Search results for: multivariate regression tree
4040 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection
Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine
Abstract:
Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine
Procedia PDF Downloads 2694039 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 954038 Role of P53, KI67 and Cyclin a Immunohistochemical Assay in Predicting Wilms’ Tumor Mortality
Authors: Ahmed Atwa, Ashraf Hafez, Mohamed Abdelhameed, Adel Nabeeh, Mohamed Dawaba, Tamer Helmy
Abstract:
Introduction and Objective: Tumour staging and grading do not usually reflect the future behavior of Wilms' tumor (WT) regarding mortality. Therefore, in this study, P53, Ki67 and cyclin A immunohistochemistry were used in a trial to predict WT cancer-specific survival (CSS). Methods: In this nonconcurrent cohort study, patients' archived data, including age at presentation, gender, history, clinical examination and radiological investigations, were retrieved then the patients were reviewed at the outpatient clinic of a tertiary care center by history-taking, clinical examination and radiological investigations to detect the oncological outcome. Cases that received preoperative chemotherapy or died due to causes other than WT were excluded. Formalin-fixed, paraffin-embedded specimens obtained from the previously preserved blocks at the pathology laboratory were taken on positively charged slides for IHC with p53, Ki67 and cyclin A. All specimens were examined by an experienced histopathologist devoted to the urological practice and blinded to the patient's clinical findings. P53 and cyclin A staining were scored as 0 (no nuclear staining),1 (<10% nuclear staining), 2 (10-50% nuclear staining) and 3 (>50% nuclear staining). Ki67 proliferation index (PI) was graded as low, borderline and high. Results: Of the 75 cases, 40 (53.3%) were males and 35 (46.7%) were females, and the median age was 36 months (2-216). With a mean follow-up of 78.6±31 months, cancer-specific mortality (CSM) occurred in 15 (20%) and 11 (14.7%) patients, respectively. Kaplan-Meier curve was used for survival analysis, and groups were compared using the Log-rank test. Multivariate logistic regression and Cox regression were not used because only one variable (cyclin A) had shown statistical significance (P=.02), whereas the other significant factor (residual tumor) had few cases. Conclusions: Cyclin A IHC should be considered as a marker for the prediction of WT CSS. Prospective studies with a larger sample size are needed.Keywords: wilms’ tumour, nephroblastoma, urology, survival
Procedia PDF Downloads 674037 A Similarity/Dissimilarity Measure to Biological Sequence Alignment
Authors: Muhammad A. Khan, Waseem Shahzad
Abstract:
Analysis of protein sequences is carried out for the purpose to discover their structural and ancestry relationship. Sequence similarity determines similar protein structures, similar function, and homology detection. Biological sequences composed of amino acid residues or nucleotides provide significant information through sequence alignment. In this paper, we present a new similarity/dissimilarity measure to sequence alignment based on the primary structure of a protein. The approach finds the distance between the two given sequences using the novel sequence alignment algorithm and a mathematical model. The algorithm runs at a time complexity of O(n²). A distance matrix is generated to construct a phylogenetic tree of different species. The new similarity/dissimilarity measure outperforms other existing methods.Keywords: alignment, distance, homology, mathematical model, phylogenetic tree
Procedia PDF Downloads 1784036 Effect of Temperature on Germination and Seedlings Development of Moringa Oleifera Lam
Authors: Khater N., Rahmine S., Bougoffa C., Bouguenna T., Ouanes H.
