Search results for: minimum inhibitory concentration (MIC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6923

Search results for: minimum inhibitory concentration (MIC)

6503 Cyclone Driven Variation of Chlorophyll-a Concentration in Bay of Bengal

Authors: Nowshin Nabila Siddique, S. M. Mustafizur Rahman

Abstract:

There is evidence of cyclonic events in Bay of Bengal (BoB) throughout the year. These cyclones cause a variety of fluctuations along its track including the is the influence in Chlorophyll-a (chl-a) concentration. The main purpose of this paper is to justify this variation pattern. Six Tropical Cyclones (TC) are studied using observational method. The result suggests that there is a noticeable change in productivity after a cyclone passes, when the pre cyclonic and post cyclonic condition is observed. In case of Cyclone Amphan, it shows 1.79 mg/m3 of chlorophyll-a concentration increase after a week of cyclonic occurrence. This change is affected by several attributes such as translation speed, intensity and Ocean Pre-condition, specifically Mixed Layer Depth (MLD). Translation Speed and MLD shows a strong negative correlation with the induced chlorophyll concentration. Whereas the effect of the intensity on a cyclone is not that prominent. It is also found that the period of starting an induction is not same for all cyclone such as in case of Cyclone Amphan, the changes started to occur after one day however for Cyclone Sidr and Cyclone Mora it started after three days. Furthermore, a slightly increase in overall productivity is also observed after a cyclone. In the case of Cyclone Amphan, Hudhud, Phailin it shows a rise up to 0.12 mg/m3 in productivity which decreases gradually taking around the period of two months. On a whole this paper signifies the changes in chlorophyll concentration caused by numerous cyclones and its different characteristics that regulates these changes.

Keywords: tropical cyclone, chlorophyll-a concentration, mixed layer depth, translation speed

Procedia PDF Downloads 80
6502 Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State

Authors: Anyimc, C. J. Aneke, J. O. Orji, O. Nworie, U. C. C. Egbule

Abstract:

The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering.

Keywords: microorganisms, antibacterial, antifungal, resistance, salt mining site, Ebonyi State

Procedia PDF Downloads 312
6501 Formulation and Evaluation of Antioxidant Cream Containing Nepalese Medicinal Plants

Authors: Ajaya Acharya, Prem Narayan Paudel, Rajendra Gyawali

Abstract:

Due to strong tyrosinase inhibition and antioxidant effects, green tea and Licorice are valuable in cosmetics for the skin. However, data on the addition of essential oils to green tea and Licorice in cream formulation to examine antioxidant activities are limited. The purpose of this study was to develop and assess a phytocosmetic cream’s antioxidant and tyrosinase inhibitory characteristics using crude aqueous extracts of green tea, Licorice, and loaded with essential oils. To load the best concentration on cream formulations, plant aqueous extracts were designed, evaluated, and correlated in terms of total phenolic content (TPC), total flavonoids content (TFC), and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Moreover, o. tenuiflorum and o. basilicum essential oils were extracted and added to a cream formulation. The spreadability profile, water washability, centrifugation test, and organoleptic characteristics of formulated oil in water cream were all satisfactory. The cream exhibited a non-Newtonian rheological profile and pH range of 6.353 ± 0.065 to 6.467±0.050 over successive 0, 1, 2, and 3 months at normal room temperature. The 50% inhibition concentrations shown by herbal cream were 13.764 ± 0.153 µg/ml, 301.445 ± 1.709 µg/ml and 8.082 ± 0.055 respectively for 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric (Fe³⁺) reducing antioxidant power (FRAP) and 2, 2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, and that of standard ascorbic acid were 6.716 ± 0.077 µg/ml, 171.604 ± 1.551µg/ml and 5.645±0.034µg/ml which showed formulated cream had strong antioxidant characteristics. The formulated herbal cream with a 50% tyrosinase inhibition concentration of 22.254 ± 0.369µg/ml compared to standard Kojic acid 12.535 ± 0.098µg/ml demonstrated a satisfactory tyrosinase inhibition profile for skin whitening property. Herbal cream was reportedly stable in physical and chemical parameters for successive 0, 1, 2, and 3 months at both real and accelerated time study zones, according to obtained stability study results.

Keywords: crude extracts, antioxidant, tyrosinase inhibition, green tea polyphenols

Procedia PDF Downloads 6
6500 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.

