Search results for: loop alignment
554 Gender Differences in E-Society: The Case of Slovenia
Authors: Mitja Dečman
Abstract:
The ever-increasing presence and use of information and communication technology (ICT) influences the different social relationships of today's society. Gender differences are especially important from the viewpoint of modern society since ICT can either deepen the existing inequalities or diminish them. In a developed Western world, gender equality has been a well-focused area for decades in many parts of society including education, employment or politics and has led to a decrease in the inequality of women and men in these and other areas. The area of digital equality, or inequality for that matter, is one of the areas where gender differences still exist in many countries of the world. The research presented in this paper focuses on Slovenia, one of the smallest EU member states, being an average achiever in the area of e-society according to the many different European benchmarking indexes. On the other hand, Slovenia is working in an alignment with many European gender equality guidelines and showing good results. The results of our research are based on the analysis of survey data from 2014 to 2017 dealing with Slovenian citizens and their households and the use of ICT. Considering gender issues, the synthesis showed that cultural differences influence some measured ICT indicators but on the other hand the differences are low and only sometimes statistically significant.Keywords: digital divide, gender inequality, Slovenia, e-society
Procedia PDF Downloads 166553 Sustainability in Space: Material Efficiency in Space Missions
Authors: Hamda M. Al-Ali
Abstract:
From addressing fundamental questions about the history of the solar system to exploring other planets for any signs of life have always been the core of human space exploration. This triggered humans to explore whether other planets such as Mars could support human life on them. Therefore, many planned space missions to other planets have been designed and conducted to examine the feasibility of human survival on them. However, space missions are expensive and consume a large number of various resources to be successful. To overcome these problems, material efficiency shall be maximized through the use of reusable launch vehicles (RLV) rather than disposable and expendable ones. Material efficiency is defined as a way to achieve service requirements using fewer materials to reduce CO2 emissions from industrial processes. Materials such as aluminum-lithium alloys, steel, Kevlar, and reinforced carbon-carbon composites used in the manufacturing of spacecrafts could be reused in closed-loop cycles directly or by adding a protective coat. Material efficiency is a fundamental principle of a circular economy. The circular economy aims to cutback waste and reduce pollution through maximizing material efficiency so that businesses can succeed and endure. Five strategies have been proposed to improve material efficiency in the space industry, which includes waste minimization, introduce Key Performance Indicators (KPIs) to measure material efficiency, and introduce policies and legislations to improve material efficiency in the space sector. Another strategy to boost material efficiency is through maximizing resource and energy efficiency through material reusability. Furthermore, the environmental effects associated with the rapid growth in the number of space missions include black carbon emissions that lead to climate change. The levels of emissions must be tracked and tackled to ensure the safe utilization of space in the future. The aim of this research paper is to examine and suggest effective methods used to improve material efficiency in space missions so that space and Earth become more environmentally and economically sustainable. The objectives used to fulfill this aim are to identify the materials used in space missions that are suitable to be reused in closed-loop cycles considering material efficiency indicators and circular economy concepts. An explanation of how spacecraft materials could be re-used as well as propose strategies to maximize material efficiency in order to make RLVs possible so that access to space becomes affordable and reliable is provided. Also, the economic viability of the RLVs is examined to show the extent to which the use of RLVs has on the reduction of space mission costs. The environmental and economic implications of the increase in the number of space missions as a result of the use of RLVs are also discussed. These research questions are studied through detailed critical analysis of the literature, such as published reports, books, scientific articles, and journals. A combination of keywords such as material efficiency, circular economy, RLVs, and spacecraft materials were used to search for appropriate literature.Keywords: access to space, circular economy, material efficiency, reusable launch vehicles, spacecraft materials
Procedia PDF Downloads 111552 Numerical Solving Method for Specific Dynamic Performance of Unstable Flight Dynamics with PD Attitude Control
Authors: M. W. Sun, Y. Zhang, L. M. Zhang, Z. H. Wang, Z. Q. Chen
Abstract:
In the realm of flight control, the Proportional- Derivative (PD) control is still widely used for the attitude control in practice, particularly for the pitch control, and the attitude dynamics using PD controller should be investigated deeply. According to the empirical knowledge about the unstable flight dynamics, the control parameter combination conditions to generate sole or finite number of closed-loop oscillations, which is a quite smooth response and is more preferred by practitioners, are presented in analytical or numerical manners. To analyze the effects of the combination conditions of the control parameters, the roots of several polynomials are sought to obtain feasible solutions. These conditions can also be plotted in a 2-D plane which makes the conditions be more explicit by using multiple interval operations. Finally, numerical examples are used to validate the proposed methods and some comparisons are also performed.Keywords: attitude control, dynamic performance, numerical solving method, interval, unstable flight dynamics
Procedia PDF Downloads 578551 Detecting Paraphrases in Arabic Text
Authors: Amal Alshahrani, Allan Ramsay
Abstract:
Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising.Keywords: natural language processing, TF-IDF, cosine similarity, dynamic time warping (DTW)
Procedia PDF Downloads 384550 Information Technology Governance Implementation and Its Determinants in the Egyptian Market
Authors: Nariman O. Kandil, Ehab K. Abou-Elkheir, Amr M. Kotb
Abstract:
Effective IT governance guarantees the strategic alignment of IT and business goals, risk mitigation control, and better IT and business performance. This study seeks to examine empirically the extent of IT governance implementation within the firms listed on the Egyptian stock exchange (EGX30) and its determinants. Accordingly, 18 semi-structured interviews face to face, phone, and video-conferencing interviews using various tools (e.g., WebEx, Zoom, and Microsoft Teams) were undertaken at the interviewees’ offices in Egypt between the end of November 2019 and the end of August 2020. Results suggest that there are variances in the extent of IT Governance (ITG) implementation within the firms listed on the Egyptian stock exchange (EGX30), mainly caused by the industry type and internal and external triggers. The results also suggest that the organization size, the type of auditor, the criticality of the industry, the effective processes & KPIs, and the information intensity expertise of the CIO have a significant impact on IT governance implementation within the firms.Keywords: effective IT governance, Egyptian market, information security, risk controls
Procedia PDF Downloads 164549 Cross-Dialect Sentence Transformation: A Comparative Analysis of Language Models for Adapting Sentences to British English
Authors: Shashwat Mookherjee, Shruti Dutta
Abstract:
This study explores linguistic distinctions among American, Indian, and Irish English dialects and assesses various Language Models (LLMs) in their ability to generate British English translations from these dialects. Using cosine similarity analysis, the study measures the linguistic proximity between original British English translations and those produced by LLMs for each dialect. The findings reveal that Indian and Irish English translations maintain notably high similarity scores, suggesting strong linguistic alignment with British English. In contrast, American English exhibits slightly lower similarity, reflecting its distinct linguistic traits. Additionally, the choice of LLM significantly impacts translation quality, with Llama-2-70b consistently demonstrating superior performance. The study underscores the importance of selecting the right model for dialect translation, emphasizing the role of linguistic expertise and contextual understanding in achieving accurate translations.Keywords: cross-dialect translation, language models, linguistic similarity, multilingual NLP
Procedia PDF Downloads 73548 Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals
Authors: Mohammad Javad Shariatzadeh, Dana Grecov
Abstract:
The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water.Keywords: gland seal, lubricant additives, nanocrystalline cellulose, water-based lubricants
Procedia PDF Downloads 184547 High-Voltage Resonant Converter with Extreme Load Variation: Design Criteria and Applications
Authors: Jose A. Pomilio, Olavo Bet, Mateus P. Vieira
Abstract:
The power converter that feeds high-frequency, high-voltage transformers must be carefully designed due to parasitic components, mainly the secondary winding capacitance and the leakage inductance, that introduces resonances in relatively low-frequency range, next to the switching frequency. This paper considers applications in which the load (resistive) has an unpredictable behavior, changing from open to short-circuit condition faster than the output voltage control loop could react. In this context, to avoid over voltage and over current situations, that could damage the converter, the transformer or the load, it is necessary to find an operation point that assure the desired output voltage in spite of the load condition. This can done adjusting the frequency response of the transformer adding an external inductance, together with selecting the switching frequency to get stable output voltage independently of the load.Keywords: high-voltage transformer, resonant converter, soft-commutation, external inductance
