Search results for: mathematical optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4783

Search results for: mathematical optimization

4363 Desing of PSS and SVC to Improve Power System Stability

Authors: Mahmoud Samkan

Abstract:

In this paper, the design and assessment of new coordination between Power System Stabilizers (PSSs) and Static Var Compensator (SVC) in a multimachine power system via statistical method are proposed. The coordinated design problem of PSSs and SVC over a wide range of loading conditions is handled as an optimization problem. The Bacterial Swarming Optimization (BSO), which synergistically couples the Bacterial Foraging (BF) with the Particle Swarm Optimization (PSO), is employed to seek for optimal controllers parameters. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is enhanced. To compare the capability of PSS and SVC, both are designed independently, and then in a coordinated manner. Simultaneous tuning of the BSO based coordinated controller gives robust damping performance over wide range of operating conditions and large disturbance in compare to optimized PSS controller based on BSO (BSOPSS) and optimized SVC controller based on BSO (BSOSVC). Moreover, a statistical T test is executed to validate the robustness of coordinated controller versus uncoordinated one.

Keywords: SVC, PSSs, multimachine power system, coordinated design, bacteria swarm optimization, statistical assessment

Procedia PDF Downloads 376
4362 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor

Authors: K.Narasimhulu, Y. Pydi Setty

Abstract:

The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.

Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water

Procedia PDF Downloads 452
4361 Optimization of Reinforced Concrete Buildings According to the Algerian Seismic Code

Authors: Nesreddine Djafar Henni, Nassim Djedoui, Rachid Chebili

Abstract:

Recent decades have witnessed significant efforts being made to optimize different types of structures and components. The concept of cost optimization in reinforced concrete structures, which aims at minimizing financial resources while ensuring maximum building safety, comprises multiple materials, and the objective function for their optimal design is derived from the construction cost of the steel as well as concrete that significantly contribute to the overall weight of reinforced concrete (RC) structures. To achieve this objective, this work has been devoted to optimizing the structural design of 3D RC frame buildings which integrates, for the first time, the Algerian regulations. Three different test examples were investigated to assess the efficiency of our work in optimizing RC frame buildings. The hybrid GWOPSO algorithm is used, and 30000 generations are made. The cost of the building is reduced by iteration each time. Concrete and reinforcement bars are used in the building cost. As a result, the cost of a reinforced concrete structure is reduced by 30% compared with the initial design. This result means that the 3D cost-design optimization of the framed structure is successfully achieved.

Keywords: optimization, automation, API, Malab, RC structures

Procedia PDF Downloads 49
4360 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel

Authors: Ouahiba Taamallah, Tarek Litim

Abstract:

The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.

Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue

Procedia PDF Downloads 188
4359 A Metaheuristic Approach for the Pollution-Routing Problem

Authors: P. Parthiban, Sonu Rajak, R. Dhanalakshmi

Abstract:

This paper presents an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the Vehicle Routing Problem (VRP) with environmental considerations, which is well known as Pollution-Routing Problem (PRP). It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. Since VRP is NP-hard problem, so PRP also a NP-hard problem, which requires metaheuristics to solve this type of problems. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage, a SOA is run on the resulting VRPTW solution. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm can provide good solutions within reasonable computational time.

Keywords: ant colony optimization, CO2 emissions, speed optimization, vehicle routing

Procedia PDF Downloads 359
4358 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation

Authors: Sneha Thakur, Sanjeev Karmakar

Abstract:

This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.

Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level

Procedia PDF Downloads 78
4357 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells

Authors: Soumitra Satapathi, Anubhav Raghav

Abstract:

Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.

Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells

Procedia PDF Downloads 164
4356 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 374
4355 Reducing the Computational Overhead of Metaheuristics Parameterization with Exploratory Landscape Analysis

Authors: Iannick Gagnon, Alain April

Abstract:

The performance of a metaheuristic on a given problem class depends on the class itself and the choice of parameters. Parameter tuning is the most time-consuming phase of the optimization process after the main calculations and it often nullifies the speed advantage of metaheuristics over traditional optimization algorithms. Several off-the-shelf parameter tuning algorithms are available, but when the objective function is expensive to evaluate, these can be prohibitively expensive to use. This paper presents a surrogate-like method for finding adequate parameters using fitness landscape analysis on simple benchmark functions and real-world objective functions. The result is a simple compound similarity metric based on the empirical correlation coefficient and a measure of convexity. It is then used to find the best benchmark functions to serve as surrogates. The near-optimal parameter set is then found using fractional factorial design. The real-world problem of NACA airfoil lift coefficient maximization is used as a preliminary proof of concept. The overall aim of this research is to reduce the computational overhead of metaheuristics parameterization.

