Search results for: importance of SPC supplier selection criteria
9735 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs
Authors: Iman Farasat, Howard M. Salis
Abstract:
The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.Keywords: biophysical model, CRISPR, Cas9, genome editing
Procedia PDF Downloads 4069734 Investigating the Effects of Two Functional and Extra-Functional Stretching Methods of the Leg Muscles on a Selection of Kinematical and Kinetic Indicators in Women with Ankle Instability
Authors: Parvin Malhami
Abstract:
The purpose of the present study was to investigate the effects of two functional and functional stretching methods of the leg muscles on a selection of kinematical and kinetic indicators among women with ankle instability. Twenty-four persons were targeted and randomly divided into the functional exercise (8 persons), extra-functional exercise (8 persons) and control (8 persons) groups on the basis of inclusion and exclusion criteria. The experimental groups received stretching for eight weeks, 3 sessions each week, and the control group merely performed its daily activities. Then, in order to measure the pre -test and post -test variables, the dorsi flexion, Plantar flexion and ground reaction force were investigated and measured. Data were analyzed using paired T-test and independent T-tests at a significant level of 0.05. All statistical analyses were conducted using SPSS 25 software. The results of the T-test showed the significant effect of eight weeks of functional and Extra functional exercises on dorsi Flexion, Plantar Flexion and ground reaction force. (P≤ 0/001). The results of this study showed that the implementation of the functional and Extra-functional exercise protocol had an impact on the amount of Ankle dorsi Flexion and the Plantar felxion of women with an ankle instability. It was also found that muscle flexibility following the stretch ability of the gastrocnemius muscles facilitates the walking of the wrist installation by affecting the amount of wrist flexion, so these people are recommended to use the functional and extra-functional exercise protocol.Keywords: functional stretching, extra functional stretching, dorsi flexion, plantar flexion
Procedia PDF Downloads 729733 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study
Authors: Priya Kedia, Kiranmoy Das
Abstract:
There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution
Procedia PDF Downloads 1569732 Budgetary Performance Model for Managing Pavement Maintenance
Authors: Vivek Hokam, Vishrut Landge
Abstract:
An ideal maintenance program for an industrial road network is one that would maintain all sections at a sufficiently high level of functional and structural conditions. However, due to various constraints such as budget, manpower and equipment, it is not possible to carry out maintenance on all the needy industrial road sections within a given planning period. A rational and systematic priority scheme needs to be employed to select and schedule industrial road sections for maintenance. Priority analysis is a multi-criteria process that determines the best ranking list of sections for maintenance based on several factors. In priority setting, difficult decisions are required to be made for selection of sections for maintenance. It is more important to repair a section with poor functional conditions which includes uncomfortable ride etc. or poor structural conditions i.e. sections those are in danger of becoming structurally unsound. It would seem therefore that any rational priority setting approach must consider the relative importance of functional and structural condition of the section. The maintenance priority index and pavement performance models tend to focus mainly on the pavement condition, traffic criteria etc. There is a need to develop the model which is suitably used with respect to limited budget provisions for maintenance of pavement. Linear programming is one of the most popular and widely used quantitative techniques. A linear programming model provides an efficient method for determining an optimal decision chosen from a large number of possible decisions. The optimum decision is one that meets a specified objective of management, subject to various constraints and restrictions. The objective is mainly minimization of maintenance cost of roads in industrial area. In order to determine the objective function for analysis of distress model it is necessary to fix the realistic data into a formulation. Each type of repair is to be quantified in a number of stretches by considering 1000 m as one stretch. A stretch considered under study is having 3750 m length. The quantity has to be put into an objective function for maximizing the number of repairs in a stretch related to quantity. The distress observed in this stretch are potholes, surface cracks, rutting and ravelling. The distress data is measured manually by observing each distress level on a stretch of 1000 m. The maintenance and rehabilitation measured that are followed currently are based on subjective judgments. Hence, there is a need to adopt a scientific approach in order to effectively use the limited resources. It is also necessary to determine the pavement performance and deterioration prediction relationship with more accurate and economic benefits of road networks with respect to vehicle operating cost. The infrastructure of road network should have best results expected from available funds. In this paper objective function for distress model is determined by linear programming and deterioration model considering overloading is discussed.Keywords: budget, maintenance, deterioration, priority
