Search results for: impact models
16429 A Comparative Study of Dividend Policy and Share Price across the South Asian Countries
Authors: Anwar Hussain, Ahmed Imran, Farida Faisal, Fatima Sultana
Abstract:
The present research evaluates a comparative assessment of dividend policy and share price across the South Asian countries including Pakistan, India and Sri-Lanka over the period of 2010 to 2014. Academic writers found that dividend policy and share price relationship is not same in south Asian market due to different reasons. Moreover, Panel Models used = for the evaluation of current study. In addition, Redundant fixed effect Likelihood and Hausman test used for determine of Common, Fixed and Random effect model. Therefore Indian market dividend policies play a fundamental role and significant impact on Market Share Prices. Although, present research found that different as compared to previous study that dividend policy have no impact on share price in Sri-Lanka and Pakistan.Keywords: dividend policy, share price, South Asian countries, panel data analysis, theories and parameters of dividend
Procedia PDF Downloads 32316428 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation
Procedia PDF Downloads 48316427 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.Keywords: global warming, rainfall, CMIP5, CORDEX, NWH
Procedia PDF Downloads 16916426 Considering Climate Change in Food Security: A Sociological Study Investigating the Modern Agricultural Practices and Food Security in Bangladesh
Authors: Hosen Tilat Mahal, Monir Hossain
Abstract:
Despite being a food-sufficient country after revolutionary changes in agricultural inputs, Bangladesh still has food insecurity and undernutrition. This study examines the association between agricultural practices (as social practices) and food security concentrating on the potential impact of sociodemographic factors and climate change. Using data from the 2012 Bangladesh Integrated Household Survey (BIHS), this study shows how modifiedagricultural practices are strongly associated with climate change and different sociodemographic factors (land ownership, religion, gender, education, and occupation) subsequently affect the status of food security in Bangladesh. We used linear and logistic regression models to analyze the association between modified agricultural practices and food security. The findings indicate that socioeconomic statuses are significant predictors of determining agricultural practices in a society like Bangladesh and control food security at the household level. Moreover, climate change is adversely impactingeven the modified agricultural and food security association version. We conclude that agricultural practices must consider climate change while boosting food security. Therefore, future research should integrate climate change into the agriculture and food-related mitigation and resiliency models.Keywords: food security, agricultural productivity, climate change, bangladesh
Procedia PDF Downloads 12316425 The Impact of Social Support on Anxiety and Depression under the Context of COVID-19 Pandemic: A Scoping Review and Meta-Analysis
Authors: Meng Wu, Atif Rahman, Eng Gee, Lim, Jeong Jin Yu, Rong Yan
Abstract:
Context: The COVID-19 pandemic has had a profound impact on mental health, with increased rates of anxiety and depression observed. Social support, a critical factor in mental well-being, has also undergone significant changes during the pandemic. This study aims to explore the relationship between social support, anxiety, and depression during COVID-19, taking into account various demographic and contextual factors. Research Aim: The main objective of this study is to conduct a comprehensive systematic review and meta-analysis to examine the impact of social support on anxiety and depression during the COVID-19 pandemic. The study aims to determine the consistency of these relationships across different age groups, occupations, regions, and research paradigms. Methodology: A scoping review and meta-analytic approach were employed in this study. A search was conducted across six databases from 2020 to 2022 to identify relevant studies. The selected studies were then subjected to random effects models, with pooled correlations (r and ρ) estimated. Homogeneity was assessed using Q and I² tests. Subgroup analyses were conducted to explore variations across different demographic and contextual factors. Findings: The meta-analysis of both cross-sectional and longitudinal studies revealed significant correlations between social support, anxiety, and depression during COVID-19. The pooled correlations (ρ) indicated a negative relationship between social support and anxiety (ρ = -0.30, 95% CI = [-0.333, -0.255]) as well as depression (ρ = -0.27, 95% CI = [-0.370, -0.281]). However, further investigation is required to validate these results across different age groups, occupations, and regions. Theoretical Importance: This study emphasizes the multifaceted role of social support in mental health during the COVID-19 pandemic. It highlights the need to reevaluate and expand our understanding of social support's impact on anxiety and depression. The findings contribute to the existing literature by shedding light on the associations and complexities involved in these relationships. Data Collection and Analysis Procedures: The data collection involved an extensive search across six databases to identify relevant studies. The