Keywords: anaerobic digestion, biogas, optimization, response surface methodology

Procedia PDF Downloads 424
6499 Engineered Control of Bacterial Cell-to-Cell Signaling Using Cyclodextrin

Authors: Yuriko Takayama, Norihiro Kato

Abstract:

Quorum sensing (QS) is a cell-to-cell communication system in bacteria to regulate expression of target genes. In gram-negative bacteria, activation on QS is controlled by a concentration increase of N-acylhomoserine lactone (AHL), which can diffuse in and out of the cell. Effective control of QS is expected to avoid virulence factor production in infectious pathogens, biofilm formation, and antibiotic production because various cell functions in gram-negative bacteria are controlled by AHL-mediated QS. In this research, we applied cyclodextrins (CDs) as artificial hosts for the AHL signal to reduce the AHL concentration in the culture broth below its threshold for QS activation. The AHL-receptor complex induced under the high AHL concentration activates transcription of the QS-target gene. Accordingly, artificial reduction of the AHL concentration is one of the effective strategies to inhibit the QS. A hydrophobic cavity of the CD can interact with the acyl-chain of the AHL due to hydrophobic interaction in aqueous media. We studied N-hexanoylhomoserine lactone (C6HSL)-mediated QS in Serratia marcescens; accumulation of C6HSL is responsible for regulation of the expression of pig cluster. Inhibitory effects of added CDs on QS were demonstrated by determination of prodigiosin amount inside cells after reaching stationary phase, because production of prodigiosin depends on the C6HSL-mediated QS. By adding approximately 6 wt% hydroxypropyl-β-CD (HP-β-CD) in Luria-Bertani (LB) medium prior to inoculation of S. maecescens AS-1, the intracellularly accumulated prodigiosin was drastically reduced to 7-10%, which was determined after the extraction of prodigiosin in acidified ethanol. The AHL retention ability of HP-β-CD was also demonstrated by Chromobacterium violacuem CV026 bioassay. The CV026 strain is an AHL-synthase defective mutant that activates QS solely by adding AHLs from outside of cells. A purple pigment violacein is induced by activation of the AHL-mediated QS. We demonstrated that the violacein production was effectively suppressed when the C6HSL standard solution was spotted on a LB agar plate dispersing CV026 cells and HP-β-CD. Physico-chemical analysis was performed to study the affinity between the immobilized CD and added C6HSL using a quartz crystal microbalance (QCM) sensor. The COOH-terminated self-assembled monolayer was prepared on a gold electrode of 27-MHz AT-cut quartz crystal. Mono(6-deoxy-6-N, N-diethylamino)-β-CD was immobilized on the electrode using water-soluble carbodiimide. The C6HSL interaction with the β-CD cavity was studied by injecting the C6HSL solution to a cup-type sensor cell filled with buffer solution. A decrement of resonant frequency (ΔFs) clearly showed the effective C6HSL complexation with immobilized β-CD and its stability constant for MBP-SpnR-C6HSL complex was on the order of 102 M-1. The CD has high potential for engineered control of QS because it is safe for human use.

Keywords: acylhomoserine lactone, cyclodextrin, intracellular signaling, quorum sensing

Procedia PDF Downloads 228
6498 Variability of Climatic Elements in Nigeria Over Recent 100 Years

Authors: T. Salami, O. S. Idowu, N. J. Bello

Abstract:

Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.

Keywords: climate, variability, flooding, excessive rainfall

Procedia PDF Downloads 379
6497 Effect of Nanoparticles Concentration, pH and Agitation on Bioethanol Production by Saccharomyces cerevisiae BY4743: An Optimization Study

Authors: Adeyemi Isaac Sanusi, Gueguim E. B. Kana

Abstract:

Nanoparticles have received attention of the scientific community due to their biotechnological potentials. They exhibit advantageous size, shape and concentration-dependent catalytic, stabilizing, immunoassays and immobilization properties. This study investigates the impact of metallic oxide nanoparticles (NPs) on ethanol production by Saccharomyces cerevisiae BY4743. Nine different nanoparticles were synthesized using precipitation method and microwave treatment. The nanoparticles synthesized were characterized by Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fermentation processes were carried out at varied NPs concentrations (0 – 0.08 wt%). Highest ethanol concentrations were achieved after 24 h using Cobalt NPs (5.07 g/l), Copper NPs (4.86 g/l) and Manganese NPs (4.74 g/l) at 0.01 wt% NPs concentrations, which represent 13%, 8.7% and 5.4% increase respectively over the control (4.47 g/l). The lowest ethanol concentration (0.17 g/l) was obtained when 0.08 wt% of Silver NPs was used. And lower ethanol concentrations were observed at higher NPs concentration. Ethanol concentration decrease after 24 h for all the processes. In all set up with NPs, the pH was observed to be stable and the stability was directly proportional to nanoparticles concentrations. These findings suggest that the presence of some of the NPs in the bioprocesses has catalytic and pH stabilizing potential. Ethanol production by Saccharomyces cerevisiae BY4743 was enhanced in the presence of Cobalt NPs, Copper NPs and Manganese NPs. Optimization study using response surface methodology (RSM) will further elucidate the impact of these nanoparticles on bioethanol production.

Keywords: agitation, bioethanol, nanoparticles concentration, optimization, pH value

Procedia PDF Downloads 180
6496 Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization

Authors: Saeed Ur Rahman, Naveed Ullah, Muhammad Irshad Khan, Quensheng Cao, Niaz Muhammad Khan

Abstract:

In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW.

