Search results for: magnetic field distribution
13214 Reentrant Spin-Glass State Formation in Polycrystalline Er₂NiSi₃
Authors: Santanu Pakhira, Chandan Mazumdar, R. Ranganathan, Maxim Avdeev
Abstract:
Magnetically frustrated systems are of great interest and one of the most adorable topics for the researcher of condensed matter physics, due to their various interesting properties, viz. ground state degeneracy, finite entropy at zero temperature, lowering of ordering temperature, etc. Ternary intermetallics with the composition RE₂TX₃ (RE = rare-earth element, T= d electron transition metal and X= p electron element) crystallize in hexagonal AlB₂ type crystal structure (space group P6/mmm). In a hexagonal crystal structure with the antiferromagnetic interaction between the moments, the center moment is geometrically frustrated. Magnetic frustration along with disorder arrangements of non-magnetic ions are the building blocks for metastable spin-glass ground state formation for most of the compounds of this stoichiometry. The newly synthesized compound Er₂NiSi₃ compound forms in single phase in AlB₂ type structure with space group P6/mmm. The compound orders antiferromagnetically below 5.4 K and spin freezing of the frustrated magnetic moments occurs below 3 K for the compound. The compound shows magnetic relaxation behavior and magnetic memory effect below its freezing temperature. Neutron diffraction patterns for temperatures below the spin freezing temperature have been analyzed using FULLPROF software package. Diffuse magnetic scattering at low temperatures yields spin glass state formation for the compound.Keywords: antiferromagnetism, magnetic frustration, spin-glass, neutron diffraction
Procedia PDF Downloads 26313213 Calculation of Effective Masses and Curie Temperature of (Ga, Mn) as Diluted Magnetic Semiconductor from the Eight-band k.p Model
Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari
Abstract:
The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a major step toward the implementation of spintronic devices for processing, transferring, and storing of information. Among the many types of DMS materials which have been investigated, Mn-doped GaAs has become one of the best candidates for technological application. However, despite major developments over the last few decades, the maximum Curie temperature (~200 K) remains well below room temperature. In this work, we have studied the effect of Mn content and strain on the GaMnAs effective masses of electron, heavy and light holes calculated in the different crystallographic direction. Also, the Curie temperature in the DMS GaMnAs alloy is determined. Compilation of GaMnAs band parameters have been carried out using the 8-band k.p model based on Lowdin perturbation theory where spin orbit, sp-d exchange interaction, and biaxial strain are taken into account. Our results show that effective masses, calculated along the different crystallographic directions, have a strong dependence on strain, ranging from -2% (tensile strain) to 2% (compressive strain), and Mn content increased from 1 to 5%. The Curie temperature is determined within the mean-field approach based on the Zener model.Keywords: diluted magnetic semiconductors, k.p method, effective masses, curie temperature, strain
Procedia PDF Downloads 9613212 Inverted Umbrella-type Chiral Non-coplanar Ferrimagnetic Structure in Co(NO₃)₂
Authors: O. Maximova, I. L. Danilovich, E. B. Deeva, K. Y. Bukhteev, A. A. Vorobyova, I. V. Morozov, O. S. Volkova, E. A. Zvereva, I. V. Solovyev, S. A. Nikolaev, D. Phuyal, M. Abdel-Hafiez, Y. C. Wang, J. Y. Lin, J. M. Chen, D. I. Gorbunov, K. Puzniak, B. Lake, A. N. Vasiliev
Abstract:
The low-dimensional magnetic systems tend to reveal exotic spin liquid ground states or form peculiar types of long-range order. Among systems of vivid interest are those characterized by the triangular motif in two dimensions. The realization of either ordered or disordered ground state in a triangular, honeycomb, or kagome lattices is are dictated by the competition of exchange interactions, also being sensitive to anisotropy and the spin value of magnetic ions. While the low-spin Heisenberg systems may arrive at a spin liquid long-range entangled quantum state with emergent gauge structures, the high-spin Ising systems may establish the rigid non-collinear structures. This study presents the case of chiral non-coplanar inverted umbrella-type ferrimagnet formed in cobalt nitrate Co(NO₃)₂ below TKeywords: chiral magnetic structures, low dimensional magnetic systems, umbrella-type ferrimagnets, chiral non-coplanar magnetic structures
