesis of hybrid molecule containing tetrasubstituted stereo centers through asymmetric organocatalysis. The addition of 2-substituted Benzofuran-3-one(1a) to isatin-derived ketimines(2a) using a bifunctional organocatalyst(catalyst IV or V), leading to chiral heterocyclic compounds containing both 3-amino 2-oxindole and benzofurn-3-one bearing vicinal quaternary stereocenters with good yields and excellent enantioselectivity. The present study extends the scope of the catalytic asymmetric Mannich reaction with isatin-derived ketimines, providing a new class of amino oxindole derivatives having benzofuran-3-one.

Keywords: asymmetric synthesis, benzofuran-3-one, isatin-derived ketimines, quaternary stereocenters

Procedia PDF Downloads 167
4153 Sulfonic Acid Functionalized Ionic Liquid in Combinatorial Approach: A Recyclable and Water Tolerant-Acidic Catalyst for Friedlander Quinoline Synthesis

Authors: Jafar Akbari

Abstract:

Quinolines are very important compounds partially because of their pharmacological properties which include wide applications in medicinal chemistry. notable among them are antimalarial drugs, anti-inflammatory agents, antiasthamatic, antibacterial, antihypertensive, and tyrosine kinase inhibiting agents. Despite quinoline usage in pharmaceutical and other industries, comparatively few methods for their preparation have been reported.The Friedlander annulation is one of the simplest and most straightforward methods for the synthesis of poly substituted quinolines. Although, modified methods employing lewis or br¢nsted acids have been reported for the synthesis of quinolines, the development of water stable acidic catalyst for quinoline synthesis is quite desirable. One of the most remarkable features of ionic liquids is that the yields can be optimized by changing the anions or the cations. Recently, sulfonic acid functionalized ionic liquids were used as solvent-catalyst for several organic reactions. We herein report the one pot domino approach for the synthesis of quinoline derivatives in Friedlander manner using TSIL as a catalyst. These ILs are miscible in water, and their homogeneous system is readily separated from the reaction product, combining advantages of both homogeneous and heterogeneous catalysis. In this reaction, the catalyst plays a dual role; it ensures an effective condensation and cyclization of 2-aminoaryl ketone with second carbonyl group and it also promotes the aromatization to the final product. Various types of quinolines from 2-aminoaryl ketones and β-ketoesters/ketones were prepared in 85-98% yields using the catalytic system of SO3-H functionalized ionic liquid/H2O. More importantly, the catalyst could be easily recycled for five times without loss of much activity.

Keywords: antimalarial drugs, green chemistry, ionic liquid, quinolines

Procedia PDF Downloads 185
4152 Utilization of Juncus acutus as Alternative Feed Resource in Ruminants

Authors: Nurcan Cetinkaya

Abstract:

The aim of this paper is to bring about the utilization of Juncus acutus as an alternative roughage resource in ruminant nutrition. In Turkey, JA is prevailing plant of the natural grassland in Kizilirmak Delta, Samsun. Crude nutrient values such as crude protein (CP), ether extract (EE), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin(ADL) including antioxidant activity, total phenolic and flavonoid compounds, total organic matter digestibility (OMD) and metabolisable energy (ME) values of Juncus acutus stem, seed, and also its mixture with maize silage were estimated. and published. Furthermore, the effects of JA over rumen cellulolitic bacteria were studied. The obtained results from different studies conducted on JA by our team show that Juncus acutus may be a new roughage source in ruminant nutrition.

Keywords: antioxidant activity, cellulolytic bacteria, Juncus acutus, organic matter digestibility

Procedia PDF Downloads 251
4151 The Thermochemical Conversion of Lactic Acid in Subcritical and Supercritical Water

Authors: Shyh-Ming Chern, Hung-Chi Tu

Abstract:

One way to utilize biomass is to thermochemically convert it into gases and chemicals. For conversion of biomass, glucose is a particularly popular model compound for cellulose, or more generally for biomass. The present study takes a different approach by employing lactic acid as the model compound for cellulose. Since lactic acid and glucose have identical elemental composition, they are expected to produce similar results as they go through the conversion process. In the current study, lactic acid was thermochemically converted to assess its reactivity and reaction mechanism in subcritical and supercritical water, by using a 16-ml autoclave reactor. The major operating parameters investigated include: The reaction temperature, from 673 to 873 K, the reaction pressure, 10 and 25 MPa, the dosage of oxidizing agent, 0 and 0.5 chemical oxygen demand, and the concentration of lactic acid in the feed, 0.5 and 1.0 M. Gaseous products from the conversion were generally found to be comparable to those derived from the conversion of glucose.