Keywords: metaheuristics, stochastic optimization, particle swarm optimization, exploratory landscape analysis

Procedia PDF Downloads 153
4354 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization

Procedia PDF Downloads 517
4353 Optimal Allocation of Distributed Generation Sources for Loss Reduction and Voltage Profile Improvement by Using Particle Swarm Optimization

Authors: Muhammad Zaheer Babar, Amer Kashif, Muhammad Rizwan Javed

Abstract:

Nowadays distributed generation integration is best way to overcome the increasing load demand. Optimal allocation of distributed generation plays a vital role in reducing system losses and improves voltage profile. In this paper, a Meta heuristic technique is proposed for allocation of DG in order to reduce power losses and improve voltage profile. The proposed technique is based on Multi Objective Particle Swarm optimization. Fewer control parameters are needed in this algorithm. Modification is made in search space of PSO. The effectiveness of proposed technique is tested on IEEE 33 bus test system. Single DG as well as multiple DG scenario is adopted for proposed method. Proposed method is more effective as compared to other Meta heuristic techniques and gives better results regarding system losses and voltage profile.

Keywords: Distributed generation (DG), Multi Objective Particle Swarm Optimization (MOPSO), particle swarm optimization (PSO), IEEE standard Test System

Procedia PDF Downloads 453
4352 Mathematical Competence as It Is Defined through Learners' Errors in Arithmetic and Algebra

Authors: Michael Lousis

Abstract:

Mathematical competence is the great aim of every mathematical teaching and learning endeavour. This can be defined as an idealised conceptualisation of the quality of cognition and the ability of implementation in practice of the mathematical subject matter, which is included in the curriculum, and is displayed only through performance of doing mathematics. The present study gives a clear definition of mathematical competence in the domains of Arithmetic and Algebra that stems from the explanation of the learners’ errors in these domains. The learners, whose errors are explained, were Greek and English participants of a large, international, longitudinal, comparative research program entitled the Kassel Project. The participants’ errors emerged as results of their work in dealing with mathematical questions and problems of the tests, which were presented to them. The construction of the tests was such as only the outcomes of the participants’ work was to be encompassed and not their course of thinking, which resulted in these outcomes. The intention was that the tests had to provide undeviating comparable results and simultaneously avoid any probable bias. Any bias could stem from obtaining results by involving so many markers from different countries and cultures, with so many different belief systems concerning the assessment of learners’ course of thinking. In this way the validity of the research was protected. This fact forced the implementation of specific research methods and theoretical prospects to take place in order the participants’ erroneous way of thinking to be disclosed. These were Methodological Pragmatism, Symbolic Interactionism, Philosophy of Mind and the ideas of Computationalism, which were used for deciding and establishing the grounds of the adequacy and legitimacy of the obtained kinds of knowledge through the explanations given by the error analysis. The employment of this methodology and of these theoretical prospects resulted in the definition of the learners’ mathematical competence, which is the thesis of the present study. Thus, learners’ mathematical competence is depending upon three key elements that should be developed in their minds: appropriate representations, appropriate meaning, and appropriate developed schemata. This definition then determined the development of appropriate teaching practices and interventions conducive to the achievement and finally the entailment of mathematical competence.