Keywords: linear antenna array, minimum side lobe level, narrow half power beamwidth, particle swarm optimization

Procedia PDF Downloads 543
6495 Handshake Algorithm for Minimum Spanning Tree Construction

Authors: Nassiri Khalid, El Hibaoui Abdelaaziz et Hajar Moha

Abstract:

In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.

Keywords: Spanning tree, Distributed Algorithm, Handshake Algorithm, Matching, Probabilistic Analysis

Procedia PDF Downloads 650
6494 Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading

Authors: C. Shalini Devi

Abstract:

This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results.

Keywords: composite, stress concentration, finite element analysis, tensile strength

Procedia PDF Downloads 443
6493 Modeling by Application of the Nernst-Planck Equation and Film Theory for Predicting of Chromium Salts through Nanofiltration Membrane

Authors: Aimad Oulebsir, Toufik Chaabane, Sivasankar Venkatramann, Andre Darchen, Rachida Maachi

Abstract:

The objective of this study is to propose a model for the prediction of the mechanism transfer of the trivalent ions through a nanofiltration membrane (NF) by introduction of the polarization concentration phenomenon and to study its influence on the retention of salts. This model is the combination of the Nernst-Planck equation and the equations of the film theory. This model is characterized by two transfer parameters: Reflection coefficient s and solute permeability Ps which are estimated numerically. The thickness of the boundary layer, δ, solute concentration at the membrane surface, Cm, and concentration profile in the polarization layer have also been estimated. The mathematical formulation suggested was established. The retentions of trivalent salts are estimated and compared with the experimental results. A comparison between the results with and without phenomena of polarization of concentration is made and the thickness of boundary layer alimentation side was given. Experimental and calculated results are shown to be in good agreement. The model is then success fully extended to experimental data reported in the literature.

Keywords: nanofiltration, concentration polarisation, chromium salts, mass transfer

Procedia PDF Downloads 275
6492 Effect of Hypoxia on the Antimicrobial Activity of Corvina Drum (Cilus Gilberti) Epidermal Mucus

Authors: Belinda Vega, Claudio Alvarez, Héctor Flores, Marcia Oliva, Katherine Alveal, Teresa Toro, María José Tapia, Fanny Guzmán

Abstract:

With the increase in global temperatures and the decrease of oxygen (O2) concentration in the oceans, fish cultures are exposed to frequent fluctuations in dissolved O2 (DO) concentration that can cause chronic stress in the animals, altering the normal functioning of their immune system and making them vulnerable to infections, consequently increasing morbidity and mortality in the farms with economic losses. The mucosal organs (skin -and mucus-, gills, gut, and nasal mucosa) are the first line of defense of the fish against pathogens. Therefore, the objective of this study is to evaluate the effect of hypoxia on the antimicrobial activity of epidermal mucus from corvina drum (Cilus Gilberti), a native marine species with the potential for the diversification of aquaculture in Chile. To achieve this, the epidermal mucus of juveniles (~220g) kept under normoxia (7 mg/L DO) and hypoxia (2 mg/L DO) environmental conditions was collected after 6 weeks, as well as after 6 days of intraperitoneal inoculation with lipopolysaccharide from Vibrio anguillarum to induce an immune response in the fish. Total protein extracts of the mucus were used for bactericidal activity and lysozyme and peroxidase activity assays. Although the mucus from both experimental groups showed inhibitory effects on the bacterial growth of Vibrio anguillarum and Vibrio ordalli, this effect was more long-lasting in the normoxia group. We also observed a notable reduction in the presence of lysozyme in the mucus from fish exposed to hypoxia, with no differences in peroxidase content. Future proteomic studies of corvina mucus associated with the environmental conditions studied in this work will allow the isolation and identification of peptides with antimicrobial activity, those responsible for the results obtained. This will help establish strategies aimed at minimizing the impacts of hypoxia on the defense responses of corvina drum against potential pathogens. Funding: FONDECYT 3200440 and FONDECYT 1210056

Keywords: Cilus gilberti, mucus, antimicrobial activity, HYPOXIA

Procedia PDF Downloads 68
6491 Undoped and Fluorine Doped Zinc Oxide (ZnO:F) Thin Films Deposited by Ultrasonic Chemical Spray: Effect of the Solution on the Electrical and Optical Properties

Authors: E. Chávez-Vargas, M. de la L. Olvera-Amador, A. Jimenez-Gonzalez, A. Maldonado

Abstract:

Undoped and fluorine doped zinc oxide (ZnO) thin films were deposited on sodocalcic glass substrates by the ultrasonic chemical spray technique. As the main goal is the manufacturing of transparent electrodes, the effects of both the solution composition and the substrate temperature on both the electrical and optical properties of ZnO thin films were studied. As a matter of fact, the effect of fluorine concentration ([F]/[F+Zn] at. %), solvent composition (acetic acid, water, methanol ratios) and ageing time, regarding solution composition, were varied. In addition, the substrate temperature and the deposition time, regarding the chemical spray technique, were also varied. Structural studies confirm the deposition of polycrystalline, hexagonal, wurtzite type, ZnO. The results show that the increase of ([F]/[F+Zn] at. %) ratio in the solution, decreases the sheet resistance, RS, of the ZnO:F films, reaching a minimum, in the order of 1.6 Ωcm, at 60 at. %; further increase in the ([F]/[F+Zn]) ratio increases the RS of the films. The same trend occurs with the variation in substrate temperature, as a minimum RS of ZnO:F thin films was encountered when deposited at TS= 450 °C. ZnO:F thin films deposited with aged solution show a significant decrease in the RS in the order of 100 ΩS. The transmittance of the films was also favorable affected by the solvent ratio and, more significantly, by the ageing of the solution. The whole evaluation of optical and electrical characteristics of the ZnO:F thin films deposited under different conditions, was done under Haacke’s figure of Merit in order to have a clear and quantitative trend as transparent conductors application.

Keywords: zinc oxide, ZnO:F, TCO, Haacke’s figure of Merit

Procedia PDF Downloads 308
6490 Investigation of the Function of Chemotaxonomy of White Tea on the Regulatory Function of Genes in Pathway of Colon Cancer

Authors: Fereydoon Bondarian, Samira Shaygan

Abstract:

Today, many nutritionists recommend the consumption of plants, fruits, and vegetables to provide the antioxidants needed by the body because the use of plant antioxidants usually causes fewer side effects and better treatment. Natural antioxidants increase the power of plasma antioxidants and reduce the incidence of some diseases, such as cancer. Bad lifestyles and environmental factors play an important role in increasing the incidence of cancer. In this study, different extracts of white teas taken from two types of tea available in Iran (clone 100 and Chinese hybrid) due to the presence of a hydroxyl functional group in their structure to inhibit free radicals and anticancer properties, using 3 aqueous, methanolic and aqueous-methanolic methods were used. The total polyphenolic content was calculated using the Folin-Ciocalcu method, and the percentage of inhibition and trapping of free radicals in each of the extracts was calculated using the DPPH method. With the help of high-performance liquid chromatography, a small amount of each catechin in the tea samples was obtained. Clone 100 white tea was found to be the best sample of tea in terms of all the examined attributes (total polyphenol content, antioxidant properties, and individual amount of each catechin). The results showed that aqueous and aqueous-methanolic extracts of Clone 100 white tea have the highest total polyphenol content with 27.59±0.08 and 36.67±0.54 (equivalent gallic acid per gram dry weight of leaves), respectively. Due to having the highest level of different groups of catechin compounds, these extracts have the highest property of inhibiting and trapping free radicals with 66.61±0.27 and 71.74±0.27% (mg/l) of the extracted sample against ascorbic acid). Using the MTT test, the inhibitory effect of clone 100 white tea extract in inhibiting the growth of HCT-116 colon cancer cells was investigated and the best time and concentration treatments were 500, 150 and 1000 micrograms in 8, 16 and 24 hours, respectively. To investigate gene expression changes, selected genes, including tumorigenic genes, proto-oncogenes, tumor suppressors, and genes involved in apoptosis, were selected and analyzed using the real-time PCR method and in the presence of concentrations obtained for white tea. White tea extract at a concentration of 1000 μg/ml 3 times 16, 8, and 24 hours showed the highest growth inhibition in cancer cells with 53.27, 55.8, and 86.06%. The concentration of 1000 μg/ml aqueous extract of white tea under 24-hour treatment increased the expression of tumor suppressor genes compared to the normal sample.

Keywords: catechin, gene expression, suppressor genes, colon cell line

Procedia PDF Downloads 53
6489 Identification of Rice Quality Using Gas Sensors and Neural Networks

Authors: Moh Hanif Mubarok, Muhammad Rivai

Abstract:

The public's response to quality rice is very high. So it is necessary to set minimum standards in checking the quality of rice. Most rice quality measurements still use manual methods, which are prone to errors due to limited human vision and the subjectivity of testers. So, a gas detection system can be a solution that has high effectiveness and subjectivity for solving current problems. The use of gas sensors in testing rice quality must pay attention to several parameters. The parameters measured in this research are the percentage of rice water content, gas concentration, output voltage, and measurement time. Therefore, this research was carried out to identify carbon dioxide (CO₂), nitrous oxide (N₂O) and methane (CH₄) gases in rice quality using a series of gas sensors using the Neural Network method.