Keywords: lactic acid, subcritical water, supercritical water, thermochemical conversion

Procedia PDF Downloads 293
4150 Thermally Stable Crystalline Triazine-Based Organic Polymeric Nanodendrites for Mercury(2+) Ion Sensing

Authors: Dimitra Das, Anuradha Mitra, Kalyan Kumar Chattopadhyay

Abstract:

Organic polymers, constructed from light elements like carbon, hydrogen, nitrogen, oxygen, sulphur, and boron atoms, are the emergent class of non-toxic, metal-free, environmental benign advanced materials. Covalent triazine-based polymers with a functional triazine group are significant class of organic materials due to their remarkable stability arising out of strong covalent bonds. They can conventionally form hydrogen bonds, favour π–π contacts, and they were recently revealed to be involved in interesting anion–π interactions. The present work mainly focuses upon the development of a single-crystalline, highly cross-linked triazine-based nitrogen-rich organic polymer with nanodendritic morphology and significant thermal stability. The polymer has been synthesized through hydrothermal treatment of melamine and ethylene glycol resulting in cross-polymerization via condensation-polymerization reaction. The crystal structure of the polymer has been evaluated by employing Rietveld whole profile fitting method. The polymer has been found to be composed of monoclinic melamine having space group P21/a. A detailed insight into the chemical structure of the as synthesized polymer has been elucidated by Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopic analysis. X-Ray Photoelectron Spectroscopic (XPS) analysis has also been carried out for further understanding of the different types of linkages required to create the backbone of the polymer. The unique rod-like morphology of the triazine based polymer has been revealed from the images obtained from Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Interestingly, this polymer has been found to selectively detect mercury (Hg²⁺) ions at an extremely low concentration through fluorescent quenching with detection limit as low as 0.03 ppb. The high toxicity of mercury ions (Hg²⁺) arise from its strong affinity towards the sulphur atoms of biological building blocks. Even a trace quantity of this metal is dangerous for human health. Furthermore, owing to its small ionic radius and high solvation energy, Hg²⁺ ions remain encapsulated by water molecules making its detection a challenging task. There are some existing reports on fluorescent-based heavy metal ion sensors using covalent organic frameworks (COFs) but reports on mercury sensing using triazine based polymers are rather undeveloped. Thus, the importance of ultra-trace detection of Hg²⁺ ions with high level of selectivity and sensitivity has contemporary significance. A plausible sensing phenomenon by the polymer has been proposed to understand the applicability of the material as a potential sensor. The impressive sensitivity of the polymer sample towards Hg²⁺ is the very first report in the field of highly crystalline triazine based polymers (without the introduction of any sulphur groups or functionalization) towards mercury ion detection through photoluminescence quenching technique. This crystalline metal-free organic polymer being cheap, non-toxic and scalable has current relevance and could be a promising candidate for Hg²⁺ ion sensing at commercial level.

Keywords: fluorescence quenching , mercury ion sensing, single-crystalline, triazine-based polymer

Procedia PDF Downloads 99
4149 Investigation of Performance of Organic Acids on Carbonate Rocks (Experimental Study in Ahwaz Oilfield)

Authors: Azad Jarrahian, Ehsan Heidaryan

Abstract:

Matrix acidizing treatments can yield impressive production increase if properly applied. In this study, carbonate samples taken from Ahwaz Oilfield have undergone static solubility, sludge, emulsion, and core flooding tests. In each test interaction of acid and rock is reported and at the end it has been shown that how initial permeability and type of acid affects the overall treatment efficiency.

Keywords: carbonate acidizing, organic acids, spending rate, acid penetration, incomplete spending.

Procedia PDF Downloads 405
4148 Biogas Production from University Canteen Waste: Effect of Organic Loading Rate and Retention Time

Authors: Khamdan Cahyari, Gumbolo Hadi Susanto, Pratikno Hidayat, Sukirman

Abstract:

University canteen waste was used as raw material to produce biogas in Faculty of Industrial Technology, Islamic University of Indonesia. This faculty was home to more than 3000 students and lecturers who work and study for 5 days/week (8 hours/day). It produced approximately 85 ton/year organic fraction of canteen waste. Yet, this waste had been dumped for years in landfill area which cause severe environmental problems. It was proposed to utilize the waste as raw material for producing renewable energy source of biogas. This research activities was meant to investigate the effect of organic loading rate (OLR) and retention time (RT) of continuous anaerobic digestion process for 200 days. Organic loading rate was set at value 2, 3, 4 and 5 g VS/l/d whereas the retention time was adjusted at 30, 24, 18 and 14.4 days. Optimum condition was achieved at OLR 4 g VS/l/d and RT 24 days with biogas production rate between 0.75 to 1.25 liter/day (40-60% CH4). This indicated that the utilization of canteen waste to produce biogas was promising method to mitigate environmental problem of university canteen waste. Furthermore, biogas could be used as alternative energy source to supply energy demand at the university. This implementation is simultaneous solution for both waste and energy problems to achieve green campus.