selected studies were then subjected to rigorous analysis using random effects models and subgroup analyses. Pooled correlations were estimated, and homogeneity was assessed using Q and I² tests. Question Addressed: This study aimed to address the question of the impact of social support on anxiety and depression during the COVID-19 pandemic. It sought to determine the consistency of these relationships across different demographic and contextual factors. Conclusion: The findings of this study highlight the significant association between social support, anxiety, and depression during the COVID-19 pandemic. However, further research is needed to validate these findings across different age groups, occupations, and regions. The study emphasizes the need for a comprehensive understanding of social support's multifaceted role in mental health and the importance of considering various contextual and demographic factors in future investigations.Keywords: social support, anxiety, depression, COVID-19, meta-analysis
Procedia PDF Downloads 6116424 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 7516423 Establishing a Model of the Environmental Behavior of College Students: The Example of Global Climate Change
Authors: Tai-Yi Yu, Tai-Kue Yu
Abstract:
Using global climate change as its main theme, this study establishes a model for understanding the environmental behavior of college students. It examines their beliefs about the environment, sustainability, and social impact. Theories about values, beliefs, norms, and planned behaviors helped establish the path relations among various latent variables, which include the students’ values regarding sustainability, environmental concern, social impact, perceived risk, environmental attitude, and behavioral intention. Personality traits were used as moderator variables in order to analyze their role in influencing environmental behaviors. The components-based partial least square (PLS) method was adopted, and the measurements and structural models were analyzed using the SmartPLS software. The proposed model complies with various test standards, including individual item reliability, composite reliability, average variance extracted, goodness-of-fit, and cross-validated redundancy. When college students are taught the concept of environmental sustainability, sustainability becomes an environmental attitude for them, and they are more likely to uphold an ethic of sustainability. The more an individual perceives the risks of global climate change, the stronger her emotional connection to the issue becomes. This positively affects the environmental attitude of college student, pushes them to participate more proactively in improvement activities, and encourages them to display their behavioral intention to improve global climate change. When considering the interaction effect among four latent variables (values regarding sustainability, social impact, environmental concern, and perceived risk), this study found that personality traits have a moderate effect on environmental attitude.Keywords: partial least square, personality traits, social impact, environmental concern, perceived risk
Procedia PDF Downloads 42816422 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models
Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed
Abstract:
In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula
Procedia PDF Downloads 13216421 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models
Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo De Magalhães
Abstract:
This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.Keywords: rainfall-runoff models, automatic calibration, hyperbolic smoothing method
Procedia PDF Downloads 14916420 Relation between Energy Absorption and Box Dimension of Rock Fragments under Impact Loading
Authors: Li Hung-Hui, Chen Chi-Chieh, Yang Zon-Yee
Abstract:
This study aims to explore the impact energy absorption in the fragmented processes of rock samples during the split-Hopkinson-pressure-bar tests. Three kinds of rock samples including granite, marble and sandstone were tested. The impact energy absorptions were calculated according to the incident, reflected and transmitted strain wave histories measured by a oscilloscope. The degree of fragment rocks after tests was quantified by the box dimension of the fractal theory. The box dimension of rock fragments was obtained from the particle size distribution curve by the sieve analysis. The results can be concluded that: (1) the degree of rock fragments after tests can be well described by the value of box dimension; (2) with the impact energy absorption increasing, the degrees of rock fragments are varied from the very large fragments to very small fragments, and the corresponding box dimension varies from 2.9 to 1.2.Keywords: SHPB test, energy absorption, rock fragments, impact loading, box dimension
Procedia PDF Downloads 45016419 The Impact of Information Technology Monitoring on Employee Theft and Productivity
Authors: Ajayi Oluwasola Felix
Abstract:
This paper examines how firm investments in technology-based employee monitoring impact both misconduct and productivity. We use unique and detailed theft and sales data from 392 restaurant locations from five firms that adopt a theft monitoring information technology (IT) product. We use difference-in-differences (DD) models with staggered adoption dates to estimate the treatment effect of IT monitoring on theft and productivity. We find significant treatment effects in reduced theft and improved productivity that appear to be primarily driven by changed worker behavior rather than worker turnover. We examine four mechanisms that may drive this productivity result: economic and cognitive multitasking, fairness-based motivation, and perceived increases of general oversight. The observed productivity results represent substantial financial benefits to both firms and the legitimate tip-based earnings of workers. Our results suggest that employee misconduct is not solely a function of individual differences in ethics or morality, but can also be influenced by managerial policies that can benefit both firms and employees.Keywords: information technology, monitoring, misconduct, employee theft
Procedia PDF Downloads 42016418 Developing Location-allocation Models in the Three Echelon Supply Chain
Authors: Mehdi Seifbarghy, Zahra Mansouri
Abstract:
In this paper a few location-allocation models are developed in a multi-echelon supply chain including suppliers, manufacturers, distributors and retailers. The objectives are maximizing demand coverage, minimizing the total distance of distributors from suppliers, minimizing some facility establishment costs and minimizing the environmental effects. Since nature of the given models is multi-objective, we suggest a number of goal-based solution techniques such L-P metric, goal programming, multi-choice goal programming and goal attainment in order to solve the problems.Keywords: location, multi-echelon supply chain, covering, goal programming
Procedia PDF Downloads 55916417 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna
Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo
Abstract:
The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system
Procedia PDF Downloads 3516416 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 10516415 Laboratory Investigation of the Impact Resistance of High-Strength Reinforced Concrete Against Impact Loading
Authors: Hadi Rouhi Belvirdi
Abstract:
Reinforced concrete structures, in addition to bearing service loads and seismic effects, may also be subjected to impact loads resulting from unforeseen incidents. Understanding the behavior of these structures is crucial, as they serve to protect against such sudden loads and can significantly reduce damage and destruction. In examining the behavior of structures under such loading conditions, a total of eight specimens of single-layer reinforced concrete slabs were subjected to impact loading through the free fall of weights from specified heights. The weights and dimensions of the specimens were uniform, and the amount of reinforcement was consistent. By altering the slabs' overall shape and the reinforcement details, efforts were made to optimize the behavior of the slabs against impact loads. The results indicated that utilizing ductile features in the slabs increased their resistance to impact loading. However, the compressive strength of the reinforcement did not significantly enhance the flexural resistance. Assuming a constant amount of longitudinal steel, changes in the placement of tensile reinforcement led to a decrease in resistance. With a fixed amount of transverse steel, merely adjusting the angle of the transverse reinforcement could help control cracking and mitigate premature failures. An increase in compressive resistance beyond a certain limit resulted in local buckling of the compressive zone, subsequently decreasing the impact resistance.Keywords: reinforced concrete slab, high-strength concrete, impact loading, impact resistance
Procedia PDF Downloads 916414 Monthly Labor Forces Surveys Portray Smooth Labor Markets and Bias Fixed Effects Estimation: Evidence from Israel’s Transition from Quarterly to Monthly Surveys
Authors: Haggay Etkes
Abstract:
This study provides evidence for the impact of monthly interviews conducted for the Israeli Labor Force Surveys (LFSs) on estimated flows between labor force (LF) statuses and on coefficients in fixed-effects estimations. The study uses the natural experiment of parallel interviews for the quarterly and the monthly LFSs in Israel in 2011 for demonstrating that the Labor Force Participation (LFP) rate of Jewish persons who participated in the monthly LFS increased between interviews, while in the quarterly LFS it decreased. Interestingly, the estimated impact on the LFP rate of self-reporting individuals is 2.6–3.5 percentage points while the impact on the LFP rate of individuals whose data was reported by another member of their household (a proxy), is lower and statistically insignificant. The relative increase of the LFP rate in the monthly survey is a result of a lower rate of exit from the LF and a somewhat higher rate of entry into the LF relative to these flows in the quarterly survey. These differing flows have a bearing on labor search models as the monthly survey portrays a labor market with less friction and a “steady state” LFP rate that is 5.9 percentage points higher than the quarterly survey. The study also demonstrates that monthly interviews affect a specific group (45–64 year-olds); thus the sign of coefficient of age as an explanatory variable in fixed-effects regressions on LFP is negative in the monthly survey and positive in the quarterly survey.Keywords: measurement error, surveys, search, LFSs
Procedia PDF Downloads 27016413 Intensive Use of Software in Teaching and Learning Calculus
Authors: Nodelman V.