Keywords: representations, meaning, appropriate developed schemata, computationalism, error analysis, explanations for the probable causes of the errors, Kassel Project, mathematical competence

Procedia PDF Downloads 268
4351 Collaborative Energy Optimization for Multi-Microgrid Distribution System Based on Two-Stage Game Approach

Authors: Hanmei Peng, Yiqun Wang, Mao Tan, Zhuocen Dai, Yongxin Su

Abstract:

Efficient energy management in multi-microgrid distribution systems holds significant importance for enhancing the economic benefits of regional power grids. To better balance conflicts among various stakeholders, a two-stage game-based collaborative optimization approach is proposed in this paper, effectively addressing the realistic scenario involving both competition and collaboration among stakeholders. The first stage, aimed at maximizing individual benefits, involves constructing a non-cooperative tariff game model for the distribution network and surplus microgrid. In the second stage, considering power flow and physical line capacity constraints we establish a cooperative P2P game model for the multi-microgrid distribution system, and the optimization involves employing the Lagrange method of multipliers to handle complex constraints. Simulation results demonstrate that the proposed approach can effectively improve the system economics while harmonizing individual and collective rationality.

Keywords: cooperative game, collaborative optimization, multi-microgrid distribution system, non-cooperative game

Procedia PDF Downloads 70
4350 A New Conjugate Gradient Method with Guaranteed Descent

Authors: B. Sellami, M. Belloufi

Abstract:

Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.

Keywords: unconstrained optimization, conjugate gradient method, line search, global convergence

Procedia PDF Downloads 452
4349 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 113
4348 Exploring Counting Methods for the Vertices of Certain Polyhedra with Uncertainties

Authors: Sammani Danwawu Abdullahi

Abstract:

Vertex Enumeration Algorithms explore the methods and procedures of generating the vertices of general polyhedra formed by system of equations or inequalities. These problems of enumerating the extreme points (vertices) of general polyhedra are shown to be NP-Hard. This lead to exploring how to count the vertices of general polyhedra without listing them. This is also shown to be #P-Complete. Some fully polynomial randomized approximation schemes (fpras) of counting the vertices of some special classes of polyhedra associated with Down-Sets, Independent Sets, 2-Knapsack problems and 2 x n transportation problems are presented together with some discovered open problems.

Keywords: counting with uncertainties, mathematical programming, optimization, vertex enumeration

Procedia PDF Downloads 357
4347 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm

Authors: Anuradha Chug, Sunali Gandhi

Abstract:

Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.

Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm

Procedia PDF Downloads 380
4346 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization

Procedia PDF Downloads 437
4345 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 303
4344 Topology Optimization of the Interior Structures of Beams under Various Load and Support Conditions with Solid Isotropic Material with Penalization Method

Authors: Omer Oral, Y. Emre Yilmaz

Abstract:

Topology optimization is an approach that optimizes material distribution within a given design space for a certain load and boundary conditions by providing performance goals. It uses various restrictions such as boundary conditions, set of loads, and constraints to maximize the performance of the system. It is different than size and shape optimization methods, but it reserves some features of both methods. In this study, interior structures of the parts were optimized by using SIMP (Solid Isotropic Material with Penalization) method. The volume of the part was preassigned parameter and minimum deflection was the objective function. The basic idea behind the theory was considered, and different methods were discussed. Rhinoceros 3D design tool was used with Grasshopper and TopOpt plugins to create and optimize parts. A Grasshopper algorithm was designed and tested for different beams, set of arbitrary located forces and support types such as pinned, fixed, etc. Finally, 2.5D shapes were obtained and verified by observing the changes in density function.

Keywords: Grasshopper, lattice structure, microstructures, Rhinoceros, solid isotropic material with penalization method, TopOpt, topology optimization

Procedia PDF Downloads 136
4343 Mathematical Model for Output Yield Obtained by Single Slope Solar Still

Authors: V. Nagaraju, G. Murali, Nagarjunavarma Ganna, Atluri Pavan Kalyan, N. Sree Sai Ganesh, V. S. V. S. Badrinath

Abstract:

The present work focuses on the development of a mathematical model for the yield obtained by single slope solar still incorporated with cylindrical pipes filled with sand. The mathematical results obtained were validated with the experimental results for the 3 cm of water level at the basin. The mathematical model and results obtained with the experimental investigation are within 11% of deviation. The theoretical model to predict the yield obtained due to the capillary effect was proposed first. And then, to predict the total yield obtained, the thermal effect model was integrated with the capillary effect model. With the obtained results, it is understood that the yield obtained is more in the case of solar stills with sand-filled cylindrical pipes when compared to solar stills without sand-filled cylindrical pipes. And later model was used for predicting yield for 1 cm and 2 cm of water levels at the basin. And it is observed that the maximum yield was obtained for a 1 cm water level at the basin. It means solar still produces better yield with the lower depth of water level at the basin; this may be because of the availability of more space in the sand for evaporation.