Procedia PDF Downloads 2089731 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images
Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge
Abstract:
Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.Keywords: band selection, fuzzy c-means, k-means, hyperspectral image
Procedia PDF Downloads 4099730 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics
Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung
Abstract:
Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment
Procedia PDF Downloads 1699729 Emotion Mining and Attribute Selection for Actionable Recommendations to Improve Customer Satisfaction
Authors: Jaishree Ranganathan, Poonam Rajurkar, Angelina A. Tzacheva, Zbigniew W. Ras
Abstract:
In today’s world, business often depends on the customer feedback and reviews. Sentiment analysis helps identify and extract information about the sentiment or emotion of the of the topic or document. Attribute selection is a challenging problem, especially with large datasets in actionable pattern mining algorithms. Action Rule Mining is one of the methods to discover actionable patterns from data. Action Rules are rules that help describe specific actions to be made in the form of conditions that help achieve the desired outcome. The rules help to change from any undesirable or negative state to a more desirable or positive state. In this paper, we present a Lexicon based weighted scheme approach to identify emotions from customer feedback data in the area of manufacturing business. Also, we use Rough sets and explore the attribute selection method for large scale datasets. Then we apply Actionable pattern mining to extract possible emotion change recommendations. This kind of recommendations help business analyst to improve their customer service which leads to customer satisfaction and increase sales revenue.Keywords: actionable pattern discovery, attribute selection, business data, data mining, emotion
Procedia PDF Downloads 2009728 Tweets to Touchdowns: Predicting National Football League Achievement from Social Media Optimism
Authors: Rohan Erasala, Ian McCulloh
Abstract:
The NFL Draft is a chance for every NFL team to select their next superstar. As a result, teams heavily invest in scouting, and millions of fans partake in the online discourse surrounding the draft. This paper investigates the potential correlations between positive sentiment in individual draft selection threads from the subreddit r/NFL and if this data can be used to make successful player recommendations. It is hypothesized that there will be limited correlations and nonviable recommendations made from these threads. The hypothesis is tested using sentiment analysis of draft thread comments and analyzing correlation and precision at k of top scores. The results indicate weak correlations between the percentage of positive comments in a draft selection thread and a player’s approximate value, but potentially viable recommendations from looking at players whose draft selection threads have the highest percentage of positive comments.Keywords: national football league, NFL, NFL Draft, sentiment analysis, Reddit, social media, NLP
Procedia PDF Downloads 869727 Meat Consumption for Family Health in Nigeria
Authors: Chigbu Ruth Nnena
Abstract:
This paper discussed the concept of meat its nutritive value in family meals. The paper further discussed the selection, storage and preparation of meat in family meal the Nigerian way. The paper made the following recommendations among others; that families in Nigeria should rear cow meat for easy access to the meant and that family should purchase meat that are fresh from chain shops in the market to avoid meat contamination among others.Keywords: meat, selection, storage meals, concept and preparation
Procedia PDF Downloads 3439726 Important Books of Pschoneurolinguistics: Scientific-Based Approach
Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Objective: The study aims to summarize the most important books in psychoneurolinguistics. Method: It is a survey study that listed the most important resouces and references in the field of psychoneurolinguistics for the researchers to benefit from them. Results Reliability and Validity of the books on psychoneurolinguistic research are based upon what type of topics and issues are addressed and the importance of these topics for researchers.Other standards are no more than peripheral criteria that include: Author, publishing house, edition, etc.Keywords: books, resources, psychoneurolinguistics, scientific reserach, references
Procedia PDF Downloads 449725 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization
Procedia PDF Downloads 1589724 Similarities and Differences between Psychotherapy, Coaching Psychology and Coaching
Authors: Ole Michael Spaten
Abstract:
This article presents similarities and differences between psychotherapy, coaching psychology and coaching, and hence discusses boundaries between these diverse fields of practice. The point of departure will be prevailing arguments and descriptions in the scientific community, and it shows both commonalities and major differences in relation to the application in daily practice. The results (the similarities and differences) are presented and discussed in the light of scientific research and different theoretical perspectives, including both classic and recent scholars. Some of the main differences presented are; the clinical/non-clinical perspective and the educational differences, including the different criteria and demands which professionals working in these three different professions, should undergo to obtain their certification. Further, one of the main similarities is presented: the importance of the relationship between the therapist/coach and the client/coachee. The goal and task oriented focus are also presented as a similarity between the three intervention forms – at least to some extent. Finally, some central concepts from the fields are presented in a table for a proposal of distinctions and interfaces. It is concluded that a comprehensive education in combination with an understanding of the differences and similarities between the three intervention forms is of significant importance for the professional working in either of the fields. Future studies should, however, include additional research on the similarities and differences and how to continue the educational progress in all three disciplines.Keywords: boundaries, coaching, coaching psychology, interface, psychotherapy
Procedia PDF Downloads 2319723 Land Suitability Scaling and Modeling for Assessing Crop Suitability in Some New Reclaimed Areas, Egypt
Authors: W. A. M. Abdel Kawy, Kh. M. Darwish
Abstract:
Adequate land use selection is an essential step towards achieving sustainable development. The main object of this study is to develop a new scale for land suitability system, which can be compatible with the local conditions. Furthermore, it aims to adapt the conventional land suitability systems to match the actual environmental status in term of soil types, climate and other conditions to evaluate land suitability for newly reclaimed areas. The new system suggests calculation of land suitability considering 20 factors affecting crop selection grouping into five categories; crop-agronomic, land management, development, environmental conditions and socio – economic status. Each factor is summed by each other to calculate the total points. The highest rating for each factor indicates the highest preference for the evaluated crop. The highest rated crops for each group are those with the highest points for the actual suitability. This study was conducted to assess the application efficiency of the new land suitability scale in recently reclaimed sites in Egypt. Moreover, 35 representative soil profiles were examined, and soil samples were subjected to some physical and chemical analysis. Actual and potential suitabilities were calculated by using the new land suitability scale. Finally, the obtained results confirmed the applicability of a new land suitability system to recommend the most promising crop rotation that can be applied in the study areas. The outputs of this research revealed that the integration of different aspects for modeling and adapting a proposed model provides an effective and flexible technique, which contribute to improve land suitability assessment for several crops to be more accurate and reliable.Keywords: analytic hierarchy process, land suitability, multi-criteria analysis, new reclaimed areas, soil parameters
Procedia PDF Downloads 1399722 Maternal and Neonatal Outcomes in Women Undergoing Bariatric Surgery: A Systematic Review and Meta-Analysis
Authors: Nicolas Galazis, Nikolina Docheva, Constantinos Simillis, Kypros Nicolaides
Abstract:
Background: Obese women are at increased risk for many pregnancy complications, and bariatric surgery (BS) before pregnancy has shown to improve some of these. Objectives: To review the current literature and quantitatively assess the obstetric and neonatal outcomes in pregnant women who have undergone BS. Search Strategy: MEDLINE, EMBASE and Cochrane databases were searched using relevant keywords to identify studies that reported on pregnancy outcomes after BS. Selection Criteria: Pregnancy outcome in firstly, women after BS compared to obese or BMI-matched women with no BS and secondly, women after BS compared to the same or different women before BS. Only observational studies were included. Data Collection and Analysis: Two investigators independently collected data on study characteristics and outcome measures of interest. These were analysed using the random effects model. Heterogeneity was assessed and sensitivity analysis was performed to account for publication bias. Main Results: The entry criteria were fulfilled by 17 non-randomised cohort or case-control studies, including seven with high methodological quality scores. In the BS group, compared to controls, there was a lower incidence of preeclampsia (OR, 0.45, 95% CI, 0.25-0.80; p=0.007), GDM (OR, 0.47, 95% CI, 0.40-0.56; P<0.001) and large neonates (OR 0.46, 95% CI 0.34-0.62; p<0.001) and a higher incidence of small neonates (OR 1.93, 95% CI 1.52-2.44; p<0.001), preterm birth (OR 1.31, 95% CI 1.08-1.58; p=0.006), admission for neonatal intensive care (OR 1.33, 95% CI 1.02-1.72; p=0.03) and maternal anaemia (OR 3.41, 95% CI 1.56-7.44, p=0.002). Conclusions: BS as a whole improves some pregnancy outcomes. Laparoscopic adjustable gastric banding does not appear to increase the rate of small neonates that was seen with other BS procedures. Obese women of childbearing age undergoing BS need to be aware of these outcomes.Keywords: bariatric surgery, pregnancy, preeclampsia, gestational diabetes, birth weight