Abstract:
Despite serious difficulties in the assimilation of the conceptual system of Calculus, software in the educational process is used only occasionally, and even then, mainly for illustration purposes. The following are a few reasons: The non-trivial nature of the studied material, Lack of skills in working with software, Fear of losing time working with software, The variety of the software itself, the corresponding interface, syntax, and the methods of working with the software, The need to find suitable models, and familiarize yourself with working with them, Incomplete compatibility of the found models with the content and teaching methods of the studied material. This paper proposes an active use of the developed non-commercial software VusuMatica, which allows removing these restrictions through Broad support for the studied mathematical material (and not only Calculus). As a result - no need to select the right software, Emphasizing the unity of mathematics, its intrasubject and interdisciplinary relations, User-friendly interface, Absence of special syntax in defining mathematical objects, Ease of building models of the studied material and manipulating them, Unlimited flexibility of models thanks to the ability to redefine objects, which allows exploring objects characteristics, and considering examples and counterexamples of the concepts under study. The construction of models is based on an original approach to the analysis of the structure of the studied concepts. Thanks to the ease of construction, students are able not only to use ready-made models but also to create them on their own and explore the material studied with their help. The presentation includes examples of using VusuMatica in studying the concepts of limit and continuity of a function, its derivative, and integral.Keywords: counterexamples, limitations and requirements, software, teaching and learning calculus, user-friendly interface and syntax
Procedia PDF Downloads 8116412 Assessment the Tsunamis Impact with Tectonic Sources in the Southern Mainland of the Haitian Republic: Using Two Numerical Models
Authors: Delva Richard, Zahibo Narcisse, Yalciner Ahmet
Abstract:
The Republic of Haiti is one of the poor countries of the world, therefore the authorities must make choices to provide timely solutions to the many difficulties that this Caribbean country is experiencing. There is a very acute lack of scientific research to study natural phenomena in depth. A working group meeting was established under the aegis of the World Bank, UNESCO and the authorities, to study the level of exposure of the Hispaniola. The devastating earthquake of August 2021 killed about 2100 and caused massive material damage; and the 14 12 January 2010 killed more than 250,000 people and caused massive material damage, the evidence of which is still 11 years later. In this paper we want to contribute to the assessment of the risk of tsunami on the southern peninsula of the Republic of Haiti. For the realization of this work we have the bathymetric and topographic data of very good qualities from the private measurement campaigns that we have combined with GEBCO for the inundation grids. We use two numerical models MOST and NAMI DANCE for the calculation of the parameters required in any tsunami risk assessment.Keywords: modélisation numérique, ondes longues océaniques, bathymetrie, evaluation risque, tsunamis
Procedia PDF Downloads 616411 Concrete-Wall-Climbing Testing Robot
Authors: S. Tokuomi, K. Mori, Y. Tsuruzono
Abstract:
A concrete-wall-climbing testing robot, has been developed. This robot adheres and climbs concrete walls using two sets of suction cups, as well as being able to rotate by the use of the alternating motion of the suction cups. The maximum climbing speed is about 60 cm/min. Each suction cup has a pressure sensor, which monitors the adhesion of each suction cup. The impact acoustic method is used in testing concrete walls. This robot has an impact acoustic device and four microphones for the acquisition of the impact sound. The effectiveness of the impact acoustic system was tested by applying it to an inspection of specimens with artificial circular void defects. A circular void defect with a diameter of 200 mm at a depth of 50 mm was able to be detected. The weight and the dimensions of the robot are about 17 kg and 1.0 m by 1.3 m, respectively. The upper limit of testing is about 10 m above the ground due to the length of the power cable.Keywords: concrete wall, nondestructive testing, climbing robot, impact acoustic method
Procedia PDF Downloads 65916410 Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance
Authors: Alberto Sanchidrián, José A. Parra, Jesús Alonso, Julián Pecharromán, Antonia Pacios, Consuelo Huerta
Abstract:
Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary.Keywords: glass plates, human impact test, modal test, plate boundary conditions
Procedia PDF Downloads 30716409 Nanoparticles on Biological Biomarquers Models: Paramecium Tetraurelia and Helix aspersa
Authors: H. Djebar, L. Khene, M. Boucenna, M. R. Djebar, M. N. Khebbeb, M. Djekoun
Abstract:
Currently in toxicology, use of alternative models permits to understand the mechanisms of toxicity at different levels of cells. Objectives of our research concern the determination of NPs ZnO, TiO2, AlO2, and FeO2 effect on ciliate protist freshwater Paramecium sp and Helix aspersa. The result obtained show that NPs increased antioxidative enzyme activity like catalase, glutathione –S-transferase and level GSH. Also, cells treated with high concentrations of NPs showed a high level of MDA. In conclusion, observations from growth and enzymatic parameters suggest on one hand that treatment with NPs provokes an oxidative stress and on the other that snale and paramecium are excellent alternatives models for ecotoxicological studies.Keywords: NPs, GST, catalase, GSH, MDA, toxicity, snale and paramecium
Procedia PDF Downloads 28116408 Integration of Climatic Factors in the Meta-Population Modelling of the Dynamic of Malaria Transmission, Case of Douala and Yaoundé, Two Cities of Cameroon
Authors: Justin-Herve Noubissi, Jean Claude Kamgang, Eric Ramat, Januarius Asongu, Christophe Cambier
Abstract:
The goal of our study is to analyse the impact of climatic factors in malaria transmission taking into account migration between Douala and Yaoundé, two cities of Cameroon country. We show how variations of climatic factors such as temperature and relative humidity affect the malaria spread. We propose a meta-population model of the dynamic transmission of malaria that evolves in space and time and that takes into account temperature and relative humidity and the migration between Douala and Yaoundé. We also integrate the variation of environmental factors as events also called mathematical impulsion that can disrupt the model evolution at any time. Our modelling has been done using the Discrete EVents System Specification (DEVS) formalism. Our implementation has been done on Virtual Laboratory Environment (VLE) that uses DEVS formalism and abstract simulators for coupling models by integrating the concept of DEVS.Keywords: compartmental models, DEVS, discrete events, meta-population model, VLE
Procedia PDF Downloads 55416407 Social Media Marketing Efforts and Hospital Brand Equity: An Empirical Investigation
Authors: Abrar R. Al-Hasan
Abstract:
Despite the widespread use of social media by consumers and marketers, empirical research investigating their economic value in the healthcare industry still lags. This study explores the impact of the use of social media marketing efforts on a hospital's brand equity and, ultimately, consumer response. Using social media data from Twitter and Facebook, along with an online and offline survey methodology, data is analyzed using logistic regression models. A random sample of (728) residents of the Kuwaiti population is used. The results of this study found that social media marketing efforts (SMME) in terms of use and validation lead to higher hospital brand equity and in turn, patient loyalty and patient visit. The study highlights the impact of SMME on hospital brand equity and patient response. Healthcare organizations should guide their marketing efforts to better manage this new way of marketing and communicating with patients to enhance their consumer loyalty and financial performance.Keywords: brand equity, healthcare marketing, patient visit, social media, SMME
Procedia PDF Downloads 17316406 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading
Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed
Abstract:
Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum
Procedia PDF Downloads 38816405 Impact of Displacements Durations and Monetary Costs on the Labour Market within a City Consisting on Four Areas a Theoretical Approach
Authors: Aboulkacem El Mehdi
Abstract:
We develop a theoretical model at the crossroads of labour and urban economics, used for explaining the mechanism through which the duration of home-workplace trips and their monetary costs impact the labour demand and supply in a spatially scattered labour market and how they are impacted by a change in passenger transport infrastructures and services. The spatial disconnection between home and job opportunities is referred to as the spatial mismatch hypothesis (SMH). Its harmful impact on employment has been subject to numerous theoretical propositions. However, all the theoretical models proposed so far are patterned around the American context, which is particular as it is marked by racial discrimination against blacks in the housing and the labour markets. Therefore, it is only natural that most of these models are developed in order to reproduce a steady state characterized by agents carrying out their economic activities in a mono-centric city in which most unskilled jobs being created in the suburbs, far from the Blacks who dwell in the city-centre, generating a high unemployment rates for blacks, while the White population resides in the suburbs and has a low unemployment rate. Our model doesn't rely on any racial discrimination and doesn't aim at reproducing a steady state in which these stylized facts are replicated; it takes the main principle of the SMH -the spatial disconnection between homes and workplaces- as a starting point. One of the innovative aspects of the model consists in dealing with a SMH related issue at an aggregate level. We link the parameters of the passengers transport system to employment in the whole area of a city. We consider here a city that consists of four areas: two of them are residential areas with unemployed workers, the other two host firms looking for labour force. The workers compare the indirect utility