Keywords: solar still, cylindrical pipes, still efficiency, mathematical modeling, capillary effect model, yield, solar desalination

Procedia PDF Downloads 119
4342 Computational Thinking Based Coding Environment for Coding and Free Semester Mathematics Education in Korea

Authors: Han Hyuk Cho, Hanik Jo

Abstract:

In recent years, coding education has been globally emphasized, and the Free Semester System and coding education were introduced to the public schools from the beginning of 2016 and 2018 respectively in Korea. With the introduction of the Free Semester System and the rising demand of Computational Thinking (CT) capacity, this paper aims to design ‘Coding Environment’ and Minecraft-like Turtlecraft in which learners can design and construct mathematical objects through mathematical symbolic expressions. Students can transfer the constructed mathematical objects to the Turtlecraft environment (open-source codingmath website), and also can print them out through 3D printers. Furthermore, we design learnable mathematics and coding curriculum by representing the figurate numbers and patterns in terms of executable expression in the coding context and connecting them to algebraic symbols, which will allow students to experience mathematical patterns and symbolic coding expressions.

Keywords: coding education, computational thinking, mathematics education, TurtleMAL and Turtlecraft

Procedia PDF Downloads 206
4341 Movies and Dynamic Mathematical Objects on Trigonometry for Mobile Phones

Authors: Kazuhisa Takagi

Abstract:

This paper is about movies and dynamic objects for mobile phones. Dynamic objects are the software programmed by JavaScript. They consist of geometric figures and work on HTML5-compliant browsers. Mobile phones are very popular among teenagers. They like watching movies and playing games on them. So, mathematics movies and dynamic objects would enhance teaching and learning processes. In the movies, manga characters speak with artificially synchronized voices. They teach trigonometry together with dynamic mathematical objects. Many movies are created. They are Windows Media files or MP4 movies. These movies and dynamic objects are not only used in the classroom but also distributed to students. By watching movies, students can study trigonometry before or after class.

Keywords: dynamic mathematical object, javascript, google drive, transfer jet

Procedia PDF Downloads 259
4340 A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem

Authors: Shunichi Ohmori, Sirawadee Arunyanart, Kazuho Yoshimoto

Abstract:

We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case.

Keywords: robust optimization, inventory control, supply chain managment, second-order programming

Procedia PDF Downloads 409
4339 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 319
4338 Mathematical Modeling of Bi-Substrate Enzymatic Reactions in the Presence of Different Types of Inhibitors

Authors: Rafayel Azizyan, Valeri Arakelyan, Aram Gevorgyan, Varduhi Balayan, Emil Gevorgyan

Abstract:

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such complex systems as biological ones. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides that shown, that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction.

Keywords: mathematical modeling, bi-substrate enzymatic reactions, reversible inhibition

Procedia PDF Downloads 346
4337 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 94
4336 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd

Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic

Abstract:

Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.

Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization

Procedia PDF Downloads 108
4335 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization

Authors: Himanshu Shekhar Maharana, S. K .Dash

Abstract:

Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution. 

Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)

Procedia PDF Downloads 382
4334 Solving Flowshop Scheduling Problems with Ant Colony Optimization Heuristic

Authors: Arshad Mehmood Ch, Riaz Ahmad, Imran Ali Ch, Waqas Durrani

Abstract:

This study deals with the application of Ant Colony Optimization (ACO) approach to solve no-wait flowshop scheduling problem (NW-FSSP). ACO algorithm so developed has been coded on Matlab computer application. The paper covers detailed steps to apply ACO and focuses on judging the strength of ACO in relation to other solution techniques previously applied to solve no-wait flowshop problem. The general purpose approach was able to find reasonably accurate solutions for almost all the problems under consideration and was able to handle a fairly large spectrum of problems with far reduced CPU effort. Careful scrutiny of the results reveals that the algorithm presented results better than other approaches like Genetic algorithm and Tabu Search heuristics etc; earlier applied to solve NW-FSSP data sets.

Keywords: no-wait, flowshop, scheduling, ant colony optimization (ACO), makespan

Procedia PDF Downloads 433