Abstract:
Moringa oleifera L. species is considered one of the most useful trees in the world, possessing many interesting properties that make it of great scientific interest. It has been described as the miracle tree, the tree of a thousand virtues, the tree of life and God's gift to man. The present study aims to introduce, produce, and develop Moringa Oleifera as a species with high ecological potential (resistance to biotic and abiotic stresses and productivity), high added value, and multiple virtues. The aim of this work is to study the germination potential of this species under different temperature conditions. In this study, the germination assay was tested in two different temperature ranges: internal (laboratory ambient temperature between 22°c and 25°c) and external (seasonal temperature between 4°c and 8°c). Morphological and physiological analyses were carried out by Shoot length (SL), root length (RL), diameter at the crown (DC), fresh weight of shoots (FWS), fresh weight of roots (FWR), dry weight of shoots (DWS) and dry weight of roots (DWS). For all these variables, the results of the study reveal a significant difference between the two temperature intervals, with a high germination rate of 81. 81% and plant growth was rapid (7cm during 24h) in the laboratory temperature; in contrast to the external temperatures, a germination rate value of around 27% was recorded, and germination took place after 20 days of sowing, with slower plant growth. The results obtained show that a temperature greater than or equal to 25° is the ideal temperature for the germination and growth of moringa seeds and has a positive influence on the speed and percentage of germination.Keywords: moringa oleifera, temperature, germination rate, growth, biomass
Procedia PDF Downloads 624035 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot
Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.
Abstract:
Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud
Procedia PDF Downloads 774034 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race
Authors: Joonas Pääkkönen
Abstract:
In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling
Procedia PDF Downloads 1254033 The Predictors of Student Engagement: Instructional Support vs Emotional Support
Authors: Tahani Salman Alangari
Abstract:
Student success can be impacted by internal factors such as their emotional well-being and external factors such as organizational support and instructional support in the classroom. This study is to identify at least one factor that forecasts student engagement. It is a cross-sectional, conducted on 6206 teachers and encompassed three years of data collection and observations of math instruction in approximately 50 schools and 300 classrooms. A multiple linear regression revealed that a model predicting student engagement from emotional support, classroom organization, and instructional support was significant. Four linear regression models were tested using hierarchical regression to examine the effects of independent variables: emotional support was the highest predictor of student engagement while instructional support was the lowest.Keywords: student engagement, emotional support, organizational support, instructional support, well-being
Procedia PDF Downloads 814032 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model
Authors: Seydou Sinde
Abstract:
The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression
Procedia PDF Downloads 844031 Unveiling Electrical Treeing Mechanisms in Epoxy Resin Insulation Degradation
Authors: Chien-Kuo Chang, You-Syuan Wu, Min-Chiu Wu, Bharath-Kumar Boyanapalli
Abstract:
The electrical treeing mechanism in epoxy resin insulation is a critical area of study concerning the degradation of high-voltage electrical equipment. In this study, we conducted pressure-induced degradation experiments on epoxy resin specimens using a needle-plane electrode structure to simulate electrical treeing. The specimens featured two different defect spacings, allowing for detailed observation facilitated by time-lapse photography. Our investigation revealed four distinct stages of insulation degradation: initial dark tree growth, filamentary tree growth, reverse tree growth, and eventual insulation breakdown. The initial dark treeing stage, though shortest in duration, exhibited a thicker main branch and shorter branching, ceasing upon the appearance of filamentary treeing. Filamentary treeing manifested in two forms: dark filamentary treeing during the resin's glassy state, characterized by branching structures, and fuzzy filamentary treeing during the rubbery state, resembling white feathers. The channels formed by filamentary treeing were observed to be as narrow as a few micrometers and continued to grow until the end of the experiment. Additionally, the transition to reverse treeing occurred when filamentary treeing reached the ground electrode, with the earliest manifestation being growth from the ground electrode towards the high-voltage end.Keywords: epoxy resin insulation, high-voltage equipment, electrical treeing mechanism