of working in each area with the utility of unemployment and choose between submitting an application for the job that generate the highest indirect utility or not submitting. This arbitration takes account of the monetary and the time expenditures generated by the trips between the residency areas and the working areas. Each of these expenditures is clearly and explicitly formulated so that the impact of each of them can be studied separately than the impact of the other. The first findings show that the unemployed workers living in an area benefiting from good transport infrastructures and services have a better chance to prefer activity to unemployment and are more likely to supply a higher 'quantity' of labour than those who live in an area where the transport infrastructures and services are poorer. We also show that the firms located in the most accessible area receive much more applications and are more likely to hire the workers who provide the highest quantity of labour than the firms located in the less accessible area. Currently, we are working on the matching process between firms and job seekers and on how the equilibrium between the labour demand and supply occurs.Keywords: labour market, passenger transport infrastructure, spatial mismatch hypothesis, urban economics
Procedia PDF Downloads 29216404 A Large Language Model-Driven Method for Automated Building Energy Model Generation
Authors: Yake Zhang, Peng Xu
Abstract:
The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.Keywords: artificial intelligence, building energy modelling, building simulation, large language model
Procedia PDF Downloads 2516403 A Novel Algorithm for Parsing IFC Models
Authors: Raninder Kaur Dhillon, Mayur Jethwa, Hardeep Singh Rai
Abstract:
Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD). Procedia PDF Downloads 30016402 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 26816401 Preliminary Conceptions of 3D Prototyping Model to Experimental Investigation in Hypersonic Shock Tunnels
Authors: Thiago Victor Cordeiro Marcos, Joao Felipe de Araujo Martos, Ronaldo de Lima Cardoso, David Romanelli Pinto, Paulo Gilberto de Paula Toro, Israel da Silveira Rego, Antonio Carlos de Oliveira
Abstract:
Currently, the use of 3D rapid prototyping, also known as 3D printing, has been investigated by some universities around the world as an innovative technique, fast, flexible and cheap for a direct plastic models manufacturing that are lighter and with complex geometries to be tested for hypersonic shock tunnel. Initially, the purpose is integrated prototyped parts with metal models that actually are manufactured through of the conventional machining and hereafter replace them with completely prototyped models. The mechanical design models to be tested in hypersonic shock tunnel are based on conventional manufacturing processes, therefore are limited forms and standard geometries. The use of 3D rapid prototyping offers a range of options that enables geometries innovation and ways to be used for the design new models. The conception and project of a prototyped model for hypersonic shock tunnel should be rethought and adapted when comparing the conventional manufacturing processes, in order to fully exploit the creativity and flexibility that are allowed by the 3D prototyping process. The objective of this paper is to compare the conception and project of a 3D rapid prototyping model and a conventional machining model, while showing the advantages and disadvantages of each process and the benefits that 3D prototyping can bring to the manufacture of models to be tested in hypersonic shock tunnel.Keywords: 3D printing, 3D prototyping, experimental research, hypersonic shock tunnel
Procedia PDF Downloads 46916400 Comparison of Low Velocity Impact Test on Coir Fiber Reinforced Polyester Composites
Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez
Abstract:
The most common controlled method to obtain impact strength of composites materials is performing a Charpy Impact Test which consists of a pendulum with calibrated mass and length released from a known height. In fact, composites components experience impact events in normal operations such as when a tool drops or a foreign object strikes it. These events are categorized into low velocity impact (LVI) which typically occurs at velocities below 10m/s. In this study, the major aim was to calculate the absorbed energy during the impact. Tests were performed on three types of composite panels: fiberglass laminated panels, coir fiber reinforced polyester and coir fiber reinforced polyester subjected to water immersion for 48 hours. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. They were alkali treated in 5% aqueous NaOH solution for 2h periods. Three type of shape impactors were used on drop-weight impact test including hemispherical, ogive and pointed. Failure mechanisms and failure modes of specimens were examined using an optical microscope. Results demonstrate a reduction in absorbed energy correlated with the increment of water absorption of the panels. For each level of absorbed energy, it was possible to associate a different fracture state. This study compares results of energy absorbed obtained from two impact test methods.Keywords: coir fiber, polyester composites, low velocity impact, Charpy impact test, drop-weight impact test
Procedia PDF Downloads 452