Procedia PDF Downloads 12513211 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data
Authors: M. Lghoul, N. El Goumi, M. Guernouche
Abstract:
In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.Keywords: magnetic, gravity, structural trend, depth to basement
Procedia PDF Downloads 13213210 Detecting Potential Geothermal Sites by Using Well Logging, Geophysical and Remote Sensing Data at Siwa Oasis, Western Desert, Egypt
Authors: Amr S. Fahil, Eman Ghoneim
Abstract:
Egypt made significant efforts during the past few years to discover significant renewable energy sources. Regions in Egypt that have been identified for geothermal potential investigation include the Gulf of Suez and the Western Desert. One of the most promising sites for the development of Egypt's Northern Western Desert is Siwa Oasis. The geological setting of the oasis, a tectonically generated depression situated in the northernmost region of the Western desert, supports the potential for substantial geothermal resources. Field data obtained from 27 deep oil wells along the Western Desert included bottom-hole temperature (BHT) depth to basement measurements, and geological maps; data were utilized in this study. The major lithological units, elevation, surface gradient, lineaments density, and remote sensing multispectral and topographic were mapped together to generate the related physiographic variables. Eleven thematic layers were integrated in a geographic information system (GIS) to create geothermal maps to aid in the detection of significant potential geothermal spots along the Siwa Oasis and its vicinity. The contribution of total magnetic intensity data with reduction to the pole (RTP) to the first investigation of the geothermal potential in Siwa Oasis is applied in this work. The integration of geospatial data with magnetic field measurements showed a clear correlation between areas of high heat flow and magnetic anomalies. Such anomalies can be interpreted as related to the existence of high geothermal energy and dense rock, which also have high magnetic susceptibility. The outcomes indicated that the study area has a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W. k−1, a thermal conductivity of 1.3–2.65 W.m−1.k−1 and a measured amplitude temperature maximum of 100.7 °C. The southeastern part of the Siwa Oasis, and some sporadic locations on the eastern section of the oasis were found to have significant geothermal potential; consequently, this location is suitable for future geothermal investigation. The adopted method might be applied to identify significant prospective geothermal energy locations in other regions of Egypt and East Africa.Keywords: magnetic data, SRTM, depth to basement, remote sensing, GIS, geothermal gradient, heat flow, thermal conductivity
Procedia PDF Downloads 11613209 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin
Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy
Abstract:
Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification
Procedia PDF Downloads 36013208 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 42813207 Synthetic Bis(2-Pyridylmethyl)Amino-Chloroacetyl Chloride- Ethylenediamine-Grafted Graphene Oxide Sheets Combined with Magnetic Nanoparticles: Remove Metal Ions and Catalytic Application
Authors: Laroussi Chaabane, Amel El Ghali, Emmanuel Beyou, Mohamed Hassen V. Baouab
Abstract:
In this research, the functionalization of graphene oxide sheets by ethylenediamine (EDA) was accomplished and followed by the grafting of bis(2-pyridylmethyl) amino group (BPED) onto the activated graphene oxide sheets in the presence of chloroacetylchloride (CAC) and then combined with magnetic nanoparticles (Fe₃O₄NPs) to produce a magnetic graphene-based composite [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. The physicochemical properties of [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] composites were investigated by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA). Additionally, the catalysts can be easily recycled within ten seconds by using an external magnetic field. Moreover, [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] was used for removing Cu(II) ions from aqueous solutions using a batch process. The effect of pH, contact time and temperature on the metal ions adsorption were