Keywords: carbon dioxide, dinitrogen oxide, methane, semiconductor gas sensor, neural network

Procedia PDF Downloads 31
6488 Enhancement of Dissolved Oxygen Concentration during the Electrocoagulation Process Using an Innovative Flow Column: Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar

Abstract:

Dissolved oxygen (DO) plays a key role in the electrocoagulation process (EC) as it oxidizes the heavy metals, ammonia, and cyanide into other forms that can be removed easily from water. Hence, many of the previous investigations used external aerators to provide the required DO inside EC reactors, especially when the water being treated had a low DO (such as leachate and high organic content waters), or when the DO depleted during the EC treatment. Although the external aeration process effectively enhances the DO concentration, it has a significant impact on energy consumption. Thus, the present project aims to fill a part of this gap in the literature by an innovative use of perforated flow columns in the design of an EC reactor (ECR1). In order to investigate the performance of ECR1, water samples with a controlled DO concentration were pumped at different flow rates (110, 220, and 440 ml/min) to the ECR1 for 10 min. The obtained results demonstrated that the ECR1 increased the DO concentration from 5.0 to 9.54, 10.53, and 11.0 mg/L, which is equivalent to 90.8%, 110.6%, and 120% at flow rates of 110, 220, and 440 mL/min respectively.

Keywords: flow column, electrocoagulation, dissolved oxygen, water treatment

Procedia PDF Downloads 338
6487 Verification of the Necessity of Maintenance Anesthesia with Isoflurane after Induction with Tiletamine-Zolazepam in Dogs Using the Dixon's up-and-down Method

Authors: Sonia Lachowska, Agnieszka Antonczyk, Joanna Tunikowska, Pawel Kucharski, Bartlomiej Liszka

Abstract:

Isoflurane is one of the most commonly used anaesthetic gases in veterinary medicine. Due to its numerous side effects, intravenous anaesthesia is more often used. The combination of tiletamine with zolazepam has proved to be a safe and pharmacologically beneficial combination. Analgesic effect, fast induction time, effective myorelaxation, and smooth recovery are the main advantages of this combination of drugs. In the following study, the authors verified the necessity of isoflurane to maintain anaesthesia in dogs after the use of tiletamine-zolazepam for induction. 12 dogs were selected to the group with the inclusion criteria: ASA (American Society of Anaesthesiology) I or II. Each dog received premedication intramuscularly with medetomidine-butorfanol (10 μg/kg, 0,1 mg/kg respectively). 15 minutes from premedication, preoxygenation lasting 5 minutes was started. Anaesthesia was induced with tiletamine-zolazepam at the dose of 5 mg/kg. Then the dogs were intubated and anaesthesia was maintained with isoflurane. Initially, MAC (Minimum Alveolar Concentration) was set to 0.7 vol.%. After 15 minutes equilibration, MAC was determined using Dixon’s up-and-down method. Painful stimulation including compressions of paw pad, phalange, groin area, and clamping Backhaus on skin. Hemodynamic and ventilation parameters were measured and noted in 2 minutes intervals. In this method, the positive or negative response to the noxious stimulus is estimated and then used to determine the concentration of isoflurane for next patient. The response is only assessed once in each patient. The results show that isoflurane is not necessary to maintain anaesthesia after tiletamine-zolazepam induction. This is clinically important because the side effects resulting from using isoflurane are eliminated.

Keywords: anaesthesia, dog, Isoflurane, The Dixon's up-and-down method, Tiletamine, Zolazepam

Procedia PDF Downloads 176
6486 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing

Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque

Abstract:

Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.

Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle

Procedia PDF Downloads 96
6485 Punica granatum (Pomegranate) of a Libyan Variety Exhibits in vitro Anti-Inflammatory Potential

Authors: Lamees A. Ben Saad, Kah Hwi Kim, Chin Chew Quah, Mustafa Shahimi

Abstract:

Background: Punica granatum (pomegranate) was used as a traditional medicine in different parts of the world. It has been used in the treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of the ethyl acetate pomegranate fraction (EtOAc) by determination of its inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX2) release from RAW264.7cells. Methods: The inhibitory effect of EtOAc was evaluated on (LPS) induced NO production, PGE2, and IL-6 quantified by immunoassay kit and prostaglandin E2 competitive ELISA kit. COX2 production is an in vitro indication of possible anti-inflammatory activity and was estimated by Western blotting. Results: EtOAc potentially inhibited LPS-induced nitric oxide, prostaglandin, and IL-6 production. With these findings, it was evident that the EtOAc could reduce the LPS-induced cyclooxygenase-2 (COX-2) at the protein level in a dose-dependent manner as determined by Western blotting. Conclusion: The results emphasize potential therapeutic applications of Punica granatum in the treatment of inflammation.