Procedia PDF Downloads 774030 Variation in the Traditional Knowledge of Curcuma longa L. in North-Eastern Algeria
Authors: A. Bouzabata, A. Boukhari
Abstract:
Curcuma longa L. (Zingiberaceae), commonly known as turmeric, has a long history of traditional uses for culinary purposes as a spice and a food colorant. The present study aimed to document the ethnobotanical knowledge about Curcuma longa and to assess the variation in the herbalists’ experience in Northeastern Algeria. Data were collected by semi-structured questionnaires and direct interviews with 30 herbalists. Ethnobotanical indices, including the fidelity level (FL%), the relative frequency citation (RFC) and use value (UV) were determined by quantitative methods. Diversity in the knowledge was analyzed using univariate, non-parametric and multivariate statistical methods. Three main categories of uses were recorded for C. longa: for food, for medicine and for cosmetic purposes. As a medicine, turmeric was used for the treatment of gastrointestinal, dermatological and hepatic diseases. Medicinal and food uses were correlated with both forms of use (rhizome and powder). The age group did not influence the use. Multivariate analyses showed a significant variation in traditional knowledge, associated with the use value, origin, quality and efficacy of the drug. These findings suggested that the geographical origin of C. longa affected the use in Algeria.Keywords: curcuma, indices, knowledge, variation
Procedia PDF Downloads 5444029 Urban Park Characteristics Defining Avian Community Structure
Authors: Deepti Kumari, Upamanyu Hore
Abstract:
Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.Keywords: diversity, feeding guild, urban park, urbanization intensity
Procedia PDF Downloads 1234028 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis
Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio
Abstract:
Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction
Procedia PDF Downloads 3104027 Running the Athena Vortex Lattice Code in JAVA through the Java Native Interface
Authors: Paul Okonkwo, Howard Smith
Abstract:
This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft.Keywords: aerodynamics, automation, optimisation, AVL, JNI
Procedia PDF Downloads 5664026 Spatial Relationship of Drug Smuggling Based on Geographic Information System Knowledge Discovery Using Decision Tree Algorithm
Authors: S. Niamkaeo, O. Robert, O. Chaowalit
Abstract:
In this investigation, we focus on discovering spatial relationship of drug smuggling along the northern border of Thailand. Thailand is no longer a drug production site, but Thailand is still one of the major drug trafficking hubs due to its topographic characteristics facilitating drug smuggling from neighboring countries. Our study areas cover three districts (Mae-jan, Mae-fahluang, and Mae-sai) in Chiangrai city and four districts (Chiangdao, Mae-eye, Chaiprakarn, and Wienghang) in Chiangmai city where drug smuggling of methamphetamine crystal and amphetamine occurs mostly. The data on drug smuggling incidents from 2011 to 2017 was collected from several national and local published news. Geo-spatial drug smuggling database was prepared. Decision tree algorithm was applied in order to discover the spatial relationship of factors related to drug smuggling, which was converted into rules using rule-based system. The factors including land use type, smuggling route, season and distance within 500 meters from check points were found that they were related to drug smuggling in terms of rules-based relationship. It was illustrated that drug smuggling was occurred mostly in forest area in winter. Drug smuggling exhibited was discovered mainly along topographic road where check points were not reachable. This spatial relationship of drug smuggling could support the Thai Office of Narcotics Control Board in surveillance drug smuggling.Keywords: decision tree, drug smuggling, Geographic Information System, GIS knowledge discovery, rule-based system
Procedia PDF Downloads 1694025 On Estimating the Headcount Index by Using the Logistic Regression Estimator
Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz, Francisco J. Blanco-Encomienda
Abstract:
The problem of estimating a proportion has important applications in the field of economics, and in general, in many areas such as social sciences. A common application in economics is the estimation of the headcount index. In this paper, we define the general headcount index as a proportion. Furthermore, we introduce a new quantitative method for estimating the headcount index. In particular, we suggest to use the logistic regression estimator for the problem of estimating the headcount index. Assuming a real data set, results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the traditional estimator of the headcount index.Keywords: poverty line, poor, risk of poverty, Monte Carlo simulations, sample