investigated, however weakly dependent on ionic strength. The maximum adsorption capacity values of Cu(II) on the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] at the pH of 6 is 3.46 mmol.g⁻¹. To examine the underlying mechanism of the adsorption process, pseudo-first, pseudo-second-order, and intraparticle diffusion models were fitted to experimental kinetic data. Results showed that the pseudo-second-order equation was appropriate to describe the Cu (II) adsorption by [(Go-EDA-CAC)@Fe₃O₄NPs-BPED]. Adsorption data were further analyzed by the Langmuir, Freundlich, and Jossens adsorption approaches. Additionally, the adsorption properties of the [(Go-EDA-CAC)@Fe₃O₄NPs-BPED], their reusability (more than 6 cycles) and durability in the aqueous solutions open the path to removal of Cu(II) from water solution. Based on the results obtained, we report the activity of Cu(II) supported on [(Go-EDA-CAC)@Fe₃O₄NPs-BPED] as a catalyst for the cross-coupling of symmetric alkynes.Keywords: graphene, magnetic nanoparticles, adsorption kinetics/isotherms, cross coupling
Procedia PDF Downloads 13913206 Cadmium Adsorption by Modified Magnetic Biochar
Authors: Chompoonut Chaiyaraksa, Chanida Singbubpha, Kliaothong Angkabkingkaew, Thitikorn Boonyasawin
Abstract:
Heavy metal contamination in an environment is an important problem in Thailand that needs to be addressed urgently, particularly contaminated with water. It can spread to other environments faster. This research aims to study the adsorption of cadmium ion by unmodified biochar and sodium dodecyl sulfate modified magnetic biochar derived from Eichhornia Crassipes. The determination of the adsorbent characteristics was by Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, X-ray Diffractometer, and the pH drift method. This study also included the comparison of adsorption efficiency of both types of biochar, adsorption isotherms, and kinetics. The pH value at the point of zero charges of the unmodified biochar and modified magnetic biochar was 7.40 and 3.00, respectively. The maximum value of adsorption reached when using pH 8. The equilibrium adsorption time was 5 hours and 1 hour for unmodified biochar and modified magnetic biochar, respectively. The cadmium adsorption by both adsorbents followed Freundlich, Temkin, and Dubinin – Radushkevich isotherm model and the pseudo-second-order kinetic. The adsorption process was spontaneous at high temperatures and non-spontaneous at low temperatures. It was an endothermic process, physisorption in nature, and can occur naturally.Keywords: Eichhornia crassipes, magnetic biochar, sodium dodecyl sulfate, water treatment
Procedia PDF Downloads 17213205 Structural and Ion Exchange Studies of Terpolymer Resin Derived from 4, 4'-Biphenol-4,4'-Oxydianiline-Formaldehyde
Authors: Pawan P. Kalbende, Anil B. Zade
Abstract:
A novel terpolymer resin has been synthesized by condensation polymerization reaction of 4,4’-biphenol and 4,4’-oxydianiline with formaldehyde in presence of 2M hydrochloric acid as catalyst. Composition of resin was determined on the basis of their elemental analysis and further characterized by UV-Visible, infra-red and nuclear magnetic resonance spectroscopy to confine the most probable structure of synthesized terpolymer. Newly synthesized terpolymer was proved to be a selective chelating ion-exchanger for certain metal ions and were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions using their metal nitrate solutions. A batch equilibrium method was employed to study the selectivity of metal ions uptake involving the measurements of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range, shaking time and in media of different electrolytes at different ionic strengths. Distribution ratios of metal ions were found to be increased by rising pH of the solutions. Hence, it can be used to recover certain metal ions from waste water for the purpose of purification of water and removal of iron from boiler water.Keywords: terpolymers, ion-exchangers, distribution ratio, metal ion uptake
Procedia PDF Downloads 29613204 A Model for Analysis the Induced Voltage of 115 kV On-Line Acting on Neighboring 22 kV Off-Line
Authors: Sakhon Woothipatanapan, Surasit Prakobkit
Abstract:
This paper presents a model for analysis the induced voltage of transmission lines (energized) acting on neighboring distribution lines (de-energized). From environmental restrictions, 22 kV distribution lines need to be installed under 115 kV transmission lines. With the installation of the two parallel circuits like this, they make the induced voltage which can cause harm to operators. This work was performed with the ATP-EMTP modeling to analyze such phenomenon before field testing. Simulation results are used to find solutions to prevent danger to operators who are on the pole.Keywords: transmission system, distribution system, induced voltage, off-line operation
Procedia PDF Downloads 60613203 Magnetic Properties of Bis-Lanthanoates: Probing Dimer Formation in Crystalline, Liquid and Glassy Compounds Using SQUID Magnetometry
Authors: Kane Esien, Eadaoin McCourt, Peter Nockemann, Soveig Felton
Abstract:
Magnetic ionic liquids (MILs) are a class of ionic liquid incorporating one or more magnetic atoms into the anion or cation of the ionic liquid, endowing the ionic liquid with magnetic properties alongside the existing properties of ionic liquids. MILs have applications in e.g. fluid-fluid separations, electrochemistry, and polymer chemistry. In this study three different types of Bis-Lanthanoates, that exist in different phases, have been synthesised and characterised (Ln = lanthanide): 1) imidazolium lanthanide acetate – [C4Mim]2[Ln2(OAc)8] – forms a crystalline solid at room temperature, 2) phosphonium lanthanide acetate – [P666 14]2[Ln2(OAc)8] – is in a solid glassy state, and 3) phosphonium lanthanide octanoate – [P666 14]2[Ln2(Oct)8] – is an ionic liquid. X-ray diffraction of the crystalline solid imidazolium lanthanide acetate – [C4Mim]2[Ln2(OAc)8] confirm that the Ln(III) ions form dimers, bridged by carboxyl groups, but cannot yield information about samples phosphonium lanthanide acetate – [P666 14]2[Ln2(OAc)8] (glass) and phosphonium lanthanide octanoate – [P666 14]2[Ln2(Oct)8] (ionic liquid) since these lack long-range order. SQUID magnetometry studies show that all three samples have effective magnetic moments consistent with non-interacting Ln(III) ions at room temperature but deviate from this behavior in the same way below 50 K. Through modeling the magnetic response, we are able to show that we have formed magnetic dimers, in all compounds, that are weakly antiferromagnetically interactingKeywords: dimeric ionic liquids, interactions, SQUID, structure
Procedia PDF Downloads 15613202 Laser Beam Bending via Lenses
Authors: Remzi Yildirim, Fatih. V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin
Abstract:
This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.Keywords: laser, bending, lens, light, nonlinear optics
Procedia PDF Downloads 48813201 Laser Light Bending via Lenses
Authors: Remzi Yildirim, Fatih V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin
Abstract:
This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.Keywords: laser, bending, lens, light, nonlinear optics
Procedia PDF Downloads 70213200 Thickness-Tunable Optical, Magnetic, and Dielectric Response of Lithium Ferrite Thin Film Synthesized by Pulsed Laser Deposition
Authors: Prajna Paramita Mohapatra, Pamu Dobbidi
Abstract:
Lithium ferrite (LiFe5O8) has potential applications as a component of microwave magnetic devices such as circulators and monolithic integrated circuits. For efficient device applications, spinel ferrites in the form of thin films are highly required. It is necessary to improve their magnetic and dielectric behavior by optimizing the processing parameters during deposition. The lithium ferrite thin films are deposited on Pt/Si substrate using the pulsed laser deposition technique (PLD). As controlling the film thickness is the easiest parameter to tailor the strain, we deposited the thin films having different film thicknesses (160 nm, 200 nm, 240 nm) at oxygen partial pressure of 0.001 mbar. The formation of single phase with spinel structure (space group - P4132) is confirmed by the XRD pattern and the Rietveld analysis. The optical bandgap is decreased with the increase in thickness. FESEM confirmed the formation of uniform grains having well separated grain boundaries. Further, the film growth and the roughness are analyzed by AFM. The root-mean-square (RMS) surface roughness is decreased from 13.52 nm (160 nm) to 9.34 nm (240 nm). The room temperature magnetization is measured with a maximum field of 10 kOe. The saturation magnetization is enhanced monotonically with an increase in thickness. The magnetic resonance linewidth is obtained in the range of 450 – 780 Oe. The dielectric response is measured in the frequency