Procedia PDF Downloads 4079721 Sensitivity Analysis of Movable Bed Roughness Formula in Sandy Rivers
Authors: Mehdi Fuladipanah
Abstract:
Sensitivity analysis as a technique is applied to determine influential input factors on model output. Variance-based sensitivity analysis method has more application compared to other methods because of including linear and non-linear models. In this paper, van Rijn’s movable bed roughness formula was selected to evaluate because of its reasonable results in sandy rivers. This equation contains four variables as: flow depth, sediment size,bBed form height and bed form length. These variable’s importance was determined using the first order of Fourier Amplitude Sensitivity Test. Sensitivity index was applied to evaluate importance of factors. The first order FAST based sensitivity indices test, explain 90% of the total variance that is indicating acceptance criteria of FAST application. More value of this index is indicating more important variable. Results show that bed form height, bed form length, sediment size and flow depth are more influential factors with sensitivity index: 32%, 24%, 19% and 15% respectively.Keywords: sdensitivity analysis, variance, movable bed roughness formula, Sandy River
Procedia PDF Downloads 2619720 Modeling Metrics for Monitoring Software Project Performance Based on the GQM Model
Authors: Mariayee Doraisamy, Suhaimi bin Ibrahim, Mohd Naz’ri Mahrin
Abstract:
There are several methods to monitor software projects and the objective for monitoring is to ensure that the software projects are developed and delivered successfully. A performance measurement is a method that is closely associated with monitoring and it can be scrutinized by looking at two important attributes which are efficiency and effectiveness both of which are factors that are important for the success of a software project. Consequently, a successful steering is achieved by monitoring and controlling a software project via the performance measurement criteria and metrics. Hence, this paper is aimed at identifying the performance measurement criteria and the metrics for monitoring the performance of a software project by using the Goal Question Metrics (GQM) approach. The GQM approach is utilized to ensure that the identified metrics are reliable and useful. These identified metrics are useful guidelines for project managers to monitor the performance of their software projects.Keywords: component, software project performance, goal question metrics, performance measurement criteria, metrics
Procedia PDF Downloads 3579719 A Method to Ease the Military Certification Process by Taking Advantage of Civil Standards in the Scope of Human Factors
Authors: Burcu Uçan
Abstract:
The certification approach differs in civil and military projects in aviation. Sets of criteria and standards created by airworthiness authorities for the determination of certification basis are distinct. While the civil standards are more understandable and clear because of not only include detailed specifications but also the help of guidance materials such as Advisory Circular, military criteria do not provide this level of guidance. Therefore, specifications that are more negotiable and sometimes more difficult to reconcile arise for the certification basis of a military aircraft. This study investigates a method of how to develop a military specification set by taking advantage of civil standards, regarding the European Military Airworthiness Criteria (EMACC) that establishes the airworthiness criteria for aircraft systems. Airworthiness Certification Criteria (MIL-HDBK-516C) is a handbook published for guidance that contains qualitative evaluation for military aircrafts meanwhile Certification Specifications (CS-29) is published for civil aircrafts by European Union Aviation Safety Agency (EASA). This method intends to compare and contrast specifications that MIL-HDBK-516C and CS-29 contain within the scope of Human Factors. Human Factors supports human performance and aims to improve system performance by encompassing knowledge from a range of scientific disciplines. Human Factors focuses on how people perform their tasks and reduce the risk of an accident occurring due to human physical and cognitive limitations. Hence, regardless of whether the project is civil or military, the specifications must be guided at a certain level by taking into account human limits. This study presents an advisory method for this purpose. The method in this study develops a solution for the military certification process by identifying the CS requirement corresponding to the criteria in the MIL-HDBK-516C by means of EMACC. Thus, it eases understanding the expectations of the criteria and establishing derived requirements. As a result of this method, it may not always be preferred to derive new requirements. Instead, it is possible to add remarks to make the expectancy of the criteria and required verification methods more comprehensible for all stakeholders. This study contributes to creating a certification basis for military aircraft, which is difficult and takes plenty of time for stakeholders to agree due to gray areas in the certification process for military aircrafts.Keywords: human factors, certification, aerospace, requirement
Procedia PDF Downloads 789718 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained
Authors: Homa Ghave, Parmis Shahmaleki
Abstract:
This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function
Procedia PDF Downloads 2659717 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 1089716 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 1199715 Investigation of the Main Trends of Tourist Expenses in Georgia
Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili
Abstract:
The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors. We used mixed technique of selection that implies rules of random and proportional selection. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from the major Georgian airports. Techniques of statistical observation were prepared. A representative population of foreign visitors and a rule of selection of respondents were determined. We have a trend of growth of tourist numbers and share of tourists from post-soviet countries constantly increases. Level of satisfaction with tourist facilities and quality of service has grown, but still we have a problem of disparity between quality of service and prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher.Keywords: tourist, expenses, methods, statistics, analysis
Procedia PDF Downloads 3379714 Post-Traumatic Stress Disorder: Management at the Montfort Hospital
Authors: Kay-Anne Haykal, Issack Biyong
Abstract:
The post-traumatic stress disorder (PTSD) rises from exposure to a traumatic event and appears by a persistent experience of this event. Several psychiatric co-morbidities are associated with PTSD and include mood disorders, anxiety disorders, and substance abuse. The main objective was to compare the criteria for PTSD according to the literature to those used to diagnose a patient in a francophone hospital and to check the correspondence of these two criteria. 700 medical charts of admitted patients on the medicine or psychiatric unit at the Montfort Hospital were identified with the following diagnoses: major depressive disorder, bipolar disorder, anxiety disorder, substance abuse, and PTSD for the period of time between April 2005 and March 2006. Multiple demographic criteria were assembled. Also, for every chart analyzed, the PTSD criteria, according to the Manual of Mental Disorders (DSM) IV were found, identified, and grouped according to pre-established codes. An analysis using the receiver operating characteristic (ROC) method was elaborated for the study of data. A sample of 57 women and 50 men was studied. Age was varying between 18 and 88 years with a median age of 48. According to the PTSD criteria in the DSM IV, 12 patients should have the diagnosis of PTSD in opposition to only two identified in the medical charts. The ROC method establishes that with the combination of data from PTSD and depression, the sensitivity varies between 0,127 and 0,282, and the specificity varies between 0,889 and 0,917. Otherwise, if we examine the PTSD data alone, the sensibility jumps to 0.50, and the specificity varies between 0,781 and 0,895. This study confirms the presence of an underdiagnosed and treated PTSD that causes severe perturbations for the affected individual.Keywords: post-traumatic stress disorder, co-morbidities, diagnosis, mental health disorders
Procedia PDF Downloads 3889713 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty
Authors: Pulak Swain, A. K. Ojha
Abstract:
Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of E- constraint method.Keywords: portfolio optimization, multi-objective optimization, ϵ - constraint method, box uncertainty, robust optimization
Procedia PDF Downloads 1409712 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 619711 Challenges of Landscape Design with Tree Species Diversity
Authors: Henry Kuppen
Abstract:
In the last decade, tree managers have faced many threats of pests and diseases and the effects of climate change. Managers will recognize that they have to put more energy and more money into tree management. By recognizing the cause behind this, the opportunity will arise to build sustainable tree populations for the future. More and more, unwanted larvae are sprayed, ash dieback infected trees are pruned or felled, and emerald ash borer is knocking at the door of West Europe. A lot of specific knowledge is needed to produce management plans and best practices. If pest and disease have a large impact, society loses complete tree species and need to start all over again building urban forest. But looking at the cause behind it, landscape design, and tree species selection, the sustainable solution does not present itself in managing these threats. Every pest or disease needs two important basic ingredients to be successful: climate and food. The changing climate is helping several invasive pathogens to survive. Food is often designed by the landscapers and managers of the urban forest. Monocultures promote the success of pathogens. By looking more closely at the basics, tree managers will realise very soon that the solution will not be the management of pathogens. The long-term solution for sustainable tree populations is a different design of our urban landscape. The use of tree species diversity can help to reduce the impact of climate change and pathogens. Therefore landscapers need to be supported. They are the specialists in designing the landscape using design values like canopy volume, ecosystem services, and seasonal experience. It’s up to the species specialist to show what the opportunities are for different species that meet the desired interpretation of the landscape. Based on landscapers' criteria, selections can be made, including tree species related requirements. Through this collaboration and formation of integral teams, sustainable plant design will be possible.Keywords: climate change, landscape design, resilient landscape, tree species selection
