Search results for: interpolated error shifting
1896 Virtual Chemistry Laboratory as Pre-Lab Experiences: Stimulating Student's Prediction Skill
Authors: Yenni Kurniawati
Abstract:
Students Prediction Skill in chemistry experiments is an important skill for pre-service chemistry students to stimulate students reflective thinking at each stage of many chemistry experiments, qualitatively and quantitatively. A Virtual Chemistry Laboratory was designed to give students opportunities and times to practicing many kinds of chemistry experiments repeatedly, everywhere and anytime, before they do a real experiment. The Virtual Chemistry Laboratory content was constructed using the Model of Educational Reconstruction and developed to enhance students ability to predicted the experiment results and analyzed the cause of error, calculating the accuracy and precision with carefully in using chemicals. This research showed students changing in making a decision and extremely beware with accuracy, but still had a low concern in precision. It enhancing students level of reflective thinking skill related to their prediction skill 1 until 2 stage in average. Most of them could predict the characteristics of the product in experiment, and even the result will going to be an error. In addition, they take experiments more seriously and curiously about the experiment results. This study recommends for a different subject matter to provide more opportunities for students to learn about other kinds of chemistry experiments design.Keywords: virtual chemistry laboratory, chemistry experiments, prediction skill, pre-lab experiences
Procedia PDF Downloads 3401895 Mixed Integer Programming-Based One-Class Classification Method for Process Monitoring
Authors: Younghoon Kim, Seoung Bum Kim
Abstract:
One-class classification plays an important role in detecting outlier and abnormality from normal observations. In the previous research, several attempts were made to extend the scope of application of the one-class classification techniques to statistical process control problems. For most previous approaches, such as support vector data description (SVDD) control chart, the design of the control limits is commonly based on the assumption that the proportion of abnormal observations is approximately equal to an expected Type I error rate in Phase I process. Because of the limitation of the one-class classification techniques based on convex optimization, we cannot make the proportion of abnormal observations exactly equal to expected Type I error rate: controlling Type I error rate requires to optimize constraints with integer decision variables, but convex optimization cannot satisfy the requirement. This limitation would be undesirable in theoretical and practical perspective to construct effective control charts. In this work, to address the limitation of previous approaches, we propose the one-class classification algorithm based on the mixed integer programming technique, which can solve problems formulated with continuous and integer decision variables. The proposed method minimizes the radius of a spherically shaped boundary subject to the number of normal data to be equal to a constant value specified by users. By modifying this constant value, users can exactly control the proportion of normal data described by the spherically shaped boundary. Thus, the proportion of abnormal observations can be made theoretically equal to an expected Type I error rate in Phase I process. Moreover, analogous to SVDD, the boundary can be made to describe complex structures by using some kernel functions. New multivariate control chart applying the effectiveness of the algorithm is proposed. This chart uses a monitoring statistic to characterize the degree of being an abnormal point as obtained through the proposed one-class classification. The control limit of the proposed chart is established by the radius of the boundary. The usefulness of the proposed method was demonstrated through experiments with simulated and real process data from a thin film transistor-liquid crystal display.Keywords: control chart, mixed integer programming, one-class classification, support vector data description
Procedia PDF Downloads 1741894 Numerical Study on Ultimate Capacity of Bi-Modulus Beam-Column
Authors: Zhiming Ye, Dejiang Wang, Huiling Zhao
Abstract:
Development of the technology demands a higher-level research on the mechanical behavior of materials. Structural members made of bi-modulus materials have different elastic modulus when they are under tension and compression. The stress and strain states of the point effect on the elastic modulus and Poisson ratio of every point in the bi-modulus material body. Accompanied by the uncertainty and nonlinearity of the elastic constitutive relation is the complicated nonlinear problem of the bi-modulus members. In this paper, the small displacement and large displacement finite element method for the bi-modulus members have been proposed. Displacement nonlinearity is considered in the elastic constitutive equation. Mechanical behavior of slender bi-modulus beam-column under different boundary conditions and loading patterns has been simulated by the proposed method. The influence factors on the ultimate bearing capacity of slender beam and columns have been studied. The results show that as the ratio of tensile modulus to compressive modulus increases, the error of the simulation employing the same elastic modulus theory exceeds the engineering permissible error.Keywords: bi-modulus, ultimate capacity, beam-column, nonlinearity