range of 104 – 106 Hz and in the temperature range of 303 – 473 K. With an increase in frequency, the dielectric constant and the loss tangent of all the samples decreased continuously, which is a typical behavior of conventional dielectric material. The real part of the dielectric constant and the dielectric loss is increased with an increase in thickness. The contribution of grain and grain boundaries is also analyzed by employing the equivalent circuit model. The highest dielectric constant is obtained for the film having a thickness of 240 nm at 104 Hz. The obtained results demonstrate that desired response can be obtained by tailoring the film thickness for the microwave magnetic devices.Keywords: PLD, optical response, thin films, magnetic response, dielectric response
Procedia PDF Downloads 9813199 Signal Processing of Barkhausen Noise Signal for Assessment of Increasing Down Feed in Surface Ground Components with Poor Micro-Magnetic Response
Authors: Tanmaya Kumar Dash, Tarun Karamshetty, Soumitra Paul
Abstract:
The Barkhausen Noise Analysis (BNA) technique has been utilized to assess surface integrity of steels. But the BNA technique is not very successful in evaluating surface integrity of ground steels that exhibit poor micro-magnetic response. A new approach has been proposed for the processing of BN signal with Fast Fourier transforms while Wavelet transforms has been used to remove noise from the BN signal, with judicious choice of the ‘threshold’ value, when the micro-magnetic response of the work material is poor. In the present study, the effect of down feed induced upon conventional plunge surface grinding of hardened bearing steel has been investigated along with an ultrasonically cleaned, wet polished and a sample ground with spark out technique for benchmarking. Moreover, the FFT analysis has been established, at different sets of applied voltages and applied frequency and the pattern of the BN signal in the frequency domain is analyzed. The study also depicts the wavelet transforms technique with different levels of decomposition and different mother wavelets, which has been used to reduce the noise value in BN signal of materials with poor micro-magnetic response, in order to standardize the procedure for all BN signals depending on the frequency of the applied voltage.Keywords: barkhausen noise analysis, grinding, magnetic properties, signal processing, micro-magnetic response
Procedia PDF Downloads 66713198 Calculation Of Energy Gap Of (Ga,Mn)As Diluted Magnetic Semiconductor From The Eight-Band k.p Model
Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari
Abstract:
Now a days (Ga, Mn) is one of the most extensively studied and best understood diluted magnetic semiconductors. Also, the study of (Ga, Mn)As is a fervent research area since it allows to explore of a variety of novel functionalities and spintronics concepts that could be implemented in the future. In this work, we will calculate the energy gap of (Ga, Mn)As using the eight-band model. In the Hamiltonian, the effects of spin-orbit, spin-splitting, and strain will be considered. The dependence of the energy gap on Mn content, and the effect of the strain, which is varied continuously from tensile to compressive, will be studied. Finally, analytical expressions for the (Ga, Mn)As energy band gap, taking into account both parameters (Mn concentration and strain), will be provided.Keywords: energy gap, diluted magnetic semiconductors, k.p method, strain
Procedia PDF Downloads 12213197 Observations of Magnetospheric Ulf Waves in Connection to the Kelvin-Helmholtz Instability at Mercury
Authors: Elisabet Liljeblad, Tomas Karlsson, Torbjorn Sundberg, Anita Kullen
Abstract:
The magnetospheric magnetic field data from the MESSENGER spacecraft is investigated to establish the presence of ultra-low frequency (ULF) waves in connection to 131 previously observed nonlinear Kelvin-Helmholtz waves (KHWs) at Mercury. Distinct ULF signatures are detected in 44 out of the 131 magnetospheric traversals prior to or after observing a KHW. In particular, 39 of these 44 ULF events are highly coherent at the frequency of maximum power spectral density. The waves observed at the dayside, which appears mainly at the duskside and naturally following the KHW occurrence asymmetry, are significantly different to the events behind the dawn-dusk terminator and have the following distinct wave characteristics: they oscillate clearly in the perpendicular (azimuthal) direction to the mean magnetic field with a wave normal angle more in the parallel than the perpendicular direction, increase in absolute ellipticity with distance from noon, are almost exclusively right-hand polarized, and are observed mainly for frequencies in the range 0.02-0.04 Hz. These results indicate that the dayside ULF waves are likely to shear Alfvén waves driven by KHWs at the magnetopause, which in turn manifests the importance of the Kelvin-Helmholtz instability in terms of mass transport throughout the Mercury magnetosphere.Keywords: ultra-low frequency waves, kelvin-Helmholtz instability, magnetospheric processes, mercury, messenger, energy and momentum transfer in planetary environments
Procedia PDF Downloads 24013196 Efficient Design of Distribution Logistics by Using a Model-Based Decision Support System
Abstract:
The design of distribution logistics has a decisive impact on a company's logistics costs and performance. Hence, such solutions make an essential contribution to corporate success. This article describes a decision support system for analyzing the potential of distribution logistics in terms of logistics costs and performance. In contrast to previous procedures of business process re-engineering (BPR), this method maps distribution logistics holistically under variable distribution structures. Combined with qualitative measures the decision support system will contribute to a more efficient design of distribution logistics.Keywords: decision support system, distribution logistics, potential analyses, supply chain management
Procedia PDF Downloads 40613195 Effects of Magnetization Patterns on Characteristics of Permanent Magnet Linear Synchronous Generator for Wave Energy Converter Applications
Authors: Sung-Won Seo, Jang-Young Choi
Abstract:
The rare earth magnets used in synchronous generators offer many advantages, including high efficiency, greatly reduced the size, and weight. The permanent magnet linear synchronous generator (PMLSG) allows for direct drive without the need for a mechanical device. Therefore, the PMLSG is well suited to translational applications, such as wave energy converters and free piston energy converters. This manuscript compares the effects of different magnetization patterns on the characteristics of double-sided PMLSGs in slotless stator structures. The Halbach array has a higher flux density in air-gap than the Vertical array, and the advantages of its performance and efficiency are widely known. To verify the advantage of Halbach array, we apply a finite element method (FEM) and analytical method. In general, a FEM and an analytical method are used in the electromagnetic analysis for determining model characteristics, and the FEM is preferable to magnetic field analysis. However, the FEM is often slow and inflexible. On the other hand, the analytical method requires little time and produces accurate analysis of the magnetic field. Therefore, the flux density in air-gap and the Back-EMF can be obtained by FEM. In addition, the results from the analytical method correspond well with the FEM results. The model of the Halbach array reveals less copper loss than the model of the Vertical array, because of the Halbach array’s high output power density. The model of the Vertical array is lower core loss than the model of Halbach array, because of the lower flux density in air-gap. Therefore, the current density in the Vertical model is higher for identical power output. The completed manuscript will include the magnetic field characteristics and structural features of both models, comparing various results, and specific comparative analysis will be presented for the determination of the best model for application in a wave energy converting system.Keywords: wave energy converter, permanent magnet linear synchronous generator, finite element method, analytical method
Procedia PDF Downloads 30013194 Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites
Authors: Saziye Ugur
Abstract:
In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles.Keywords: composite film, film formation, magnetic nanoparticles, ps latex, transmission
Procedia PDF Downloads 25513193 Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field
Authors: Tomasz Borowski, Dawid Sołoducha, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy
Abstract:
Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world.Keywords: rotating magnetic field, rosemary, thyme, essential oils, Escherichia coli