Procedia PDF Downloads 4234024 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis
Procedia PDF Downloads 4864023 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 5144022 Characteristics of Old-Growth and Secondary Forests in Relation to Age and Typhoon Disturbance
Authors: Teng-Chiu Lin, Pei-Jen Lee Shaner, Shin-Yu Lin
Abstract:
Both forest age and physical damages due to weather events such as tropical cyclones can influence forest characteristics and subsequently its capacity to sequester carbon. Detangling these influences is therefore a pressing issue under climate change. In this study, we compared the compositional and structural characteristics of three forests in Taiwan differing in age and severity of typhoon disturbances. We found that the two forests (one old-growth forest and one secondary forest) experiencing more severe typhoon disturbances had shorter stature, higher wood density, higher tree species diversity, and lower typhoon-induced tree mortality than the other secondary forest experiencing less severe typhoon disturbances. On the other hand, the old-growth forest had a larger amount of woody debris than the two secondary forests, suggesting a dominant role of forest age on woody debris accumulation. Of the three forests, only the two experiencing more severe typhoon disturbances formed new gaps following two 2015 typhoons, and between these two forests, the secondary forest gained more gaps than the old-growth forest. Consider that older forests generally have more gaps due to a higher background tree mortality, our findings suggest that the age effects on gap dynamics may be reversed by typhoon disturbances. This study demonstrated the effects of typhoons on forest characteristics, some of which could negate the age effects and rejuvenate older forests. If cyclone disturbances were to intensity under climate change, the capacity of older forests to sequester carbon may be reduced.Keywords: typhoon, canpy gap, coarse woody debris, forest stature, forest age
Procedia PDF Downloads 2704021 A Green Method for Selective Spectrophotometric Determination of Hafnium(IV) with Aqueous Extract of Ficus carica Tree Leaves
Authors: A. Boveiri Monji, H. Yousefnia, M. Haji Hosseini, S. Zolghadri
Abstract:
A clean spectrophotometric method for the determination of hafnium by using a green reagent, acidic extract of Ficus carica tree leaves is developed. In 6-M hydrochloric acid, hafnium reacts with this reagent to form a yellow product. The formed product shows maximum absorbance at 421 nm with a molar absorptivity value of 0.28 × 104 l mol⁻¹ cm⁻¹, and the method was linear in the 2-11 µg ml⁻¹ concentration range. The detection limit value was found to be 0.312 µg ml⁻¹. Except zirconium and iron, the selectivity was good, and most of the ions did not show any significant spectral interference at concentrations up to several hundred times. The proposed method was green, simple, low cost, and selective.Keywords: spectrophotometric determination, Ficus caricatree leaves, synthetic reagents, hafnium
Procedia PDF Downloads 2114020 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation
Authors: Yoonsuh Jung, Steven N. MacEachern
Abstract:
Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.Keywords: cross-validation, model selection, quantile regression, tuning parameter selection
Procedia PDF Downloads 4384019 Impact of Diabetes Mellitus Type 2 on Clinical In-Stent Restenosis in First Elective Percutaneous Coronary Intervention Patients
Authors: Leonard Simoni, Ilir Alimehmeti, Ervina Shirka, Endri Hasimi, Ndricim Kallashi, Verona Beka, Suerta Kabili, Artan Goda
Abstract:
Background: Diabetes Mellitus type 2, small vessel calibre, stented length of vessel, complex lesion morphology, and prior bypass surgery have resulted risk factors for In-Stent Restenosis (ISR). However, there are some contradictory results about body mass index (BMI) as a risk factor for ISR. Purpose: We want to identify clinical, lesional and procedural factors that can predict clinical ISR in our patients. Methods: Were enrolled 759 patients who underwent first-time elective PCI with Bare Metal Stents (BMS) from September 2011 to December 2013 in our Department of Cardiology and followed them for at least 1.5 years with a median of 862 days (2 years and 4 months). Only the patients re-admitted with ischemic heart disease underwent control coronary angiography but no routine angiographic control was performed. Patients were categorized in ISR and non-ISR groups and compared between them. Multivariate analysis - Binary Logistic Regression: Forward Conditional Method was used to identify independent predictive risk factors. P was considered statistically significant when <0.05. Results: ISR compared to non-ISR individuals had a significantly lower BMI (25.7±3.3 vs. 26.9±3.7, p=0.004), higher