Keywords: inflammation, Punica granatum, cytotoxicity, cytokines

Procedia PDF Downloads 657
6484 Influence of Chemical Pollution on Thermal Habitats of the Ciliate Tetrahymena thermophila

Authors: Doufoungognon C. Kone

Abstract:

Global change, in particular pollution and global warming, threatens ecosystems and the biodiversity they harbor. Due to pollutants exposure, organisms might modify their thermal niches in order to track the thermal conditions limiting the negative impacts of chemical stressors depending on their mode of action. This study tests the influence of different pollutants, copper, salt, and chloramphenicol, on the thermal preferences of the ciliate Tetrahymena thermophila. Six genotypes were exposed to a gradient of concentrations ranging from 0 to 500mg/L for copper, 0 to 300 mg/l for chloramphenicol, and 0 to 12g/l for salt in synthetic media at eight temperatures ranging from 11 to 39° C. The measured fitness proxies are the maximum growth rate and the 50% growth inhibitory concentration (IC50). The results show that the majority of genotypes are more resistant to chloramphenicol in temperatures below their thermal optimum without pollutants, while they better tolerate other salt and copper in temperatures above their thermal optimum. In addition, generalists reduce their niche width while specialists widen it in chloramphenicol. Overall, results suggest that global warming would have a particularly deleterious effect in the case of chemical pollution. This pollution would induce the full disruption of the thermal habitats.

Keywords: ciliate, thermal niche, growth rate, toxicity, multiple stressors

Procedia PDF Downloads 86
6483 Effectiveness of Control Measures for Ambient Fine Particulate Matters Concentration Improvement in Taiwan

Authors: Jiun-Horng Tsai, Shi-Jie, Nieh

Abstract:

Fine particulate matter (PM₂.₅) has become an important issue all over the world over the last decade. Annual mean PM₂.₅ concentration has been over the ambient air quality standard of PM₂.₅ (annual average concentration as 15μg/m³) which adapted by Taiwan Environmental Protection Administration (TEPA). TEPA, therefore, has developed a number of air pollution control measures to improve the ambient concentration by reducing the emissions of primary fine particulate matter and the precursors of secondary PM₂.₅. This study investigated the potential improvement of ambient PM₂.₅ concentration by the TEPA program and the other scenario for further emission reduction on various sources. Four scenarios had been evaluated in this study, including a basic case and three reduction scenarios (A to C). The ambient PM₂.₅ concentration was evaluated by Community Multi-scale Air Quality modelling system (CMAQ) ver. 4.7.1 along with the Weather Research and Forecasting Model (WRF) ver. 3.4.1. The grid resolutions in the modelling work are 81 km × 81 km for domain 1 (covers East Asia), 27 km × 27 km for domain 2 (covers Southeast China and Taiwan), and 9 km × 9 km for domain 3 (covers Taiwan). The result of PM₂.₅ concentration simulation in different regions of Taiwan shows that the annual average concentration of basic case is 24.9 μg/m³, and are 22.6, 18.8, and 11.3 μg/m³, respectively, for scenarios A to C. The annual average concentration of PM₂.₅ would be reduced by 9-55 % for those control scenarios. The result of scenario C (the emissions of precursors reduce to allowance levels) could improve effectively the airborne PM₂.₅ concentration to attain the air quality standard. According to the results of unit precursor reduction contribution, the allowance emissions of PM₂.₅, SOₓ, and NOₓ are 16.8, 39, and 62 thousand tons per year, respectively. In the Kao-Ping air basin, the priority for reducing precursor emissions is PM₂.₅ > NOₓ > SOₓ, whereas the priority for reducing precursor emissions is PM₂.₅ > SOₓ > NOₓ in others area. The result indicates that the target pollutants that need to be reduced in different air basin are different, and the control measures need to be adapted to local conditions.

Keywords: airborne PM₂.₅, community multi-scale air quality modelling system, control measures, weather research and forecasting model

Procedia PDF Downloads 135
6482 The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, complexes, antibacterial, Escherichia coli, metal

Procedia PDF Downloads 311
6481 Hybrid Lubri-Coolants as an Alternatives to Mineral Based Emulsion in Machining Aerospace Alloy Ti-6Al-4V

Authors: Muhammad Jamil, Ning He, Wei Zhao

Abstract:

Ti-6Al-4V has poor thermal conductivity (6.7W/mK) accumulates shear and friction heat at the tool-chip interface zone. To dissipate the heat generation and friction effect, cryogenic cooling, Minimum quantity lubrication (MQL), nanofluids, hybrid cryogenic-MQL, solid lubricants, etc are applied frequently to underscore their significant effect on improving the machinability of Ti-6Al-4V. Nowadays, hybrid lubri-cooling is getting attention from researchers to explore their effect on machining Ti-6Al-4V.

Keywords: hybrid lubri-cooling, tool wear, surface roughness, minimum quantity lubrication

Procedia PDF Downloads 136
6480 Feature Extraction and Classification Based on the Bayes Test for Minimum Error

Authors: Nasar Aldian Ambark Shashoa

Abstract:

Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure.