Procedia PDF Downloads 4141893 Comparison of Different Intraocular Lens Power Calculation Formulas in People With Very High Myopia
Authors: Xia Chen, Yulan Wang
Abstract:
purpose: To compare the accuracy of Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, Emmetropia Verifying Optical (EVO) and Kane for intraocular lens power calculation in patients with axial length (AL) ≥ 28 mm. Methods: In this retrospective single-center study, 50 eyes of 41 patients with AL ≥ 28 mm that underwent uneventful cataract surgery were enrolled. The actual postoperative refractive results were compared to the predicted refraction calculated with different formulas (Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, EVO and Kane). The mean absolute prediction errors (MAE) 1 month postoperatively were compared. Results: The MAE of different formulas were as follows: Haigis (0.509), SRK/T (0.705), T2 (0.999), Holladay 1 (0.714), Hoffer Q (0.583), Barrett Universal II (0.552), EVO (0.463) and Kane (0.441). No significant difference was found among the different formulas (P = .122). The Kane and EVO formulas achieved the lowest level of mean prediction error (PE) and median absolute error (MedAE) (p < 0.05). Conclusion: The Kane and EVO formulas had a better success rate than others in predicting IOL power in high myopic eyes with AL longer than 28 mm in this study.Keywords: cataract, power calculation formulas, intraocular lens, long axial length
Procedia PDF Downloads 871892 Statically Fused Unbiased Converted Measurements Kalman Filter
Authors: Zhengkun Guo, Yanbin Li, Wenqing Wang, Bo Zou
Abstract:
The statically fused converted position and doppler measurements Kalman filter (SF-CMKF) with additive debiased measurement conversion has been previously presented to combine the resulting states of converted position measurements Kalman filter (CPMKF) and converted doppler measurement Kalman filter (CDMKF) to yield the final state estimates under minimum mean squared error (MMSE) criterion. However, the exact compensation for the bias in the polar-to-cartesian and spherical-to-cartesian conversion are multiplicative and depend on the statistics of the cosine of the angle measurement errors. As a result, the consistency and performance of the SF-CMKF may be suboptimal in large-angle error situations. In this paper, the multiplicative unbiased position and Doppler measurement conversion for 2D (polar-to-cartesian) tracking are derived, and the SF-CMKF is improved to use those conversions. Monte Carlo simulations are presented to demonstrate the statistical consistency of the multiplicative unbiased conversion and the superior performance of the modified SF-CMKF (SF-UCMKF).Keywords: measurement conversion, Doppler, Kalman filter, estimation, tracking
Procedia PDF Downloads 2091891 Algebraic Coupled Level Set-Volume of Fluid Method with Capillary Pressure Treatment for Surface Tension Dominant Two-Phase Flows
Authors: Majid Haghshenas, James Wilson, Ranganathan Kumar
Abstract:
In this study, an Algebraic Coupled Level Set-Volume of Fluid (A-CLSVOF) method with capillary pressure treatment is proposed for the modeling of two-phase capillary flows. The Volume of Fluid (VOF) method is utilized to incorporate one-way coupling with the Level Set (LS) function in order to further improve the accuracy of the interface curvature calculation and resulting surface tension force. The capillary pressure is determined and treated independently of the hydrodynamic pressure in the momentum balance in order to maintain consistency between cell centered and interpolated values, resulting in a reduction in parasitic currents. In this method, both VOF and LS functions are transported where the new volume fraction determines the interface seed position used to reinitialize the LS field. The Hamilton-Godunov function is used with a second order (in space and time) discretization scheme to produce a signed distance function. The performance of the current methodology has been tested against some common test cases in order to assess the reduction in non-physical velocities and improvements in the interfacial pressure jump. The cases of a static drop, non-linear Rayleigh-Taylor instability and finally a droplets impact on a liquid pool were simulated to compare the performance of the present method to other well-known methods in the area of parasitic current reduction, interface location evolution and overall agreement with experimental results.Keywords: two-phase flow, capillary flow, surface tension force, coupled LS with VOF
Procedia PDF Downloads 3581890 Performance Analysis of MIMO-OFDM Using Convolution Codes with QAM Modulation
Authors: I Gede Puja Astawa, Yoedy Moegiharto, Ahmad Zainudin, Imam Dui Agus Salim, Nur Annisa Anggraeni
Abstract:
Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct the errors that occur during data transmission. One can use the convolution code. This paper presents performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate 1/2. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs. Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 sub-carrier which transmits Rayleigh multipath channel in OFDM system. To achieve a BER of 10-3 is required 30 dB SNR in SISO-OFDM scheme. For 2x2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4x4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4x4 MIMO-OFDM system without coding, power saving 7 dB of 2x2 MIMO-OFDM system without coding and significant power savings from SISO-OFDM system.Keywords: convolution code, OFDM, MIMO, QAM, BER
Procedia PDF Downloads 3901889 Experimental Research and Analyses of Yoruba Native Speakers’ Chinese Phonetic Errors
Authors: Obasa Joshua Ifeoluwa
Abstract:
Phonetics is the foundation and most important part of language learning. This article, through an acoustic experiment as well as using Praat software, uses Yoruba students’ Chinese consonants, vowels, and tones pronunciation to carry out a visual comparison with that of native Chinese speakers. This article is aimed at Yoruba native speakers learning Chinese phonetics; therefore, Yoruba students are selected. The students surveyed are required to be at an elementary level and have learned Chinese for less than six months. The students selected are all undergraduates majoring in Chinese Studies at the University of Lagos. These students have already learned Chinese Pinyin and are all familiar with the pinyin used in the provided questionnaire. The Chinese students selected are those that have passed the level two Mandarin proficiency examination, which serves as an assurance that their pronunciation is standard. It is discovered in this work that in terms of Mandarin’s consonants pronunciation, Yoruba students cannot distinguish between the voiced and voiceless as well as the aspirated and non-aspirated phonetics features. For instance, while pronouncing [ph] it is clearly shown in the spectrogram that the Voice Onset Time (VOT) of a Chinese speaker is higher than that of a Yoruba native speaker, which means that the Yoruba speaker is pronouncing the unaspirated counterpart [p]. Another difficulty is to pronounce some affricates like [tʂ]、[tʂʰ]、[ʂ]、[ʐ]、 [tɕ]、[tɕʰ]、[ɕ]. This is because these sounds are not in the phonetic system of the Yoruba language. In terms of vowels, some students find it difficult to pronounce some allophonic high vowels such as [ɿ] and [ʅ], therefore pronouncing them as their phoneme [i]; another pronunciation error is pronouncing [y] as [u], also as shown in the spectrogram, a student pronounced [y] as [iu]. In terms of tone, it is most difficult for students to differentiate between the second (rising) and third (falling and rising) tones because these tones’ emphasis is on the rising pitch. This work concludes that the major error made by Yoruba students while pronouncing Chinese sounds is caused by the interference of their first language (LI) and sometimes by their lingua franca.Keywords: Chinese, Yoruba, error analysis, experimental phonetics, consonant, vowel, tone
Procedia PDF Downloads 1121888 Field-Programmable Gate Array-Based Baseband Signals Generator of X-Band Transmitter for Micro Satellite/CubeSat
Authors: Shih-Ming Wang, Chun-Kai Yeh, Ming-Hwang Shie, Tai-Wei Lin, Chieh-Fu Chang
Abstract:
This paper introduces a FPGA-based baseband signals generator (BSG) of X-band transmitter developed by National Space Organization (NSPO), Taiwan, for earth observation. In order to gain more flexibility for various applications, a number of modulation schemes, QPSK, DeQPSK and 8PSK 4D-TCM are included. For micro satellite scenario, the maximum symbol rate is up to 150Mbsps, and the EVM is as low as 1.9%. For CubeSat scenario, the maximum symbol rate is up to 60Mbsps, and the EVM is less than 1.7%. The maximum data rates are 412.5Mbps and 165Mbps, respectively. Besides, triple modular redundancy (TMR) scheme is implemented in order to reduce single event effect (SEE) induced by radiation. Finally, the theoretical error performance is provided based on comprehensive analysis, especially when BER is lower and much lower than 10⁻⁶ due to low error bit requirement of modern high-resolution earth remote-sensing instruments.Keywords: X-band transmitter, FPGA (Field-Programmable Gate Array), CubeSat, micro satellite
Procedia PDF Downloads 2961887 Integrating Deep Learning For Improved State Of Charge Estimation In Electric Bus
Authors: Ms. Hema Ramachandran, Dr. N. Vasudevan
Abstract:
Accurate estimation of the battery State of Charge (SOC) is essential for optimizing the range and performance of modern electric vehicles. This paper focuses on analysing historical driving data from electric buses, with an emphasis on feature extraction and data preprocessing of driving conditions. By selecting relevant parameters, a set of characteristic variables tailored to specific driving scenarios is established. A battery SOC prediction model based on a combination a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural network (FCNN) is then proposed, where various hyperparameters are identified and fine-tuned to enhance prediction accuracy. The results indicate that with optimized hyperparameters, the prediction achieves a Root Mean Square Error (RMSE) of 1.98% and a Mean Absolute Error (MAE) of 1.72%. This approach is expected to improve the efficiency of battery management systems and battery utilization in electric vehicles.Keywords: long short-term memory (lstm), battery health monitoring, data-driven models, battery charge-discharge cycles, adaptive soc estimation, voltage and current sensing