Keywords: canteen waste, biogas, anaerobic digestion, university, green campus

Procedia PDF Downloads 369
4147 One Step Synthesis of Molybdenum Carbide Nanoparticles for Efficient Hydrogen Evolution Reaction

Authors: Sanjay Upadhyay, Om Prakash Pandey

Abstract:

Hydrogen has been promoted as an alternative source of energy, which is renewable, cost-effective, and nature-friendly. Hydrogen evolution reaction (HER) can be used for mass production of hydrogen at a very low cost through electrochemical water splitting. An active and efficient electrocatalyst is required to perform this reaction. Till date, platinum (Pt) is a stable and efficient electrocatalyst towards HER. But its high cost and low abundance hiders its large scale uses. Molybdenum carbide having a similar electronic structure to platinum can be a great alternative to costly platinum. In this study, pure phase molybdenum carbide (Mo₂C) has been synthesized in a single step. Synthesis temperature and holding time have been optimized to obtain pure phases of Mo₂C. The surface, structural and morphological properties of as-synthesized compounds have been studied. The HER activity of as-synthesized compounds has been explored in detail.

Keywords: capacitance, hydrogen fuel, molybdenum carbide, nanoparticles

Procedia PDF Downloads 175
4146 Preparation and Characterization of Nanocrystalline Cellulose from Acacia mangium

Authors: Samira Gharehkhani, Seyed Farid Seyed Shirazi, Abdolreza Gharehkhani, Hooman Yarmand, Ahmad Badarudin, Rushdan Ibrahim, Salim Newaz Kazi

Abstract:

Nanocrystalline cellulose (NCC) were prepared by acid hydrolysis and ultrasound treatment of bleached Acacia mangium fibers. The obtained rod-shaped nanocrystals showed a uniform size. The results showed that NCC with high crystallinity can be obtained using 64 wt% sulfuric acid. The effect of synthesis condition was investigated. Different reaction times were examined to produce the NCC and the results revealed that an optimum reaction time has to be used for preparing the NCC. Morphological investigation was performed using the transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) were performed. X-ray diffraction (XRD) analysis revealed that the crystallinity increased with successive treatments. The NCC suspension was homogeneous and stable and no sedimentation was observed for a long time.

Keywords: acid hydrolysis, nanocrystalline cellulose, nano material, reaction time

Procedia PDF Downloads 482
4145 Thermodynamics of Water Condensation on an Aqueous Organic-Coated Aerosol Aging via Chemical Mechanism

Authors: Yuri S. Djikaev

Abstract:

A large subset of aqueous aerosols can be initially (immediately upon formation) coated with various organic amphiphilic compounds whereof the hydrophilic moieties are attached to the aqueous aerosol core while the hydrophobic moieties are exposed to the air thus forming a hydrophobic coating thereupon. We study the thermodynamics of water condensation on such an aerosol whereof the hydrophobic organic coating is being concomitantly processed by chemical reactions with atmospheric reactive species. Such processing (chemical aging) enables the initially inert aerosol to serve as a nucleating center for water condensation. The most probable pathway of such aging involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic moieties of surface organics (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on an organic-coated aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous cloud droplets on such aerosols is most likely to occur via Kohler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for their Kohler activation. Numerical results also corroborate previous suggestions that one can neglect some details of aerosol chemical composition in investigating aerosol effects on climate.

Keywords: aqueous aerosols, organic coating, chemical aging, cloud condensation nuclei, Kohler activation, cloud droplets

Procedia PDF Downloads 366
4144 A Study on the Synthesis of Boron Nitride Microtubes

Authors: Pervaiz Ahmad, Mayeen Uddin Khandaker, Yusoff Mohd Amin

Abstract:

A unique cone-like morphologies of boron nitride microtubes with larger internal space and thin walls structure are synthesized in a dual zone quartz tube furnace at 1200 ° C with ammonia as a reaction atmosphere. The synthesized microtubes are found to have diameter in the range of 1 to ̴ 2 μm with walls thickness estimated from 10 – 100 nm. XPS survey shows N 1s and B 1s peaks at 398.7 eV and 191 eV that represent h-BN in the sample. Raman spectroscopy indicates a high intensity peak at 1372.53 (cm-1) that corresponds to the E2g mode of h-BN.