Procedia PDF Downloads 15613192 Transcranial and Sacral Magnetic Stimulation as a Therapeutic Resource for Urinary Incontinence – A Brief Bibliographic Review
Authors: Ana Lucia Molina
Abstract:
Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique for the investigation and modulation of cortical excitability in humans. The modulation of the processing of different cortical areas can result in several areas for rehabilitation, showing great potential in the treatment of motor disorders. In the human brain, the supplementary motor area (SMA) is involved in the control of the pelvic floor muscles (MAP), where dysfunctions of these muscles can lead to urinary incontinence. Peripheral magnetic stimulation, specifically sacral magnetic stimulation, has been used as a safe and effective treatment option for patients with lower urinary tract dysfunction. A systematic literature review was carried out (Pubmed, Medline and Google academic database) without a time limit using the keywords: "transcranial magnetic stimulation", "sacral neuromodulation", and "urinary incontinence", where 11 articles attended to the inclusion criteria. Results: Thirteen articles were selected. Magnetic stimulation is a non-invasive neuromodulation technique widely used in the evaluation of cortical areas and their respective peripheral areas, as well as in the treatment of lesions of brain origin. With regard to pelvic-perineal disorders, repetitive transcranial stimulation showed significant effects in controlling urinary incontinence, as well as sacral peripheral magnetic stimulation, in addition to exerting the potential to restore bladder sphincter function. Conclusion: Data from the literature suggest that both transcranial stimulation and peripheral stimulation are non-invasive references that can be promising and effective means of treatment in pelvic and perineal disorders. More prospective and randomized studies on a larger scale are needed, adapting the most appropriate and resolving parameters.Keywords: urinary incontinence, non-invasive neuromodulation, sacral neuromodulation, transcranial magnetic stimulation.
Procedia PDF Downloads 9813191 Nonreciprocal Optical Effects in Plasmonic Nanoparticle Aggregates
Authors: Ward Brullot, Thierry Verbiest
Abstract:
Nonreciprocal optical effects, such as Faraday rotation or magnetic circular dichroism, are very useful both for fundamental studies as for applications such as magnetic field sensors or optical isolators. In this study, we developed layer-by-layer deposited 20nm thick plasmonic nanoparticle aggregates consisting of gold, silver and magnetite nanoparticles that show broadband nonreciprocal asymmetric transmission. As such, the optical transmittance, or absorbance, depends on the direction of light propagation in the material, which means that looking from one direction or the other, more or less light passes through the sample. Theoretical analysis showed that strong electric quadrupole fields, which are electric field gradients, occur in the aggregates and that these quadrupole fields are responsible for the observed asymmetric transmission and the nonreciprocity of the effect. Apart from nonreciprocal asymmetric transmission, also other effects such as, but not limited to, optical rotation, circular dichroism or nonlinear optical responses were measured in the plasmonic nanoparticle aggregates and the influences of the intense electric quadrupole fields determined. In conclusion, the presence of strong electric quadrupole fields make the developed plasmonic nanoparticle aggregates ideal candidates for the study and application of various nonreciprocal optical effects.Keywords: asymmetric transmission, electric quadrupoles, nanoparticle aggregates, nonreciprocity
Procedia PDF Downloads 42413190 Influence of Magnetized Water on the Split Tensile Strength of Concrete
Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa
Abstract:
Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine
Procedia PDF Downloads 14613189 Magnetic Braking System of an Elevator in the Event of Sudden Breakage of the Hoisting Cable
Authors: Amita Singha
Abstract:
The project describes the scope of magnetic braking. The potential applications of the braking system can be a de-accelerating system to increase the safety of an elevator or any guided rail transportation system.Keywords: boost and buck converter, electromagnet, elevator, ferromagnetic material, sensor, solenoid, timer