risk anatomy (LM + 3-vessel CAD) (23% vs. 14%, p=0.03), higher number of stents/person used (2.1±1.1 vs. 1.75±0.96, p=0.004), greater length of stents/person used (39.3±21.6 vs. 33.3±18.5, p=0.01), and a lower use of clopidogrel and ASA (together) (95% vs. 99%, p=0.012). They also had a higher, although not statistically significant, prevalence of Diabetes Mellitus (42% vs. 32%, p=0.072) and a greater number of treated vessels (1.36±0.5 vs. 1.26±0.5, p=0.08). In the multivariate analysis, Diabetes Mellitus type 2 and multiple stents used were independent predictors risk factors for In-Stent Restenosis, OR 1.66 [1.03-2.68], p=0.039, and OR 1.44 [1.16-1.78,] p=0.001, respectively. On the other side higher BMI and use of clopidogrel and ASA together resulted protective factors OR 0.88 [0.81-0.95], p=0.001 and OR 0.2 [0.06-0.72] p=0.013, respectively. Conclusion: Diabetes Mellitus and multiple stents are strong predictive risk factors, whereas the use of clopidogrel and ASA together are protective factors for clinical In-Stent Restenosis. Paradoxically High BMI is a protective factor for In-stent Restenosis, probably related to a larger diameter of vessels and consequently a larger diameter of stents implanted in these patients. Further studies are needed to clarify this finding.Keywords: body mass index, diabetes mellitus, in-stent restenosis, percutaneous coronary intervention
Procedia PDF Downloads 2104018 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1434017 The Study of Genetic Diversity in Canola Cultivars of Kashmar-Iran Region
Authors: Seyed Habib Shojaei, Reza Eivazi, Mir Sajad Shojaei, Alireza Akbari, Pooria Mazloom, Seyede Mitra Sadati, Mir Zeinalabedin Shojaei, Farnaz Farbakhsh
Abstract:
To study the genetic diversity in rapeseeds and agronomic traits, an experiment was conducted using multivariate statistical methods at Agricultural Research Station of Kashmar in 2012-2013.In this experiment, ten genotypes of rapeseed in a Randomized Complete Block designs with three replications were evaluated. The following traits were studied: seed yield, number of days to the fifty percent of flowering, plant height, number of pods on main stem, length of the pod, seed yield per plant, number of seed in pod, harvest index, weight of 100 seeds, number of pods on lateral branch, number of lateral branches. In analyzing the variance, differences between cultivars were significant. The average comparative revealed that the most valuable variety was Licord regarding to the traits while the least valuable variety was Opera. In stepwise regression, harvest index, grain yield per plant and number of pods per lateral branches were entering to model. Correlation analysis showed that the grain yield with the number of pods per lateral branches and seed yield per plant have positive and significant correlation. In the factor analysis, the first five components explained more than 83% of the variance in the data. In the first factor, seed yield and the number of pods per lateral branches were of the highest importance. The traits, seed yield per plant, and pod per main stem were of a great significance in the second factor. Moreover, in the third factor, plant height and the number of lateral branches were more important. In the fourth factor, plant height and one hundred seeds weight were of the highest variance. Finally, days to fifty percent of flowering and one hundred seeds weight were more important in fifth factor.Keywords: rapeseed, variance analysis, regression, factor analysis
Procedia PDF Downloads 2584016 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan
Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou
Abstract:
This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve
Procedia PDF Downloads 2924015 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 924014 Optimal Maintenance Policy for a Partially Observable Two-Unit System
Authors: Leila Jafari, Viliam Makis, G. B. Akram Khaleghei
Abstract:
In this paper, we present a maintenance model of a two-unit series system with economic dependence. Unit#1, which is considered to be more expensive and more important, is subject to condition monitoring (CM) at equidistant, discrete time epochs and unit#2, which is not subject to CM, has a general lifetime distribution. The multivariate observation vectors obtained through condition monitoring carry partial information about the hidden state of unit#1, which can be in a healthy or a warning state while operating. Only the failure state is assumed to be observable for both units. The objective is to find an optimal opportunistic maintenance policy minimizing the long-run expected average cost per unit time. The problem is formulated and solved in the partially observable semi-Markov decision process framework. An effective computational algorithm for finding the optimal policy and the minimum average cost is developed and illustrated by a numerical example.Keywords: condition-based maintenance, semi-Markov decision process, multivariate Bayesian control chart, partially observable system, two-unit system