Procedia PDF Downloads 81886 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation
Authors: Sneha Thakur, Sanjeev Karmakar
Abstract:
This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level
Procedia PDF Downloads 791885 Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications
Authors: Janusz Bedkowski, Grzegorz Kisala, Michal Wlasiuk, Piotr Pokorski
Abstract:
Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM.Keywords: SLAM, ground truth, navigation, LiDAR, visual odometry, mapping
Procedia PDF Downloads 741884 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir
Authors: Ahmad Fahim Nasiry, Shigeo Honma
Abstract:
We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding
Procedia PDF Downloads 3331883 Analysis of Rainfall and Malaria Trends in Limpopo Province, South Africa
Authors: Abiodun M. Adeola, Hannes Rautenbach, Gbenga J. Abiodun, Thabo E. Makgoale, Joel O. Botai, Omolola M. Adisa, Christina M. Botai
Abstract:
There was a surge in malaria morbidity as well as mortality in 2016/2017 malaria season in malaria-endemic regions of South Africa. Rainfall is a major climatic driver of malaria transmission and has potential use for predicting malaria. Annual and seasonal trends and cross-correlation analyses were performed on time series of monthly total rainfall (derived from interpolated weather station data) and monthly malaria cases in five districts of Limpopo Province for the period of 1998 to 2017. The time series analysis indicated that an average of 629.5mm of rainfall was received over the period of study. The rainfall has an annual variation of about 0.46%. Rainfall amount varies among the five districts, with the north-eastern part receiving more rainfall. Spearman’s correlation analysis indicated that total monthly rainfall with one to two months lagged effect is significant in malaria transmission in all the five districts. The strongest correlation is noticed in Mopani (r=0.54; p-value = < 0.001), Vhembe (r=0.53; p-value = < 0.001), Waterberg (r=0.40; p-value = < 0.001), Capricorn (r=0.37; p-value = < 0.001) and lowest in Sekhukhune (r=0.36; p-value = < 0.001). More particularly, malaria morbidity showed a strong relationship with an episode of rainfall above 5-year running means of rainfall of 400 mm. Both annual and seasonal analyses showed that the effect of rainfall on malaria varied across the districts and it is seasonally dependent. Adequate understanding of climatic variables dynamics annually and seasonally is imperative in seeking answers to malaria morbidity among other factors, particularly in the wake of the sudden spike of the disease in the province.Keywords: correlation, malaria, rainfall, seasonal, trends
Procedia PDF Downloads 2211882 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 991881 Age Estimation from Teeth among North Indian Population: Comparison and Reliability of Qualitative and Quantitative Methods
Authors: Jasbir Arora, Indu Talwar, Daisy Sahni, Vidya Rattan
Abstract:
Introduction: Age estimation is a crucial step to build the identity of a person, both in case of deceased and alive. In adults, age can be estimated on the basis of six regressive (Attrition, Secondary dentine, Dentine transparency, Root resorption, Cementum apposition and Periodontal Disease) changes in teeth qualitatively using scoring system and quantitatively by micrometric method. The present research was designed to establish the reliability of qualitative (method 1) and quantitative (method 2) of age estimation among North Indians and to compare the efficacy of these two methods. Method: 250 single-rooted extracted teeth (18-75 yrs.) were collected from Department of Oral Health Sciences, PGIMER, Chandigarh. Before extraction, periodontal score of each tooth was noted. Labiolingual sections were prepared and examined under light microscope for regressive changes. Each parameter was scored using Gustafson’s 0-3 point score system (qualitative), and total score was calculated. For quantitative method, each regressive change was measured quantitatively in form of 18 micrometric parameters under microscope with the help of measuring eyepiece. Age was estimated using linear and multiple regression analysis in Gustafson’s method and Kedici’s method respectively. Estimated age was compared with actual age on the basis of absolute mean error. Results: In pooled data, by Gustafson’s method, significant correlation (r= 0.8) was observed between total score and actual age. Total score generated an absolute mean error of ±7.8 years. Whereas, for Kedici’s method, a value of correlation coefficient of r=0.5 (p<0.01) was observed between all the eighteen micrometric parameters and known age. Using multiple regression equation, age was estimated, and an absolute mean error of age was found to be ±12.18 years. Conclusion: Gustafson’s (qualitative) method was found to be a better predictor for age estimation among North Indians.Keywords: forensic odontology, age estimation, North India, teeth