Keywords: analytical redundancy, fault detection, feature extraction, Bayesian approach

Procedia PDF Downloads 521
6479 Location-Domination on Join of Two Graphs and Their Complements

Authors: Analen Malnegro, Gina Malacas

Abstract:

Dominating sets and related topics have been studied extensively in the past few decades. A dominating set of a graph G is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest dominating set for G. Some problems involving detection devices can be modeled with graphs. Finding the minimum number of devices needed according to the type of devices and the necessity of locating the object gives rise to locating-dominating sets. A subset S of vertices of a graph G is called locating-dominating set, LD-set for short, if it is a dominating set and if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. The location-domination number λ(G) is the minimum cardinality of an LD-set for G. The complement of a graph G is a graph Ḡ on same vertices such that two distinct vertices of Ḡ are adjacent if and only if they are not adjacent in G. An LD-set of a graph G is global if it is an LD-set of both G and its complement Ḡ. The global location-domination number λg(G) is defined as the minimum cardinality of a global LD-set of G. In this paper, global LD-sets on the join of two graphs are characterized. Global location-domination numbers of these graphs are also determined.

Keywords: dominating set, global locating-dominating set, global location-domination number, locating-dominating set, location-domination number

Procedia PDF Downloads 180
6478 Effect of Sodium Chloride Concentration and Degree of Neutralization on the Structure and Dynamics of Poly(Methacrylic Acid) (PMA) in Dilute Aqueous Solutions – a Molecular Dynamics Simulations Study

Authors: Abhishek Kumar Gupta

Abstract:

Atomistic Molecular Dynamics (MD) Simulations have been performed to study the effect of monovalent salt i.e. NaCl concentration (Cs) and chain degree of neutralization (f) on the structure and dynamics of anionic poly(methacrylic acid) (PMA) in dilute aqueous solutions. In the present study, the attention is to unveil the conformational structure, hydrogen-bonding, local polyion-counterion structure, h-bond dynamics, chain dynamics and thermodynamic enthalpy of solvation of a-PMA in dilute aqueous solutions as a function of salt concentration, Cs and f. The results have revealed that at low salt concentration, the conformational radius of gyration (Rg) increases and then decreases reaching a maximum in agreement with the reported light scattering experimental results. The Rg at f = 1 shows a continual decrease and acquire a plateau value at higher salt concentration in agreement with results obtained by light scattering experiments. The radial distribution functions between PMA, salt and water atoms has been computed with respect to atom and centre-of-mass to understand the intermolecular structure in detail. The results pertaining to PMA chain conformations and hydrogen bond autocorrelation function showcasing the h-bond dynamics will be presented. The results pertaining to chain dynamics will be presented. The results pertaining to counterion condensation on the PMA chain shows greater condensation of Na+ ions on to the carboxylate ions with increase in salt concentration. Moreover, the solvation enthalpy of the system as a function of salt concentration will be presented.

Keywords: conformations, molecular dynamics simulations, NaCl concentration, radial distribution functions

Procedia PDF Downloads 108
6477 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method

Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai

Abstract:

In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.

Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon

Procedia PDF Downloads 155
6476 Potential of Entomopathogenic Nematodes to Control Woolly Apple Aphid (Eriosoma lanigerum)

Authors: Nomakholwa F. Stokwe, Antoinette P. Malan

Abstract:

Woolly apple aphid (WAA), Eriosoma lanigerum, is an important pest of apples worldwide. The aphid feeds above ground on buds and leaf axils and the roots of apple trees. Entomopathogenic nematodes (EPNs) of the two families, Steinernematidae and Heterorhabditidae, and their symbiotic bacteria have generated extensive interest as inundative applied biological control agents of insects. With the development of the resistance of WAA to chemicals, export restrictions, and the inability of parasitoids to control the aphid successfully early in the season, considering EPNs as an alternative biocontrol agent is important. Seven EPN species were tested for their pathogenicity against WAA. Laboratory bioassays identified S. yirgalemense and H. zealandica as being the most virulent against the subterranean stage of the WAA, with a mortality rate of 48% and 38%, respectively. Studies on the effect of WAA size showed that the last instar is most susceptible to infection, whereas smaller instars appear to be too small for nematode penetration and infection. Neither increasing the exposure period of the aphids nor increasing the nematode concentration affected the infection rate positively. The haemolymph of WAA showed an inhibitory effect on the development of the symbiotic bacteria, preventing the completion of the nematode’s life cycle.