Procedia PDF Downloads 4614013 Crude Palm Oil Antioxidant Extraction and the Antioxidation Activity
Authors: Supriyono Supriyono, Sumardiyono Sumardiyono, Peni Pujiastuti, Dian Indriana Hapsari
Abstract:
Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. The productivity of the oil is 12 ton/hectare/year. Thus palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish-red color on CPO was come from carotenoid. Carotenoid is one of the antioxidants that could be extracted. Carotenoid could be used as functional food and other purposes. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. In this research work, antioxidant was extracted by a mixture of acetone and n.hexane, while the activity of the antioxidant extract was determined by DPPH method. Antioxidant activity of the extracted compound about 46% compared to pure tocopherol. While the solvent mixture compose by 90% acetone and 10% n. hexane meet the best on the antioxidant activity.Keywords: antioxidant, beta carotene, crude palm oil, DPPH, tocopherol
Procedia PDF Downloads 2154012 Conservation Status of a Lowland Tropical Forest in South-West, Nigeria
Authors: Lucky Dartsa Wakawa, Friday Nwabueze Ogana, Temitope Elizabeth Adeniyi
Abstract:
Timely and reliable information on the status of a forest is essential for assessing the extent of regeneration and degradation. However, when such information is lacking effective forest management practices becomes impossible. Therefore, this study assessed the tree species composition, richness, diversity, structure of Oluwa forest reserve with the view of ascertaining it conservation status. A systematic line transect was used in the laying of eight (8) temporary sample plots (TSPs) of size 50m x 50m. Trees with Dbh ≥ 10cm in the selected plots were enumerated, identified and measured. The results indicate that 535 individual trees were enumerated cutting across 26 families and 58 species. The family Sterculiaceae recorded the highest number of species (10) and occurrence (112) representing 17.2% and 20.93% respectively. Celtis zenkeri is the species with the highest number of occurrence of tree per hectare and importance value index (IVI) of 59 and 53.81 respectively. The reserve has the Margalef's index of species richness, Shannon-Weiner diversity Index (H') and Pielou's Species Evenness Index (EH) of 9.07, 3.43 and 0.84 respectively. The forest has a mean Dbh (cm), mean height (m), total basal area/ha (m2) and total volume/ha (m3) of 24.7, 16.9, 36.63 and 602.09 respectively. The important tropical tree species identified includes Diospyros crassiflora Milicia excels, Mansonia altisima, Triplochiton scleroxylon. Despite the level of exploitation in the forest, the forest seems to be resilience. Given the right attention, it could regenerate and replenish to save some of the original species composition of the reserve.Keywords: forest conservation, forest structure, Lowland tropical forest, South-west Nigeria
Procedia PDF Downloads 3464011 The Effects of Stand Density, Standards and Species Composition on Biomass Production in Traditional Coppices
Authors: Marek Mejstřík, Radim Matula, Martin Šrámek
Abstract:
Traditional coppices and coppice-with-standards were widely used throughout Europe and Asia for centuries but were largely abandoned in the second half of the 19th century, especially in central and northwestern Europe. In the last decades, there has been a renewed interest in traditional coppicing for nature conservation and most often, for rapid woody biomass production. However, there is little information on biomass productivity of traditional coppices and what affects it. Here, we focused on the effects of stand density, standards and tree species composition on sprout biomass production in newly restored coppices in the Czech Republic. We measured sprouts and calculated sprout biomass 7 years after the harvest from 2013 resprouting stumps in two 4 ha experimental plots. Each plot was divided into 64 subplots with different densities of standards and sprouting stumps. Total sprout biomass declined with increasing density of standards, but the effect of standards differed significantly among studied species. Whereas increasing density of standards decreased sprout biomass in Quercus petraea and Carpinus betulus, it did not affect sprout biomass productivity in Acer campestre and Tilia cordata. Sprout biomass on stand-level increased linearly with an increasing number of sprouting stumps and we observed no leveling of this relationship even in the highest densities of stumps. We also found a significant shift in tree species composition with the steeply declining relative abundance of Quercus in favor of other studied tree species.Keywords: traditional coppice, coppice with standards, sprout biomass, forest management
Procedia PDF Downloads 161