Procedia PDF Downloads 476546 Identification and Differentiation of Fagonia Arabica and Fagonia Indica by Using DNA Barcode Region Matk
Authors: Noshaba Dilbar, Aisha Tahir, Amer Jamil
Abstract:
During the last decade, DNA barcoding proved to be an authentic tool for discovery and identification of plants. In the present study, DNA barcoding of two species, Fagonia arabica and Fagonia indica was done for differentiation by using matK region. matK gene is considered as a universal barcode because of its easy alignment and high discrimination ability. In this study, matK yielded 100% sequencing results. The sequences from both plants were aligned at clustal W and observed that there is no nucleotide variation and polymorphism among both sequences. This was further analysed by BLAST which showed the similar sequences from different plants belonging to same family but didn’t find sequence of both species. Considering this, the resulted sequence was submitted by the name of Fagonia arabica with accession number KM276890. In the end, we analysed the results from BOLD which gave us the final conclusion that both plants are same as their matK sequences are 100% identical. In literature, both Fagonia indica and Fagonia arabica names are used for this plant but there is no clear differentiation has been observed in these plants. Results evaluate that Fagonia indica and Fagonia arabica are the alternative names of same plant.Keywords: DNA barcoding, Fagonia arabica, Fagonia indica, matK
Procedia PDF Downloads 151545 Design of Residential Geothermal Cooling System in Kuwait
Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi
Abstract:
Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy
Procedia PDF Downloads 82544 Observatory of Sustainability of the Algarve Region for Tourism: Proposal for Environmental and Sociocultural Indicators
Authors: Miguel José Oliveira, Fátima Farinha, Elisa M. J. da Silva, Rui Lança, Manuel Duarte Pinheiro, Cátia Miguel
Abstract:
The Observatory of Sustainability of the Algarve Region for Tourism (OBSERVE) will be a valuable tool to assess the sustainability of this region. The OBSERVE tool is designed to provide data and maintain an up-to-date, consistent set of indicators defined to describe the region on the environmental, sociocultural, economic and institutional domains. This ongoing two-year project has the active participation of the Algarve’s stakeholders, since they were consulted and asked to participate in the discussion for the indicators proposal. The environmental and sociocultural indicators chosen must indicate the characteristics of the region and should be in alignment with other global systems used to monitor the sustainability. This paper presents a review of sustainability indicators systems that support the first proposal for the environmental and sociocultural indicators. Others constraints are discussed, namely the existing data and the data available in digital platforms in a format suitable for automatic importation to the platform of OBSERVE. It is intended that OBSERVE will be a valuable tool to assess the sustainability of the region of Algarve.Keywords: Algarve, development, environmental indicators, observatory, sociocultural indicators, sustainability, tourism
Procedia PDF Downloads 174543 Studies on Influence of Rub on Vibration Signature of Rotating Machines
Authors: K. N. Umesh, K. S. Srinivasan
Abstract:
The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures
Procedia PDF Downloads 310542 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University
Authors: Karishma Kashyap, Subha D. Parida
Abstract:
Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performanceKeywords: building optimization, green building, post occupancy evaluation, stakeholder engagement
Procedia PDF Downloads 354541 Mechanism of Dual Ferroic Properties Formation in Substituted M-Type Hexaferrites
Authors: A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishin, V. A. Turchenko
Abstract:
It has been shown that BaFe12O19 is a perspective room-temperature multiferroic material. A large spontaneous polarization was observed for the BaFe12O19 ceramics revealing a clear ferroelectric hysteresis loop. The maximum polarization was estimated to be approximately 11.8 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe12O19. The magnetic field induced electric polarization has been also observed in the doped BaFe12-x-δScxMδO19 (δ=0.05) at 10 K and in the BaScxFe12−xO19 and SrScxFe12−xO19 (x = 1.3–1.7) M-type hexaferrites. The investigated BaFe12-xDxO19 (x=0.1, D-Al3+, In3+) samples have been obtained by two-step “topotactic” reactions. The powder neutron investigations of the samples were performed by neutron time of flight method at High Resolution Fourier Diffractometer.Keywords: substituted hexaferrites, ferrimagnetics, ferroelectrics, neutron powder diffraction, crystal and magnetic structures
Procedia PDF Downloads 254540 Factors That Affect the Effectiveness of Enterprise Architecture Implementation Methodology
Authors: Babak Darvish Rouhani, Mohd Nazri Mahrin, Fatemeh Nikpay, Pourya Nikfard, Maryam Khanian Najafabadi
Abstract:
Enterprise Architecture (EA) is a strategy that is employed by enterprises in order to align their business and Information Technology (IT). EA is managed, developed, and maintained through Enterprise Architecture Implementation Methodology (EAIM). The effectiveness of EA implementation is the degree in which EA helps to achieve the collective goals of the organization. This paper analyzes the results of a survey that aims to explore the factors that affect the effectiveness of EAIM and specifically the relationship between factors and effectiveness of the output and functionality of EA project. The exploratory factor analysis highlights a specific set of five factors: alignment, adaptiveness, support, binding, and innovation. The regression analysis shows that there is a statistically significant and positive relationship between each of the five factors and the effectiveness of EAIM. Consistent with theory and practice, the most prominent factor for developing an effective EAIM is innovation. The findings contribute to the measuring the effectiveness of EA implementation project by providing an indication of the measurement implementation approaches which is used by the Enterprise Architects, and developing an effective EAIM.Keywords: enterprise architecture, enterprise architecture implementation methodology, implementation methodology, factors, EA, effectiveness
Procedia PDF Downloads 431539 Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks
Authors: Stefano Zaninotto, Geoffrey Farrugia, Johan Debattista, Jason Gauci
Abstract:
The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness.Keywords: air traffic control, electric taxiing, autonomous tow trucks, graphical user interface, ground operations, multi-agent, route optimization
Procedia PDF Downloads 127538 Approaches and Strategies Used to Increase Student Engagement in Blended Learning Courses
Authors: Pinar Ozdemir Ayber, Zeina Hojeij
Abstract:
Blended Learning (BL) is a rapidly growing teaching and learning approach, which brings together the best of both face-to-face and online learning to expand learning opportunities for students. However, there is limited research on the practices, opportunities and quality of instruction in Blended Classrooms, and on the role of the teaching faculty as well as the learners in these types of classes. This paper will highlight the researchers’ experiences and reflections on blending their classes. It will focus on the importance of designing effective lesson plans that emphasize learner engagement and motivation in alignment with course learning outcomes. In addition, it will identify the changing roles of the teacher and the learners and suggest appropriate variations to the traditional classroom setting taking into consideration the benefits and the challenges of the Blended Classroom. It is hoped that this paper would provide sufficient input for participants to reflect on ways they can blend their own lessons to promote ubiquitous learning and student autonomy. Practical tips and ideas will be shared with the participants on various strategies and technologies that were used in the researchers’ classes.Keywords: blended learning, learner autonomy, learner engagement, learner motivation, mobile learning tools
Procedia PDF Downloads 301537 An Open Loop Distribution Module for Precise and Uniform Drip Fertigation in Soilless Culture
Authors: Juan Ignacio Arango, Andres Diaz, Giacomo Barbieri
Abstract:
In soilless culture, the definition of efficient fertigation strategies is fundamental for the growth of crops. Flexible test-benches able to independently manage groups of crops are key for investigating efficient fertigation practices through experimentation. These test-benches must be able to provide nutrient solution (NS) in a precise, uniform and repeatable way in order to effectively implement and compare different fertigation strategies. This article describes a distribution module for investigating fertigation practices able to control the fertigation dose and frequency. The proposed solution is characterized in terms of precision, uniformity and repeatability since these parameters are fundamental in the implementation of effective experiments for the investigation of fertigation practices. After a calibration process, the implemented system reaches a precision of 1mL, a uniformity of 98.5% at a total cost of 735USD.Keywords: recision horticulture, test-bench, fertigation strategy, automation, flexibility
Procedia PDF Downloads 136536 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation
Authors: Daniel Pastor, Hyo-Sang Shin
Abstract:
This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.Keywords: vision, UAV, navigation, SLAM
Procedia PDF Downloads 605535 Modelling of Rate-Dependent Hysteresis of Polypyrrole Dual Sensing-Actuators for Precise Position Control
Authors: Johanna Schumacher, Toribio F. Otero, Victor H. Pascual
Abstract:
Bending dual sensing-actuators based on electroactive polymers are faradaic motors meaning the consumed charge determines the actuator’s tip position. During actuation, consumed charges during oxidation and reduction result in different tip positions showing dynamic hysteresis effects with errors up to 25%. For a precise position control of these actuators, the characterization of the hysteresis effect due to irreversible reactions is crucial. Here, the investigation and modelling of dynamic hysteresis effects of polypyrrole-dodezylbenzenesulfonate (PPyDBS) actuators under ambient working conditions are presented. The hysteresis effect is studied for charge consumption at different frequencies and a rate-dependent hysteresis model is derived. The hysteresis model is implemented as closed loop system and is verified experimentally.Keywords: dual sensing-actuator, electroactive polymers, hysteresis, position control