Procedia PDF Downloads 1329710 Two Points Crossover Genetic Algorithm for Loop Layout Design Problem
Authors: Xu LiYun, Briand Florent, Fan GuoLiang
Abstract:
The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms.Keywords: crossover, genetic algorithm, layout design problem, loop-layout, manufacturing optimization
Procedia PDF Downloads 2819709 Genetics of Pharmacokinetic Drug-Drug Interactions of Most Commonly Used Drug Combinations in the UK: Uncovering Unrecognised Associations
Authors: Mustafa Malki, Ewan R. Pearson
Abstract:
Tools utilized by health care practitioners to flag potential adverse drug reactions secondary to drug-drug interactions ignore individual genetic variation, which has the potential to markedly alter the severity of these interactions. To our best knowledge, there have been limited published studies on the impact of genetic variation on drug-drug interactions. Therefore, our aim in this project is the discovery of previously unrecognized, clinically important drug-drug-gene interactions (DDGIs) within the list of most commonly used drug combinations in the UK. The UKBB database was utilized to identify the top most frequently prescribed drug combinations in the UK with at least one route of interaction (over than 200 combinations were identified). We have recognised 37 common and unique interacting genes considering all of our drug combinations. Out of around 600 potential genetic variants found in these 37 genes, 100 variants have met the selection criteria (common variant with minor allele frequency ≥ 5%, independence, and has passed HWE test). The association between these variants and the use of each of our top drug combinations has been tested with a case-control analysis under the log-additive model. As the data is cross-sectional, drug intolerance has been identified from the genotype distribution as presented by the lower percentage of patients carrying the risky allele and on the drug combination compared to those free of these risk factors and vice versa with drug tolerance. In GoDARTs database, the same list of common drug combinations identified by the UKBB was utilized here with the same list of candidate genetic variants but with the addition of 14 new SNPs so that we have a total of 114 variants which have met the selection criteria in GoDARTs. From the list of the top 200 drug combinations, we have selected 28 combinations where the two drugs in each combination are known to be used chronically. For each of our 28 combinations, three drug response phenotypes have been identified (drug stop/switch, dose decrease, or dose increase of any of the two drugs during their interaction). The association between each of the three phenotypes belonging to each of our 28 drug combinations has been tested against our 114 candidate genetic variants. The results show replication of four findings between both databases : (1) Omeprazole +Amitriptyline +rs2246709 (A > G) variant in CYP3A4 gene (p-values and ORs with the UKBB and GoDARTs respectively = 0.048,0.037,0.92,and 0.52 (dose increase phenotype)) (2) Simvastatin + Ranitidine + rs9332197 (T > C) variant in CYP2C9 gene (0.024,0.032,0.81, and 5.75 (drug stop/switch phenotype)) (3) Atorvastatin + Doxazosin + rs9282564 (T > C) variant in ABCB1 gene (0.0015,0.0095,1.58,and 3.14 (drug stop/switch phenotype)) (4) Simvastatin + Nifedipine + rs2257401 (C > G) variant in CYP3A7 gene (0.025,0.019,0.77,and 0.30 (drug stop/switch phenotype)). In addition, some other non-replicated, but interesting, significant findings were detected. Our work also provides a great source of information for researchers interested in DD, DG, or DDG interactions studies as it has highlighted the top common drug combinations in the UK with recognizing 114 significant genetic variants related to drugs' pharmacokinetic.Keywords: adverse drug reactions, common drug combinations, drug-drug-gene interactions, pharmacogenomics
Procedia PDF Downloads 1639708 Method of Synthesis of Controlled Generators Balanced a Strictly Avalanche Criteria-Functions
Authors: Ali Khwaldeh, Nimer Adwan
Abstract:
In this paper, a method for constructing a controlled balanced Boolean function satisfying the criterion of a Strictly Avalanche Criteria (SAC) effect is proposed. The proposed method is based on the use of three orthogonal nonlinear components which is unlike the high-order SAC functions. So, the generator synthesized by the proposed method has separate sets of control and information inputs. The proposed method proves its simplicity and the implementation ability. The proposed method allows synthesizing a SAC function generator with fixed control and information inputs. This ensures greater efficiency of the built-in oscillator compared to high-order SAC functions that can be used as a generator. Accordingly, the method is completely formalized and implemented as a software product.Keywords: boolean function, controlled balanced boolean function, strictly avalanche criteria, orthogonal nonlinear
Procedia PDF Downloads 1579707 The Impact of the New Head Injury Pathway on the Number of CTs Performed in a Paediatric Population
Authors: Amel M. A. Osman, Roy Mahony, Lisa Dann, McKenna S.