Keywords: BNMTs, synthesis, reaction atmosphere, growth

Procedia PDF Downloads 355
4143 Effect of Minerals in Middlings on the Reactivity of Gasification-Coke by Blending a Large Proportion of Long Flame Coal

Authors: Jianjun Wu, Fanhui Guo, Yixin Zhang

Abstract:

In this study, gasification-coke were produced by blending the middlings (MC), and coking coal (CC) and a large proportion of long flame coal (Shenfu coal, SC), the effects of blending ratio were investigated. Mineral evolution and crystalline order obtained by XRD methods were reproduced within reasonable accuracy. Structure characteristics of partially gasification-coke such as surface area and porosity were determined using the N₂ adsorption and mercury porosimetry. Experimental data of gasification-coke was dominated by the TGA results provided trend, reactivity differences between gasification-cokes are discussed in terms of structure characteristic, crystallinity, and alkali index (AI). The first-order reaction equation was suitable for the gasification reaction kinetics of CO₂ atmosphere which was represented by the volumetric reaction model with linear correlation coefficient above 0.985. The differences in the microporous structure of gasification-coke and catalysis caused by the minerals in parent coals were supposed to be the main factors which affect its reactivity. The addition of MC made the samples enriched with a large amount of ash causing a higher surface area and a lower crystalline order to gasification-coke which was beneficial to gasification reaction. The higher SiO₂ and Al₂O₃ contents, causing a decreasing AI value and increasing activation energy, which reduced the gasification reaction activity. It was found that the increasing amount of MC got a better performance on the coke gasification reactivity by blending > 30% SC with this coking process.

Keywords: low-rank coal, middlings, structure characteristic, mineral evolution, alkali index, gasification-coke, gasification kinetics

Procedia PDF Downloads 140
4142 Waste Minimization through Vermicompost: An Alternative Approach

Authors: Mary Fabiola

Abstract:

Vermicompost is the product or process of composting using various worms. Large-scale vermicomposting is practiced in Canada, Italy, Japan, Malaysia, the Philippines, and the United States. The vermicompost may be used for farming, landscaping, and creating compost tea or for sale. Some of these operations produce worms for bait and/or home vermicomposting. As a processing system, The vermicomposting of organic waste is very simple. Worms ingest the waste material-break it up in their rudimentary. Gizzards, consume the digestible/putrefiable portion and then excrete a stable, Humus-like material that can be immediately marketed. Vermitechnology can be a promising technique that has shown its potential in certain challenging areas like augmentation of food production, waste recycling, management of solid wastes etc. There is no doubt that in India, where on side pollution is increasing due to accumulation of organic wastes and on the other side there is shortage of organic manure, which could increase the fertility and productivity of the land and produce nutritive and safe food. So, the scope for vermicomposting is enormous.

Keywords: pollution, solid wastes, vermicompost, waste recycling

Procedia PDF Downloads 403
4141 Removal of Aromatic Fractions of Natural Organic Matter from Synthetic Water Using Aluminium Based Electrocoagulation

Authors: Tanwi Priya, Brijesh Kumar Mishra

Abstract:

Occurrence of aromatic fractions of Natural Organic Matter (NOM) led to formation of carcinogenic disinfection by products such as trihalomethanes in chlorinated water. In the present study, the efficiency of aluminium based electrocoagulation on the removal of prominent aromatic groups such as phenol, hydrophobic auxochromes, and carboxyl groups from NOM enriched synthetic water has been evaluated using various spectral indices. The effect of electrocoagulation on turbidity has also been discussed. The variation in coagulation performance as a function of pH has been studied. Our result suggests that electrocoagulation can be considered as appropriate remediation approach to reduce trihalomethanes formation in water. It has effectively reduced hydrophobic fractions from NOM enriched low turbid water. The charge neutralization and enmeshment of dispersed colloidal particles inside metallic hydroxides is the possible mechanistic approach in electrocoagulation.

Keywords: aromatic fractions, electrocoagulation, natural organic matter, spectral indices

Procedia PDF Downloads 250
4140 The Micro-Activated Organic Regeneration in Rural Construction: A Case Study of Yangdun Village in Deqing County, Zhejiang Province

Authors: Chengyuan Zhu, Zhu Wang

Abstract:

With the strategy of Rural Rejuvenation proposed in China, the rural has become the focus of all works today. In addition to the support of industry and policy, the rural planning and construction which is the space dependence of Rural Rejuvenation are also very crucial. Based on an analysis of the case of Yangdun Village in Deqing County, this paper summarizes village existing resources and construction status quo. It tries to illuminate the micro-activated organic renewal strategies and methods, based on ecological landscape, history context, industry development and living life requirements. It takes advantage of industrial linkage and then asks for the coordination of both spatial and industrial planning, the revival and remodeling of the rural image can be achieved through shaping the of architectural and landscape nodes as well as the activation of street space.