Procedia PDF Downloads 383534 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot
Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi
Abstract:
To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients
Procedia PDF Downloads 89533 Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop
Authors: R. Mahmoodi, A. R. Zolfaghari
Abstract:
In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase.Keywords: shell-and-tube heat exchanger, shell-side, CFD, flow and heat transfer, LOCA
Procedia PDF Downloads 439532 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning
Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah
Abstract:
In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.Keywords: 3D imaging, shotcrete, surface model, tunnel stability
Procedia PDF Downloads 290531 Implementation and Design of Fuzzy Controller for High Performance Dc-Dc Boost Converters
Authors: A. Mansouri, F. Krim
Abstract:
This paper discusses the implementation and design of both linear PI and fuzzy controllers for DC-DC boost converters. Design of PI controllers is based on temporal response of closed-loop converters, while fuzzy controllers design is based on heuristic knowledge of boost converters. Linear controller implementation is quite straightforward relying on mathematical models, while fuzzy controller implementation employs one or more artificial intelligences techniques. Comparison between these boost controllers is made in design aspect. Experimental results show that the proposed fuzzy controller system is robust against input voltage and load resistance changing and in respect of start-up transient. Results indicate that fuzzy controller can achieve best control performance concerning faster transient response, steady-state response good stability and accuracy under different operating conditions. Fuzzy controller is more suitable to control boost converters.Keywords: boost DC-DC converter, fuzzy, PI controllers, power electronics and control system
Procedia PDF Downloads 473530 Exploring Augmented Reality in Graphic Design: A Hybrid Pedagogical Model for Design Education
Authors: Nan Hu, Wujun Wang
Abstract:
In the ever-changing digital arena, augmented reality (AR) applications have transitioned from technological enthusiasm into business endeavors, signaling a near future in which AR applications are integrated into daily life. While practitioners in the design industry continue to explore AR’s potential for innovative communication, educators have taken steps to incorporate AR into the curricula for design, explore its creative potential, and realize early initiatives for teaching AR in design-related disciplines. In alignment with recent advancements, this paper presents a pedagogical model for a hybrid studio course in which students collaborate with AR alongside 3D modeling and graphic design. The course extended students’ digital capacity, fostered their design thinking skills, and immersed them in a multidisciplinary design process. This paper outlines the course and evaluates its effectiveness by discussing challenges encountered and outcomes generated in this particular pedagogical context. By sharing insights from the teaching experience, we aim to empower the community of design educators and offer institutions a valuable reference for advancing their curricular approaches. This paper is a testament to the ever-evolving landscape of design education and its response to the digital age.Keywords: 3D, AR, augmented reality, design thinking, graphic design
Procedia PDF Downloads 68529 Copper Coil Heat Exchanger Performance for Greenhouse Heating: An Experimental and Theoretical Study
Authors: Maha Bakkari, R.Tadili
Abstract:
The present work is a study of the performance of a solar copper coil heating system in a greenhouse microclimate. Our system is based on the circulation of a Heat transfer fluid, which is water in our case, in a closed loop under the greenhouse's roof in order to store heat all day, and then this heat will supply the greenhouse during the night. In order to evaluate our greenhouse, we made an experimental study in two identical greenhouses, where the first one is equipped with a heating system and the second (without heating) is used for control. The heating system allows the establishment of the thermal balance and determines the mass of water necessary for the process in order to ensure its functioning during the night. The results obtained showed that this solar heating system and the climatic parameters inside the experimental greenhouse were improved, and it presents a significant gain compared to a controlled greenhouse without a heating system. This research is one of the solutions that help to reduce the greenhouse effect of the planet Earth, a problem that worries the world.Keywords: solar energy, energy storage, greenhouse, environment
Procedia PDF Downloads 75528 An Interoperability Concept for Detect and Avoid and Collision Avoidance Systems: Results from a Human-In-The-Loop Simulation
Authors: Robert Rorie, Lisa Fern
Abstract:
The integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS) poses a variety of technical challenges to UAS developers and aviation regulators. In response to growing demand for access to civil airspace in the United States, the Federal Aviation Administration (FAA) has produced a roadmap identifying key areas requiring further research and development. One such technical challenge is the development of a ‘detect and avoid’ system (DAA; previously referred to as ‘sense and avoid’) to replace the ‘see and avoid’ requirement in manned aviation. The purpose of the DAA system is to support the pilot, situated at a ground control station (GCS) rather than in the cockpit of the aircraft, in maintaining ‘well clear’ of nearby aircraft through the use of GCS displays and alerts. In addition to its primary function of aiding the pilot in maintaining well clear, the DAA system must also safely interoperate with existing NAS systems and operations, such as the airspace management procedures of air traffic controllers (ATC) and collision avoidance (CA) systems currently in use by manned aircraft, namely the Traffic alert and Collision Avoidance System (TCAS) II. It is anticipated that many UAS architectures will integrate both a DAA system and a TCAS II. It is therefore necessary to explicitly study the integration of DAA and TCAS II alerting structures and maneuver guidance formats to ensure that pilots understand the appropriate type and urgency of their response to the various alerts. This paper presents a concept of interoperability for the two systems. The concept was developed with the goal of avoiding any negative impact on the performance level of TCAS II (understanding that TCAS II must largely be left as-is) while retaining a DAA system that still effectively enables pilots to maintain well clear, and, as a result, successfully reduces the frequency of collision hazards. The interoperability concept described in the paper focuses primarily on facilitating the transition from a late-stage DAA encounter (where a loss of well clear is imminent) to a TCAS II corrective Resolution Advisory (RA), which requires pilot compliance with the directive RA guidance (e.g., climb, descend) within five seconds of its issuance. The interoperability concept was presented to 10 participants (6 active UAS pilots and 4 active commercial pilots) in a medium-fidelity, human-in-the-loop simulation designed to stress different aspects of the DAA and TCAS II systems. Pilot response times, compliance rates and subjective assessments were recorded. Results indicated that pilots exhibited comprehension of, and appropriate prioritization within, the DAA-TCAS II combined alert structure. Pilots demonstrated a high rate of compliance with TCAS II RAs and were also seen to respond to corrective RAs within the five second requirement established for manned aircraft. The DAA system presented under test was also shown to be effective in supporting pilots’ ability to maintain well clear in the overwhelming majority of cases in which pilots had sufficient time to respond. The paper ends with a discussion of next steps for research on integrating UAS into civil airspace.Keywords: detect and avoid, interoperability, traffic alert and collision avoidance system (TCAS II), unmanned aircraft systems
Procedia PDF Downloads 270527 Analysis of Vertical Hall Effect Device Using Current-Mode
Authors: Kim Jin Sup
Abstract:
This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).Keywords: vertical hall device, current-mode, crossed-shaped model, CMOS technology
Procedia PDF Downloads 289526 Development of an Automatic Control System for ex vivo Heart Perfusion
Authors: Pengzhou Lu, Liming Xin, Payam Tavakoli, Zhonghua Lin, Roberto V. P. Ribeiro, Mitesh V. Badiwala
Abstract:
Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP.Keywords: automatic control system, biomedical engineering, ex-vivo heart perfusion, human-machine interface, programmable logic controller
Procedia PDF Downloads 172525 The Use of Lane-Centering to Assure the Visible Light Communication Connectivity for a Platoon of Autonomous Vehicles
Authors: Mohammad Y. Abualhoul, Edgar Talavera Munoz, Fawzi Nashashibi
Abstract:
The new emerging Visible Light Communication (VLC) technology has been subjected to intensive investigation, evaluation, and lately, deployed in the context of convoy-based applications for Intelligent Transportations Systems (ITS). The technology limitations were defined and supported by different solutions proposals to enhance the crucial alignment and mobility limitations. In this paper, we propose the incorporation of VLC technology and Lane-Centering (LC) technique to assure the VLC-connectivity by keeping the autonomous vehicle aligned to the lane center using vision-based lane detection in a convoy-based formation. Such combination can ensure the optical communication connectivity with a lateral error less than 30 cm. As soon as the road lanes are detectable, the evaluated system showed stable behavior independently from the inter-vehicle distances and without the need for any exchanged information of the remote vehicles. The evaluation of the proposed system is verified using VLC prototype and an empirical result of LC running application over 60 km in Madrid M40 highway.Keywords: visible light communication, lane-centerin, platooning, intelligent transportation systems, road safety applications
Procedia PDF Downloads 169