Procedia PDF Downloads 2421880 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter
Authors: Zhu Xinxin, Wang Hui, Yang Kai
Abstract:
Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter
Procedia PDF Downloads 1181879 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization
Authors: Xiongxiong You, Zhanwen Niu
Abstract:
Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms
Procedia PDF Downloads 1411878 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network
Authors: Widyani Fatwa Dewi, Subroto Athor
Abstract:
In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication
Procedia PDF Downloads 1651877 A Monocular Measurement for 3D Objects Based on Distance Area Number and New Minimize Projection Error Optimization Algorithms
Authors: Feixiang Zhao, Shuangcheng Jia, Qian Li
Abstract:
High-precision measurement of the target’s position and size is one of the hotspots in the field of vision inspection. This paper proposes a three-dimensional object positioning and measurement method using a monocular camera and GPS, namely the Distance Area Number-New Minimize Projection Error (DAN-NMPE). Our algorithm contains two parts: DAN and NMPE; specifically, DAN is a picture sequence algorithm, NMPE is a relatively positive optimization algorithm, which greatly improves the measurement accuracy of the target’s position and size. Comprehensive experiments validate the effectiveness of our proposed method on a self-made traffic sign dataset. The results show that with the laser point cloud as the ground truth, the size and position errors of the traffic sign measured by this method are ± 5% and 0.48 ± 0.3m, respectively. In addition, we also compared it with the current mainstream method, which uses a monocular camera to locate and measure traffic signs. DAN-NMPE attains significant improvements compared to existing state-of-the-art methods, which improves the measurement accuracy of size and position by 50% and 15.8%, respectively.Keywords: monocular camera, GPS, positioning, measurement
Procedia PDF Downloads 1441876 External Sector and Its Impact on Economic Growth of Pakistan (1990-2010)
Authors: Rizwan Fazal
Abstract:
This study investigates the behavior of external sector of Pakistan economy and its impact on economic growth, using quarterly data for the period 1990:01-2010:04. External sector indices used in this study are financial integration, net foreign assets and trade integration. Augmented Ducky fuller confirms that all variables of external sector are non-stationary at level, but at first difference it becomes stationary. The co-integration test suggests one co-integrating variables in the study. The analysis is based on Vector Auto Regression model followed by Vector Error Correction Model. The empirical findings show that financial integration play important role in increasing economic growth in Pakistan economy while trade integration has negative effect on economic growth of Pakistan in the long run. However, the short run confirms that output lag accounts for error correction. The estimated CUSUM and CUSUMQ stability test provide information that the period of the study equation remains stable.Keywords: financial integration, trade integration, net foreign assets, gross domestic product
Procedia PDF Downloads 2731875 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys
Authors: Hexiong Liu
Abstract:
Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy
Procedia PDF Downloads 821874 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 1471873 Mechanical Performance of Sandwich Square Honeycomb Structure from Sugar Palm Fibre
Authors: Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar
Abstract:
This study focus on the compression and tensile properties of new and recycle square honeycombs structure from sugar palm fibre (SPF) and polylactic acid (PLA) composite. The end data will determine the failure strength and energy absorption for both new and recycle composite. The control SPF specimens were fabricated from short fibre co-mingled with PLA by using a bra-blender set at 180°C and 50 rpm consecutively. The mixture of 30% fibre and 70% PLA were later on the hot press at 180°C into sheets with thickness 3mm consecutively before being assembled into a sandwich honeycomb structure. An INSTRON tensile machine and Abaqus 6.13 software were used for mechanical test and finite element simulation. The percentage of error from the simulation and experiment data was 9.20% and 9.17% for both new and recycled product. The small error of percentages was acceptable due to the nature of the simulation model to be assumed as a perfect model with no imperfect geometries. The energy absorption value from new to recycled product decrease from 312.86kJ to 282.10kJ. With this small decrements, it is still possible to implement a recycle SPF/PLA composite into everyday usages such as a car's interior or a small size furniture.Keywords: failure modes, numerical modelling, polylactic acid, sugar palm fibres
Procedia PDF Downloads 2941872 Performance Evaluation of MIMO-OFDM Communication Systems
Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany
Abstract:
This paper evaluates the bit error rate (BER) performance of MIMO-OFDM communication system. MIMO system uses multiple transmitting and receiving antennas with different coding techniques to either enhance the transmission diversity or spatial multiplexing gain. Utilizing alamouti algorithm were the same information transmitted over multiple antennas at different time intervals and then collected again at the receivers to minimize the probability of error, combat fading and thus improve the received signal to noise ratio. While utilizing V-BLAST algorithm, the transmitted signals are divided into different transmitting channels and transferred over the channel to be received by different receiving antennas to increase the transmitted data rate and achieve higher throughput. The paper provides a study of different diversity gain coding schemes and spatial multiplexing coding for MIMO systems. A comparison of various channels' estimation and equalization techniques are given. The simulation is implemented using MATLAB, and the results had shown the performance of transmission models under different channel environments.Keywords: MIMO communication, BER, space codes, channels, alamouti, V-BLAST
Procedia PDF Downloads 1751871 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models
Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand
Abstract:
Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models on two different realworld electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.Keywords: EHR, machine learning, imputation, laboratory variables, algorithmic bias
Procedia PDF Downloads 851870 Platform Virtual for Joint Amplitude Measurement Based in MEMS
Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez
Abstract:
Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation
Procedia PDF Downloads 2601869 Investigation of User Position Accuracy for Stand-Alone and Hybrid Modes of the Indian Navigation with Indian Constellation Satellite System
Authors: Naveen Kumar Perumalla, Devadas Kuna, Mohammed Akhter Ali
Abstract:
Satellite Navigation System such as the United States Global Positioning System (GPS) plays a significant role in determining the user position. Similar to that of GPS, Indian Regional Navigation Satellite System (IRNSS) is a Satellite Navigation System indigenously developed by Indian Space Research Organization (ISRO), India, to meet the country’s navigation applications. This system is also known as Navigation with Indian Constellation (NavIC). The NavIC system’s main objective, is to offer Positioning, Navigation and Timing (PNT) services to users in its two service areas i.e., covering the Indian landmass and the Indian Ocean. Six NavIC satellites are already deployed in the space and their receivers are in the performance evaluation stage. Four NavIC dual frequency receivers are installed in the ‘Advanced GNSS Research Laboratory’ (AGRL) in the Department of Electronics and Communication Engineering, University College of Engineering, Osmania University, India. The NavIC receivers can be operated in two positioning modes: Stand-alone IRNSS and Hybrid (IRNSS+GPS) modes. In this paper, analysis of various parameters such as Dilution of Precision (DoP), three Dimension (3D) Root Mean Square (RMS) Position Error and Horizontal Position Error with respect to Visibility of Satellites is being carried out using the real-time IRNSS data, obtained by operating the receiver in both positioning modes. Two typical days (6th July 2017 and 7th July 2017) are considered for Hyderabad (Latitude-17°24'28.07’N, Longitude-78°31'4.26’E) station are analyzed. It is found that with respect to the considered parameters, the Hybrid mode operation of NavIC receiver is giving better results than that of the standalone positioning mode. This work finds application in development of NavIC receivers for civilian navigation applications.Keywords: DoP, GPS, IRNSS, GNSS, position error, satellite visibility
Procedia PDF Downloads 2141868 Mountain Architectural Design Under the Concept of Pedestrian-oriented Cities: Taking Bai Xiang Ju as an Example
Authors: Xiaohan Wang
Abstract:
In the rapid urbanization process, urban design concepts are shifting towards people-oriented approaches. Emphasizing the pedestrian experience promotes urban livability and sustainable development. In mountainous cities, the inconvenience of transportation caused by complex terrain makes pedestrian-friendly architectural design one of the entry points for problem-solving. This paper mainly takes the high-rise residential area of Bai Xiang Ju in Chongqing as an example to explore the architectural design strategies of mountainous cities under the concept of pedestrian-oriented urban design, providing valuable references and insights for similar urban architectural designs.Keywords: pedestrian city, Bai Xiang Ju, mountain architecture, pedestrian infrastructure, pedestrian-oriented design
Procedia PDF Downloads 41867 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities
Authors: Retius Chifurira
Abstract:
Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities
Procedia PDF Downloads 201