Abstract:
Background: Computed Tomography (CT) is a significant source of radiation in the pediatric population. A new head injury (HI) pathway was introduced in 2021, which altered the previous process of HI being jointly admitted with general pediatrics and surgery to admit these patients under the Emergency Medicine Team. Admitted patients included those with positive CT findings not requiring immediate neurosurgical intervention and those who did not meet current criteria for urgent CT brain as per NICE guidelines but were still symptomatic for prolonged observations. This approach aims to decrease the number of CT scans performed. The main aim is to assess the variation in CT scanning rates since the change in the admitting process. A retrospective review of patients presenting to CHI PECU with HI over 6-month period (01/01/19-31/05/19) compared to a 6-month period post introduction of the new pathway (01/06/2022-31/12/2022). Data was collected from the electronic record databases, symphony, and PACS. Results: In 2019, there were 869 presentations of HI, among which 32 (3.68%) had CT scans performed. 2 (6.25%) of those scanned had positive findings. In 2022, there were 1122 HI presentations, with 47 (4.19%) CT scans performed and positive findings in 5 (10.6%) cases. 57 patients were admitted under the new pathway for observation, with 1 having a CT scan following admission. Conclusion: Quantitative lifetime radiation risks for children are not negligible. While there was no statistically significant reduction in CTs performed amongst HIs presenting to our department, a significant group met the criteria for admission under the PECU consultant for prolonged monitoring. There was also a greater proportion of abnormalities on CT scans performed in 2022, demonstrating improved patient selection for imaging. Further data analysis is ongoing to determine if those who were admitted would have previously been scanned under the old pathway.Keywords: head injury, CT, admission, guidline
Procedia PDF Downloads 549706 Evaluating Urban City Indices: A Study for Investigating Functional Domains, Indicators and Integration Methods
Authors: Fatih Gundogan, Fatih Kafali, Abdullah Karadag, Alper Baloglu, Ersoy Pehlivan, Mustafa Eruyar, Osman Bayram, Orhan Karademiroglu, Wasim Shoman
Abstract:
Nowadays many cities around the world are investing their efforts and resources for the purpose of facilitating their citizen’s life and making cities more livable and sustainable by implementing newly emerged phenomena of smart city. For this purpose, related research institutions prepare and publish smart city indices or benchmarking reports aiming to measure the city’s current ‘smartness’ status. Several functional domains, various indicators along different selection and calculation methods are found within such indices and reports. The selection criteria varied for each institution resulting in inconsistency in the ranking and evaluating. This research aims to evaluate the impact of selecting such functional domains, indicators and calculation methods which may cause change in the rank. For that, six functional domains, i.e. Environment, Mobility, Economy, People, Living and governance, were selected covering 19 focus areas and 41 sub-focus (variable) areas. 60 out of 191 indicators were also selected according to several criteria. These were identified as a result of extensive literature review for 13 well known global indices and research and the ISO 37120 standards of sustainable development of communities. The values of the identified indicators were obtained from reliable sources for ten cities. The values of each indicator for the selected cities were normalized and standardized to objectively investigate the impact of the chosen indicators. Moreover, the effect of choosing an integration method to represent the values of indicators for each city is investigated by comparing the results of two of the most used methods i.e. geometric aggregation and fuzzy logic. The essence of these methods is assigning a weight to each indicator its relative significance. However, both methods resulted in different weights for the same indicator. As a result of this study, the alternation in city ranking resulting from each method was investigated and discussed separately. Generally, each method illustrated different ranking for the selected cities. However, it was observed that within certain functional areas the rank remained unchanged in both integration method. Based on the results of the study, it is recommended utilizing a common platform and method to objectively evaluate cities around the world. The common method should provide policymakers proper tools to evaluate their decisions and investments relative to other cities. Moreover, for smart cities indices, at least 481 different indicators were found, which is an immense number of indicators to be considered, especially for a smart city index. Further works should be devoted to finding mutual indicators representing the index purpose globally and objectively.Keywords: functional domain, urban city index, indicator, smart city
Procedia PDF Downloads 149