Keywords: rural construction, rural human settlements, micro-activation, organic renewal

Procedia PDF Downloads 204
4139 FT-IR Investigation of the Influence of Acid-Base Sites on Cr-Incorporated MCM-41 Nanoparticle in C-C Bond Formation

Authors: Dilip K. Paul

Abstract:

The most popular mesoporous molecular sieves, Mobil Composition of Matter (MCM) are keenly studied by researchers because of these materials possess amorphous silica wall and have a long range of ordered framework with uniform mesopores. These materials also possess large surface area, which can be up to more than 1000 m2g−1. Herein the investigation is focused upon the synthesis and characterization of chromium and aluminum doped MCM-41 using XRD and FTIR. Acid-base properties of Cr-Al-MCM 41 was investigated by molecularly sensitive transmission FT-IR spectroscopy by adsorbing pyridine. In addition, these MCM nanomaterial was used to catalyze C-C bond formation from acetaldehyde adsorption. The assignment of all infrared peaks during adsorption of pyridine provided detail information on the presence of acid-base sites which in turn helped us to explain the roles of these in the condensation reaction of aldehyde. Reaction mechanisms of C-C bond formation is therefore explored to shed some light on this elusive reaction detail.

Keywords: mesoporous nanomaterial, MCM 41, FTIR studies, acid-base studies

Procedia PDF Downloads 420
4138 Identification of Deposition Sequences of the Organic Content of Lower Albian-Cenomanian Age in Northern Tunisia: Correlation between Molecular and Stratigraphic Fossils

Authors: Tahani Hallek, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer

Abstract:

The present work is an organic geochemical study of the Fahdene Formation outcrops at the Mahjouba region belonging to the Eastern part of the Kalaat Senan structure in northwestern Tunisia (the Kef-Tedjerouine area). The analytical study of the organic content of the samples collected, allowed us to point out that the Formation in question is characterized by an average to good oil potential. This fossilized organic matter has a mixed origin (type II and III), as indicated by the relatively high values of hydrogen index. This origin is confirmed by the C29 Steranes abundance and also by tricyclic terpanes C19/(C19+C23) and tetracyclic terpanes C24/(C24+C23) ratios, that suggest a marine environment of deposit with high plants contribution. We have demonstrated that the heterogeneity of organic matter between the marine aspect, confirmed by the presence of foraminifera, and the continental contribution, is the result of an episodic anomaly in relation to the sequential stratigraphy. Given that the study area is defined as an outer platform forming a transition zone between a stable continental domain to the south and a deep basin to the north, we have explained the continental contribution by successive forced regressions, having blocked the albian transgression, allowing the installation of the lowstand system tracts. This aspect is represented by the incised valleys filling, in direct contact with the pelagic and deep sea facies. Consequently, the Fahdene Formation, in the Kef-Tedjerouine area, consists of transgressive system tracts (TST) brutally truncated by extras of continental progradation; resulting in a mixed influence deposition having retained a heterogeneous organic material.

Keywords: molecular geochemistry, biomarkers, forced regression, deposit environment, mixed origin, Northern Tunisia

Procedia PDF Downloads 221
4137 Autism Awareness Among School Students and the Violent Reaction of the Autist Toward Society in Egypt

Authors: Naglaa Baskhroun Thabet Wasef

Abstract:

Specific education services for students with Autism remains in its early developmental stages in Egypt. In spite of many more children with autism are attending schools since The Egyptian government introduced the Education Provision for Students with Disabilities Act in 2010, the services students with autism and their families receive are generally not enough. This pointed study used Attitude and Reaction to Teach Students with Autism Scale to investigate 50 primary school teachers’ attitude and reaction to teach students with autism in the general education classroom. Statistical analysis of the data found that student behavior was the most noticeable factor in building teachers’ wrong attitudes students with autism. The minority of teachers also indicated that their service education did not prepare them to meet the learning needs of children with autism in special, those who are non-vocal. The study is descriptive and provides direction for increasing teacher awareness for inclusivity in Egypt.

Keywords: attitude, autism, teachers, sports activates, movement skills, motor skills, autism attitude

Procedia PDF Downloads 36
4136 Adsorption of Pb(II) with MOF [Co2(Btec)(Bipy)(DMF)2]N in Aqueous Solution

Authors: E. Gil, A. Zepeda, J. Rivera, C. Ben-Youssef, S. Rincón

Abstract:

Water pollution has become one of the most serious environmental problems. Multiple methods have been proposed for the removal of Pb(II) from contaminated water. Among these, adsorption processes have shown to be more efficient, cheaper and easier to handle with respect to other treatment methods. However, research for adsorbents with high adsorption capacities is still necessary. For this purpose, we proposed in this work the study of metal-organic Framework [Co2(btec)(bipy)(DMF)2]n (MOF-Co) as adsorbent material of Pb (II) in aqueous media. MOF-Co was synthesized by a simple method. Firstly 4, 4’ dipyridyl, 1,2,4,5 benzenetetracarboxylic acid, cobalt (II) and nitrate hexahydrate were first mixed each one in N,N dimethylformamide (DMF) and then, mixed in a reactor altogether. The obtained solution was heated at 363 K in a muffle during 68 h to complete the synthesis. It was washed and dried, obtaining MOF-Co as the final product. MOF-Co was characterized before and after the adsorption process by Fourier transforms infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The Pb(II) in aqueous media was detected by Absorption Atomic Spectroscopy (AA). In order to evaluate the adsorption process in the presence of Pb(II) in aqueous media, the experiments were realized in flask of 100 ml the work volume at 200 rpm, with different MOF-Co quantities (0.0125 and 0.025 g), pH (2-6), contact time (0.5-6 h) and temperature (298,308 and 318 K). The kinetic adsorption was represented by pseudo-second order model, which suggests that the adsorption took place through chemisorption or chemical adsorption. The best adsorption results were obtained at pH 5. Langmuir, Freundlich and BET equilibrium isotherms models were used to study the adsorption of Pb(II) with 0.0125 g of MOF-Co, in the presence of different concentration of Pb(II) (20-200 mg/L, 100 mL, pH 5) with 4 h of reaction. The correlation coefficients (R2) of the different models show that the Langmuir model is better than Freundlich and BET model with R2=0.97 and a maximum adsorption capacity of 833 mg/g. Therefore, the Langmuir model can be used to best describe the Pb(II) adsorption in monolayer behavior on the MOF-Co. This value is the highest when compared to other materials such as the graphene/activated carbon composite (217 mg/g), biomass fly ashes (96.8 mg/g), PVA/PAA gel (194.99 mg/g) and MOF with Ag12 nanoparticles (120 mg/g).

Keywords: adsorption, heavy metals, metal-organic frameworks, Pb(II)

Procedia PDF Downloads 188
4135 Design of Organic Inhibitors from Quantum Chemistry

Authors: Rahma Tibigui, Ikram Hadj Said, Rachid Belkada, Dalila Hammoutene

Abstract:

The vulnerability of industrial facilities is highly concerned with multiple risks from corrosion. The commonly adopted solution is based on the use of organic inhibitors, which are gradually being replaced by environmentally friendly organic inhibitors. In our work, we carried out a quantum chemical study based on the Density Functional Theory (DFT) method at the B3LYP/6-311G (d,p) level of theory. The inhibitory performance of a derivative of the tetrazole molecule has been investigated and reported as a carbon steel-friendly corrosion inhibitor in hydrochloric acid (HCl) medium. The relationship is likely to exist between the molecular structure of this compound as well as its various global reactivity descriptors, and its corrosion inhibition efficiency, which was examined and then discussed. The results show low values of ΔE, which represent strong adsorption of the inhibitor on the steel surface. Moreover, the flat adsorption orientation confirmed the great ability to donate (accept) electrons to (from) steel, fabricating an anchored barrier to prevent steel from corrosion.

Keywords: eco-friendly, corrosion inhibitors, tetrazole, DFT

Procedia PDF Downloads 209
4134 Effects of Temperature and Cysteine Addition on Formation of Flavor from Maillard Reaction Using Xylose and Rapeseed Meal Peptide

Authors: Zuoyong Zhang, Min Yu, Jinlong Zhao, Shudong He

Abstract:

The Maillard reaction can produce the flavor enhancing substance through the chemical crosslinking between free amino group of the protein or polypeptide with the carbonyl of the reducing sugar. In this research, solutions of rapeseed meal peptide and D-xylose with or without L-cysteine (RXC or RX) were heated over a range of temperatures (80-140 °C) for 2 h. It was observed that RXs had a severe browning,while RXCs accompanied by more pH decrement with the temperature increasing. Then the correlation among data of quantitative sensory descriptive analysis, free amino acid (FAA) and GC–MS of RXCs and RXs were analyzed using the partial least square regression method. Results suggested that the Maillard reaction product (MRPs) with cysteine formed at 120 °C (RXC-120) had greater sensory properties especially meat-like flavor compared to other MRPs. Meanwhile, it revealed that glutamic and glycine not only had a positive contribution to meaty aroma but also showed a significant and positive influence on umami taste of RXs based on the FAA data. Moreover, the sulfur-containing compounds showed a significant positive correlation with the meat-like flavor of RXCs, while RXs depended on furans and nitrogenous-containing compounds with more caramel-like flavor. Therefore, a MRP with strong meaty flavor could be obtained at 120 °C by addition of cysteine.