Procedia PDF Downloads 43913188 Speciation, Preconcentration, and Determination of Iron(II) and (III) Using 1,10-Phenanthroline Immobilized on Alumina-Coated Magnetite Nanoparticles as a Solid Phase Extraction Sorbent in Pharmaceutical Products
Authors: Hossein Tavallali, Mohammad Ali Karimi, Gohar Deilamy-Rad
Abstract:
The proposed method for speciation, preconcentration and determination of Fe(II) and Fe(III) in pharmaceutical products was developed using of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) as solid phase extraction (SPE) sorbent in magnetic mixed hemimicell solid phase extraction (MMHSPE) technique followed by flame atomic absorption spectrometry analysis. The procedure is based on complexation of Fe(II) with 1, 10-phenanthroline (OP) as complexing reagent for Fe(II) that immobilized on the modified Fe3O4/Al2O3 NPs. The extraction and concentration process for pharmaceutical sample was carried out in a single step by mixing the extraction solvent, magnetic adsorbents under ultrasonic action. Then, the adsorbents were isolated from the complicated matrix easily with an external magnetic field. Fe(III) ions determined after facility reduced to Fe(II) by added a proper reduction agent to sample solutions. Compared with traditional methods, the MMHSPE method simplified the operation procedure and reduced the analysis time. Various influencing parameters on the speciation and preconcentration of trace iron, such as pH, sample volume, amount of sorbent, type and concentration of eluent, were studied. Under the optimized operating conditions, the preconcentration factor of the modified nano magnetite for Fe(II) 167 sample was obtained. The detection limits and linear range of this method for iron were 1.0 and 9.0 - 175 ng.mL−1, respectively. Also the relative standard deviation for five replicate determinations of 30.00 ng.mL-1 Fe2+ was 2.3%.Keywords: Alumina-Coated magnetite nanoparticles, Magnetic Mixed Hemimicell Solid-Phase Extraction, Fe(ΙΙ) and Fe(ΙΙΙ), pharmaceutical sample
Procedia PDF Downloads 29213187 Design of Distribution Network for Gas Cylinders in Jordan
Authors: Hazem J. Smadi
Abstract:
Performance of a supply chain is directly related to a distribution network that entails the location of storing materials or products and how products are delivered to the end customer through different stages in the supply chain. This study analyses the current distribution network used for delivering gas cylinders to end customer in Jordan. Evaluation of current distribution has been conducted across customer service components. A modification on the current distribution network in terms of central warehousing in each city in the country improves the response time and customer experience.Keywords: distribution network, gas cylinder, Jordan, supply chain
Procedia PDF Downloads 45913186 Reconnaissance Geophysical Study on the Southeastern Part of Al-Qashah Aera, Kingdom of Saudi Arabia
Authors: Ali Al-Bakri, Mohammed Sazid
Abstract:
The investigated study area locates about 72 km from Jeddah city, Makkah district, Kingdom of Saudi Arabia. The study mainly aimed to define only in detail the most significant zones of possible mineralization and outline their subsurface parameters (location and strike) in the southeast part of Jabal Al-Qashah. Several geophysical methods have been conducted to carry out the goal. Among these methods are the ground magnetic method, self-potential (SP) method, and induced polarization (IP) method. Integrating these methods aims to help in delineating the possible mineralization in the study area. The magnetic survey was conducted along 17 profiles where these profiles were chosen to be perpendicular to the strike of the quartz shear zone. Self-potential was applied along with five profiles covering the study area. At the same time, induced polarization was used along with one profile located at the western side of the study area corresponding to some magnetic and SP profiles. The most interesting zones of mineralization were successfully determined by comparing the results of residual magnetic profile (3), SP profile (1), and IP profile, where geological structures control some mineralization.Keywords: geophysical methods, magnetic method, self-potential, induced polarization, Jabal Al-Qashah
Procedia PDF Downloads 13113185 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi
Abstract:
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing
Procedia PDF Downloads 360