Keywords: apples, biocontrol, entomopathogenic nematodes, woolly apple aphid

Procedia PDF Downloads 217
6475 Malate Dehydrogenase Enabled ZnO Nanowires as an Optical Tool for Malic Acid Detection in Horticultural Products

Authors: Rana Tabassum, Ravi Kant, Banshi D. Gupta

Abstract:

Malic acid is an extensively distributed organic acid in numerous horticultural products in minute amounts which significantly contributes towards taste determination by balancing sugar and acid fractions. An enhanced concentration of malic acid is utilized as an indicator of fruit maturity. In addition, malic acid is also a crucial constituent of several cosmetics and pharmaceutical products. An efficient detection and quantification protocol for malic acid is thus highly demanded. In this study, we report a novel detection scheme for malic acid by synergistically collaborating fiber optic surface plasmon resonance (FOSPR) and distinctive features of nanomaterials favorable for sensing applications. The design blueprint involves the deposition of an assembly of malate dehydrogenase enzyme entrapped in ZnO nanowires forming the sensing route over silver coated central unclad core region of an optical fiber. The formation and subsequent decomposition of the enzyme-analyte complex on exposure of the sensing layer to malic acid solutions of diverse concentration results in modification of the dielectric function of the sensing layer which is manifested in terms of shift in resonance wavelength. Optimization of experimental variables such as enzyme concentration entrapped in ZnO nanowires, dip time of probe for deposition of sensing layer and working pH range of the sensing probe have been accomplished through SPR measurements. The optimized sensing probe displays high sensitivity, broad working range and a minimum limit of detection value and has been successfully tested for malic acid determination in real samples of fruit juices. The current work presents a novel perspective towards malic acid determination as the unique and cooperative combination of FOSPR and nanomaterials provides myriad advantages such as enhanced sensitivity, specificity, compactness together with the possibility of online monitoring and remote sensing.

Keywords: surface plasmon resonance, optical fiber, sensor, malic acid

Procedia PDF Downloads 376
6474 Effect of Antimony on Microorganisms in Aerobic and Anaerobic Environments

Authors: Barrera C. Monserrat, Sierra-Alvarez Reyes, Pat-Espadas Aurora, Moreno Andrade Ivan

Abstract:

Antimony is a toxic and carcinogenic metalloid considered a pollutant of priority interest by the United States Environmental Protection Agency. It is present in the environment in two oxidation states: antimonite (Sb (III)) and antimony (Sb (V)). Sb (III) is toxic to several aquatic organisms, but the potential inhibitory effect of Sb species for microorganisms has not been extensively evaluated. The fate and possible toxic impact of antimony on aerobic and anaerobic wastewater treatment systems are unknown. For this reason, the objective of this study was to evaluate the microbial toxicity of Sb (V) and Sb (III) in aerobic and anaerobic environments. Sb(V) and Sb(III) were used as potassium hexahydroxoantimonate (V) and potassium antimony tartrate, respectively (Sigma-Aldrich). The toxic effect of both Sb species in anaerobic environments was evaluated on methanogenic activity and the inhibition of hydrogen production of microorganisms from a wastewater treatment bioreactor. For the methanogenic activity, batch experiments were carried out in 160 mL serological bottles; each bottle contained basal mineral medium (100 mL), inoculum (1.5 g of VSS/L), acetate (2.56 g/L) as substrate, and variable concentrations of Sb (V) or Sb (III). Duplicate bioassays were incubated at 30 ± 2°C on an orbital shaker (105 rpm) in the dark. Methane production was monitored by gas chromatography. The hydrogen production inhibition tests were carried out in glass bottles with a working volume of 0.36 L. Glucose (50 g/L) was used as a substrate, pretreated inoculum (5 g VSS/L), mineral medium and varying concentrations of the two species of antimony. The bottles were kept under stirring and at a temperature of 35°C in an AMPTSII device that recorded hydrogen production. The toxicity of Sb on aerobic microorganisms (from a wastewater activated sludge treatment plant) was tested with a Microtox standardized toxicity test and respirometry. Results showed that Sb (III) is more toxic than Sb (V) for methanogenic microorganisms. Sb (V) caused a 50% decrease in methanogenic activity at 250 mg/L. In contrast, exposure to Sb (III) resulted in a 50% inhibition at a concentration of only 11 mg/L, and an almost complete inhibition (95%) at 25 mg/L. For hydrogen-producing microorganisms, Sb (III) and Sb (V) inhibited 50% of this production with 12.6 mg/L and 87.7 mg/L, respectively. The results for aerobic environments showed that 500 mg/L of Sb (V) do not inhibit the Allivibrio fischeri (Microtox) activity or specific oxygen uptake rate of activated sludge. In the case of Sb (III), this caused a loss of 50% of the respiration of the microorganisms at concentrations below 40 mg/L. The results obtained indicate that the toxicity of the antimony will depend on the speciation of this metalloid and that Sb (III) has a significantly higher inhibitory potential compared to Sb (V). It was shown that anaerobic microorganisms can reduce Sb (V) to Sb (III). Acknowledgments: This work was funded in part by grants from the UA-CONACYT Binational Consortium for the Regional Scientific Development and Innovation (CAZMEX), the National Institute of Health (NIH ES- 04940), and PAPIIT-DGAPA-UNAM (IN105220).

Keywords: aerobic inhibition, antimony reduction, hydrogen inhibition, methanogenic toxicity

Procedia PDF Downloads 155