Keywords: rapeseed meal, Maillard reaction, sensory characteristics, FAA, GC–MS, partial least square regression

Procedia PDF Downloads 238
4133 Lithium Ion Supported on TiO2 Mixed Metal Oxides as a Heterogeneous Catalyst for Biodiesel Production from Canola Oil

Authors: Mariam Alsharifi, Hussein Znad, Ming Ang

Abstract:

Considering the environmental issues and the shortage in the conventional fossil fuel sources, biodiesel has gained a promising solution to shift away from fossil based fuel as one of the sustainable and renewable energy. It is synthesized by transesterification of vegetable oils or animal fats with alcohol (methanol or ethanol) in the presence of a catalyst. This study focuses on synthesizing a high efficient Li/TiO2 heterogeneous catalyst for biodiesel production from canola oil. In this work, lithium immobilized onto TiO2 by the simple impregnation method. The catalyst was evaluated by transesterification reaction in a batch reactor under moderate reaction conditions. To study the effect of Li concentrations, a series of LiNO3 concentrations (20, 30, 40 wt. %) at different calcination temperatures (450, 600, 750 ºC) were evaluated. The Li/TiO2 catalysts are characterized by several spectroscopic and analytical techniques such as XRD, FT-IR, BET, TG-DSC and FESEM. The optimum values of impregnated Lithium nitrate on TiO2 and calcination temperature are 30 wt. % and 600 ºC, respectively, along with a high conversion to be 98 %. The XRD study revealed that the insertion of Li improved the catalyst efficiency without any alteration in structure of TiO2 The best performance of the catalyst was achieved when using a methanol to oil ratio of 24:1, 5 wt. % of catalyst loading, at 65◦C reaction temperature for 3 hours of reaction time. Moreover, the experimental kinetic data were compatible with the pseudo-first order model and the activation energy was (39.366) kJ/mol. The synthesized catalyst Li/TiO2 was applied to trans- esterify used cooking oil and exhibited a 91.73% conversion. The prepared catalyst has shown a high catalytic activity to produce biodiesel from fresh and used oil within mild reaction conditions.

Keywords: biodiesel, canola oil, environment, heterogeneous catalyst, impregnation method, renewable energy, transesterification

Procedia PDF Downloads 152
4132 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria

Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji

Abstract:

Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.

Keywords: organic amendment, parent material, rainfall simulation, soil erosion

Procedia PDF Downloads 322
4131 Adsorbent Removal of Oil Spills Using Bentonite Clay

Authors: Saad Mohamed Elsaid Abdelrahman

Abstract:

The adsorption method is one of the best modern techniques used in removing pollutants, especially organic hydrocarbon compounds, from polluted water. Through this research, bentonite clay can be used to remove organic hydrocarbon compounds, such as heptane and octane, resulting from oil spills in seawater. Bentonite clay can be obtained from the Kholayaz area, located north of Jeddah, at a distance of 80 km. Chemical analysis shows that bentonite clay consists of a mixture of silica, alumina and oxides of some elements. Bentonite clay can be activated in order to raise its adsorption efficiency and to make it suitable for removing pollutants using an ionic organic solvent. It is necessary to study some of the factors that could be in the efficiency of bentonite clay in removing oily organic compounds, such as the time of contact of the clay with heptane and octane solutions, pH and temperature, in order to reach the highest adsorption capacity of bentonite clay. The temperature can be a few degrees Celsius higher. The adsorption capacity of the clay decreases when the temperature is raised more than 4°C to reach its lowest value at the temperature of 50°C. The results show that the friction time of 30 minutes and the pH of 6.8 is the best conditions to obtain the highest adsorption capacity of the clay, 467 mg in the case of heptane and 385 mg in the case of octane compound. Experiments conducted on bentonite clay were encouraging to select it to remove heavy molecular weight pollutants such as petroleum compounds under study.

Keywords: adsorbent, bentonite clay, oil spills, removal

Procedia PDF Downloads 62
4130 Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK

Authors: Usman Bawa

Abstract:

Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool.

Keywords: Asellus, biotic index, Gammarus, macro invertebrates, organic pollution

Procedia PDF Downloads 318
4129 Quantum Dot – DNA Conjugates for Biological Applications

Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret

Abstract:

Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.

Keywords: bioimaging, cellular targeting, drug delivery, photostability

Procedia PDF Downloads 403
4128 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method

Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, S. Piskin, N. Tugrul

Abstract:

Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method.

Keywords: borate, ultrasonic method, zinc borate, zinc borate synthesis

Procedia PDF Downloads 369
4127 Effects of Organic Chromium and Propylene Glycol on Milk Yield and Some Serum Biochemical Parameters of Early Lactation Dairy Cows

Authors: Cangir Uyarlar, Ismail Bayram, Ibrahim Sadi Cetingul, Mustafa Kabu, Eyup Eren Gultepe

Abstract:

This study was conducted to determine the effects of organic chromium and organic chromium+propylene glycol on milk yield and some blood parameters related with liver fatty acid metabolism in early lactation dairy cows. Thirty multiparous Holstein dairy cows were used as study material. Cows assigned to three groups as control (C), chromium (Cr) and chromium+propylene glycol (CP). Live weight, parity and body condition score were used as covariates for statistical analyses. The study began at calving and finished at 3 weeks after calving. All cows were consumed same diet. Organic chromium and organic chromium+propylene glycol were orally administrated to cows in treatment groups shortly after the morning milking. Blood samples were collected from all cows on 0 (calving), 3rd, 6th, 9th, 12th, 15th, 18th, 21th days after calving. Then, samples were analyzed for BHBA (Betahydroxybutiric acids), NEFA (Non Esterified Fatty Acids), urea, total protein (TP) and glucose concentrations. Weekly milk yields were calculated from daily milk data on farm. Organic chromium treatment had no significant differences on serum biochemical parameters and milk yields. However, administration of organic chromium and propylene glycol combination decreased serum urea and total protein concentration, helped to protection from subclinical metabolic diseases via decreasing serum NEFA and BHBA concentrations. Also, this combination decreased serum glucose levels of cows. Neither only chromium nor chromium and propylene glycol combination did not affect milk yield throughout the study. These findings were suggested that orally administrations of chromium and propylene glycol combination improved liver glucose and fatty acid metabolism, decreased serum parameters which are representing subclinical diseases in early lactation dairy cows.

Keywords: chromium, early lactation dairy cows, propylene glycol, milk yield

Procedia PDF Downloads 463
4126 Development of an Integrated Reaction Design for the Enzymatic Production of Lactulose

Authors: Natan C. G. Silva, Carlos A. C. Girao Neto, Marcele M. S. Vasconcelos, Luciana R. B. Goncalves, Maria Valderez P. Rocha

Abstract:

Galactooligosaccharides (GOS) are sugars with prebiotic function that can be synthesized chemically or enzymatically, and this last one can be promoted by the action of β-galactosidases. In addition to favoring the transgalactosylation reaction to form GOS, these enzymes can also catalyze the hydrolysis of lactose. A highly studied type of GOS is lactulose because it presents therapeutic properties and is a health promoter. Among the different raw materials that can be used to produce lactulose, whey stands out as the main by-product of cheese manufacturing, and its discarded is harmful to the environment due to the residual lactose present. Therefore, its use is a promising alternative to solve this environmental problem. Thus, lactose from whey is hydrolyzed into glucose and galactose by β-galactosidases. However, in order to favor the transgalactosylation reaction, the medium must contain fructose, due this sugar reacts with galactose to produce lactulose. Then, the glucose-isomerase enzyme can be used for this purpose, since it promotes the isomerization of glucose into fructose. In this scenario, the aim of the present work was first to develop β-galactosidase biocatalysts of Kluyveromyces lactis and to apply it in the integrated reactions of hydrolysis, isomerization (with the glucose-isomerase from Streptomyces murinus) and transgalactosylation reaction, using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% glutaraldehyde was evaluated using different enzymatic loads (2, 5, 7, 10, and 12 mg/g). Subsequently, the hydrolysis and transgalactosylation reactions were studied and conducted at 50°C, 120 RPM for 20 minutes. In parallel, the isomerization of glucose into fructose was evaluated under conditions of 70°C, 750 RPM for 90 min. After, the integration of the three processes for the production of lactulose was investigated. Among the evaluated loads, 7 mg/g was chosen because the best activity of the derivative (44.3 U/g) was obtained, being this parameter determinant for the reaction stages. The other parameters of immobilization yield (87.58%) and recovered activity (46.47%) were also satisfactory compared to the other conditions. Regarding the integrated process, 94.96% of lactose was converted, achieving 37.56 g/L and 37.97 g/L of glucose and galactose, respectively. In the isomerization step, conversion of 38.40% of glucose was observed, obtaining a concentration of 12.47 g/L fructose. In the transgalactosylation reaction was produced 13.15 g/L lactulose after 5 min. However, in the integrated process, there was no formation of lactulose, but it was produced other GOS at the same time. The high galactose concentration in the medium probably favored the reaction of synthesis of these other GOS. Therefore, the integrated process proved feasible for possible production of prebiotics. In addition, this process can be economically viable due to the use of an industrial residue as a substrate, but it is necessary a more detailed investigation of the transgalactosilation reaction.

Keywords: beta-galactosidase, glucose-isomerase, galactooligosaccharides, lactulose, whey

Procedia PDF Downloads 114
4125 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran

Abstract:

In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 206