Search results for: hydrocarbon solutions
3800 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil
Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang
Abstract:
Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.Keywords: catabolic gene, diesel, diversity, edaphic algae
Procedia PDF Downloads 2803799 Assessing Local Authorities’ Interest in Addressing Urban Challenges through Nature Based Solutions in Romania
Authors: Athanasios A. Gavrilidis, Mihai R. Nita, Larissa N. Stoia, Diana A. Onose
Abstract:
Contemporary global environmental challenges must be primarily addressed at local levels. Cities are under continuous pressure as they must ensure high quality of life levels for their citizens and at the same time to adapt and address specific environmental issues. Innovative solutions using natural features or mimicking natural systems are endorsed by the scientific community as efficient approaches for both mitigating climate change effects and the decrease of environmental quality and for maintaining high standards of living for urban dwellers. The aim of this study was to assess whether Romanian cities’ authorities are considering nature-based innovation as solutions for their planning, management, and environmental issues. Data were gathered by applying 140 questionnaires to urban authorities throughout the country. The questionnaire was designed for assessinglocal policy makers’ perspective over the efficiency of nature-based innovations as a tool to address specific challenges. It also focused on extracting data about financing sources and challenges they must overcome for adopting nature-based approaches. The gather results from the municipalities participating in our study were statistically processed, and they revealed that Romanian city managers acknowledge the benefits of nature-based innovations, but investments in this sector are not on top of their priorities. More than 90% of the selected cities have agreed that in the last 10 years, their major concern was to expand the grey infrastructure (roads and public amenities) using traditional approaches. When asked how they would react if faced with different socio-economic and environmental challenges, local urban managers indicated investments nature-based solutions as a priority only in case of biodiversity loss and extreme weather, while for other 14 proposed scenarios, they would embrace the business-as-usual approach. Our study indicates that while new concepts of sustainable urban planning emerge within the scientific community, local authorities need more time to understand and implement them. Without the proper knowledge, personnel, policies, or dedicated budgets, local administrators will not embrace nature-based innovations as solutions for their challenges.Keywords: nature based innovations, perception analysis, policy making, urban planning
Procedia PDF Downloads 1743798 Hydrometallurgical Treatment of Smelted Low-Grade WEEE
Authors: Ewa Rudnik
Abstract:
Poster shows a comparison of hydrometallurgical routes of copper recovery from low-grade e-waste. Electronic scrap was smelted to produce Cu–Zn–Ag alloy. The alloy was then treated in the following ways: (a) anodic dissolution with simultaneous metal electrodeposition using ammoniacal and sulfuric acid solutions. This resulted in the separation of metals, where lead, silver and tin accumulated mainly in the slimes, while copper was transferred to the electrolyte and then recovered on the cathode. The best conditions of the alloy treatment were obtained in the sulfuric acid, where the final product was metal of high purity (99% Cu) at the current efficiency of 90%. (b) leaching in ammoniacal solutions of various compositions and then copper electrowinning. Alloy was leached in chloride, carbonate, sulfate and thiosulfate baths. This resulted in the separation of the metals, wherein copper and zinc were transferred to the electrolyte, while metallic tin and silver as well as lead salts remained in the slimes. Copper was selectively recovered from the ammoniacal solutions by the electrolysis, leaving zinc ions in the electrolyte. The best conditions of the alloy treatment were obtained in the ammonia-carbonate system, where the final product was copper of high purity (99.9%) at the current efficiency of 60%. Thiosulfate solution was not applicable for the leaching of the copper alloy due to secondary reactions of the formation of copper (I) thiosulfate complexes and precipitation of copper (I) sulfide.Keywords: alloy, electrolysis, e-waste, leaching
Procedia PDF Downloads 3713797 Improving Lone Worker Safety In Latin America
Authors: Ernesto Ghini
Abstract:
Workplace accidents are an unfortunate reality. However, they are also predictable and avoidable. We conducted research into a variety of legislation covering lone working, and conducted a study into the use of connected technology and how it can help improve the safety of lone workers in Latin America. We implemented quantitative research into regulations coupled with case study research into a real-life scenario that demonstrated the benefits of technology, and discuss our findings in this paper. Connected safety solutions can improve the bottom line, delivering significant return on investment in terms of improved efficiency and the avoidance of cost associated with worker injury. And, most importantly, such solutions, as demonstrated through our research, make the difference between life and death in time-critical incident situations.Keywords: ione worker, legislation, technology, connected safety, connectivity
Procedia PDF Downloads 913796 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment
Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek
Abstract:
The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarisation
Procedia PDF Downloads 3903795 Development of Ferric Citrate Complex Draw Solute and Its Application for Liquid Product Enrichment through Forward Osmosis
Abstract:
Forward osmosis is an emerging technology for separation and has great potential in the concentration of liquid products such as protein, pharmaceutical, and natural products. In pharmacy industry, one of the very tough talks is to concentrate the product in a gentle way since some of the key components may lose bioactivity when exposed to heating or pressurization. Therefore, forward osmosis (FO), which uses inherently existed osmosis pressure instead of externally applied hydraulic pressure, is attractive for pharmaceutical enrichments in a much efficient and energy-saving way. Recently, coordination complexes have been explored as the new class of draw solutes in FO processes due to their bulky configuration and excellent performance in terms of high water flux and low reverse solute flux. Among these coordination complexes, ferric citrate complex with lots of hydrophilic groups and ionic species which make them good solubility and high osmotic pressure in aqueous solution, as well as its low toxicity, has received much attention. However, the chemistry of ferric complexation by citrate is complicated, and disagreement prevails in the literature, especially for the structure of the ferric citrate. In this study, we investigated the chemical reaction with various molar ratio of iron and citrate. It was observed that the ferric citrate complex (Fe-CA2) with molar ratio of 1:1 for iron and citrate formed at the beginning of the reaction, then Fecit would convert to ferric citrate complex at the molar ratio of 1:2 with the proper excess of citrate in the base solution. The structures of the ferric citrate complexes synthesized were systematically characterized by X-ray diffraction (XRD), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetric analysis (TGA). Fe-CA2 solutions exhibit osmotic pressures more than twice of that for NaCl solutions at the same concentrations. Higher osmotic pressure means higher driving force, and this is preferable for the FO process. Fe-CA2 and NaCl draw solutions were prepared with the same osmotic pressure and used in FO process for BSA protein concentration. Within 180 min, BSA concentration was enriched from 0.2 to 0.27 L using Fe-CA draw solutions. However, it was only increased from 0.20 to 0.22 g/L using NaCl draw solutions. A reverse flux of 11 g/m²h was observed for NaCl draw solutes while it was only 0.1 g/m²h for Fe-CA2 draw solutes. It is safe to conclude that Fe-CA2 is much better than NaCl as draw solute and it is suitable for the enrichment of liquid product.Keywords: draw solutes, ferric citrate complex, forward osmosis, protein enrichment
Procedia PDF Downloads 1533794 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity
Authors: M. O. Durojaye, J. T. Agee
Abstract:
This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines
Procedia PDF Downloads 3223793 The Impact of Intelligent Control Systems on Biomedical Engineering and Research
Authors: Melkamu Tadesse Getachew
Abstract:
Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling
Procedia PDF Downloads 443792 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry
Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke
Abstract:
There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction
Procedia PDF Downloads 1703791 Measuring Energy Efficiency Performance of Mena Countries
Authors: Azam Mohammadbagheri, Bahram Fathi
Abstract:
DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model
Procedia PDF Downloads 6873790 Difficulty and Complexity in Dealing with Visual Pollution in the Historical Cities: The Historical City of Ibb-Yemen as a Case Study
Authors: Abdulfattah A. Q .Alwah, Wen Li, Mohammed A. Q. Alwah, Duc Thien Tran, Bing Xi Liu
Abstract:
The historical cities in the third world suffer from many environmental problems; one of them is the spread of visual pollution manifestations. These phenomena increase with low levels of public awareness and low per capita income. The historical city of Ibb is suffering from a variety of visual pollution of the urban environment, so it has been chosen as a case study. This study aims to identify the difficulty and complexity of dealing with visual pollutions manifestations in the historical city of Ibb, and to provide appropriate solutions, which suit with the complex and contradictory circumstances. The study relies on an inductive approach to achieve its aims through two methods; the first is a visual survey of the visual pollution phenomenon based on images and researcher notes. The Second method is the analyses of the opinions and impressions of the city's residents and visitors through interviews, in addition to interviews with the officials in the competent authorities, and some specialists in the field of urban environment. Through the results of the field study and discussion of the interview results, this study presents an analysis of the phenomenon of visual distortion of the historical city of Ibb regarding the appearances and the reasons. Furthermore, this study provides appropriate solutions, which suitable with the complex and contradictory circumstances. These solutions take two paths: the first one is to stop the spread of visual distortions, and the second path is to address the current visual pollutions.Keywords: visual pollution, visual image, urban environment, difficulty, complexity, historical cities, the historical city of Ibb
Procedia PDF Downloads 1453789 Use Cases Analysis of Free Space Optical Communication System
Authors: Kassem Saab, Fritzen Bart, Yves-Marie Seveque
Abstract:
The deployment of Free Space Optical Communications (FSOC) systems requires the development of robust and reliable Optical Ground Stations (OGS) that can be easily installed and operated. To this end, the Engineering Department of Airbus Defence and Space is actively working on the development of innovative and compact OGS solutions that can be deployed in various environments and provide high-quality connectivity under different atmospheric conditions. This article presents an overview of our recent developments in this field, including an evaluation study of different use cases of the FSOC with respect to different atmospheric conditions. The goal is to provide OGS solutions that are both simple and highly effective, allowing for the deployment of high-speed communication networks in a wide range of scenarios.Keywords: end to end optical communication, laser propagation, optical ground station, turbulence
Procedia PDF Downloads 943788 Comprehensive Microstructural and Thermal Analysis of Nano Intumescent Fire Retardant Coating for Structural Applications
Authors: Hammad Aziz
Abstract:
Intumescent fire retardant coating (IFRC) is applied on the surface of material requiring fire protection. In this research work, IFRC’s were developed using ammonium polyphosphate, expandable graphite, melamine, boric acid, zinc borate, mica, magnesium oxide, and bisphenol A BE-188 with polyamide polyamine H-4014 as curing agent. Formulations were prepared using nano size MgO and compared with control formulation i.e. without nano size MgO. Small scale hydrocarbon fire test was conducted to scrutinize the thermal performance of the coating. Char and coating were further characterized by using FESEM, FTIR, EDS, TGA and DTGA. Thus, Intumescent coatings reinforced with 2 wt. % of nano-MgO (rod shaped particles) provide superior thermal performance and uniform microstructure of char due to well dispersion of nano particles.Keywords: intumescent coating, char, SEM, TGA
Procedia PDF Downloads 4363787 Measurement and Prediction of Speed of Sound in Petroleum Fluids
Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma
Abstract:
Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.Keywords: experimental design, octane, speed of sound, toluene
Procedia PDF Downloads 2733786 Removal of Tartrazine Dye Form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite
Authors: Salem Ali Jebreil
Abstract:
In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.Keywords: adsorption, composite, dye, polyaniline, tartrazine
Procedia PDF Downloads 2873785 Review on Optimization of Drinking Water Treatment Process
Authors: M. Farhaoui, M. Derraz
Abstract:
In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and, in consequence, optimize the of the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes).Keywords: coagulation process, optimization, turbidity removal, water treatment
Procedia PDF Downloads 4223784 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations
Authors: Fuziyah Ishak, Siti Norazura Ahmad
Abstract:
Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.Keywords: accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations
Procedia PDF Downloads 4233783 Combining the Fictitious Stress Method and Displacement Discontinuity Method in Solving Crack Problems in Anisotropic Material
Authors: Bahatti̇n Ki̇mençe, Uğur Ki̇mençe
Abstract:
In this study, the purpose of obtaining the influence functions of the displacement discontinuity in an anisotropic elastic medium is to produce the boundary element equations. A Displacement Discontinuous Method formulation (DDM) is presented with the aim of modeling two-dimensional elastic fracture problems. This formulation is found by analytical integration of the fundamental solution along a straight-line crack. With this purpose, Kelvin's fundamental solutions for anisotropic media on an infinite plane are used to form dipoles from singular loads, and the various combinations of the said dipoles are used to obtain the influence functions of displacement discontinuity. This study introduces a technique for coupling Fictitious Stress Method (FSM) and DDM; the reason for applying this technique to some examples is to demonstrate the effectiveness of the proposed coupling method. In this study, displacement discontinuity equations are obtained by using dipole solutions calculated with known singular force solutions in an anisotropic medium. The displacement discontinuities method obtained from the solutions of these equations and the fictitious stress methods is combined and compared with various examples. In this study, one or more crack problems with various geometries in rectangular plates in finite and infinite regions, under the effect of tensile stress with coupled FSM and DDM in the anisotropic environment, were examined, and the effectiveness of the coupled method was demonstrated. Since crack problems can be modeled more easily with DDM, it has been observed that the use of DDM has increased recently. In obtaining the displacement discontinuity equations, Papkovitch functions were used in Crouch, and harmonic functions were chosen to satisfy various boundary conditions. A comparison is made between two indirect boundary element formulations, DDM, and an extension of FSM, for solving problems involving cracks. Several numerical examples are presented, and the outcomes are contrasted to existing analytical or reference outs.Keywords: displacement discontinuity method, fictitious stress method, crack problems, anisotropic material
Procedia PDF Downloads 753782 Two-stage Robust Optimization for Collaborative Distribution Network Design Under Uncertainty
Authors: Reza Alikhani
Abstract:
This research focuses on the establishment of horizontal cooperation among companies to enhance their operational efficiency and competitiveness. The study proposes an approach to horizontal collaboration, called coalition configuration, which involves partnering companies sharing distribution centers in a network design problem. The paper investigates which coalition should be formed in each distribution center to minimize the total cost of the network. Moreover, potential uncertainties, such as operational and disruption risks, are considered during the collaborative design phase. To address this problem, a two-stage robust optimization model for collaborative distribution network design under surging demand and facility disruptions is presented, along with a column-and-constraint generation algorithm to obtain exact solutions tailored to the proposed formulation. Extensive numerical experiments are conducted to analyze solutions obtained by the model in various scenarios, including decisions ranging from fully centralized to fully decentralized settings, collaborative versus non-collaborative approaches, and different amounts of uncertainty budgets. The results show that the coalition formation mechanism proposes some solutions that are competitive with the savings of the grand coalition. The research also highlights that collaboration increases network flexibility and resilience while reducing costs associated with demand and capacity uncertainties.Keywords: logistics, warehouse sharing, robust facility location, collaboration for resilience
Procedia PDF Downloads 693781 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration
Authors: P. Barreto, A. Guevara, V. Ibujes
Abstract:
In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions
Procedia PDF Downloads 1233780 The Effect of Solution pH of Chitosan on Antimicrobial Properties of Nylon 6,6 Fabrics
Authors: Nilüfer Yıldız Varan
Abstract:
The antimicrobial activities of chitosan against various bacteria and fungi are well known, and the antimicrobial activity of chitosan depends on pH. This study investigates the antimicrobial activity at different pH levels. Nylon 6,6 fabrics were treated with different chitosan solutions. Additionally, samples were treated also in basic conditions to see the antimicrobial activities. AATCC Test Method 100 was followed to evaluate the antimicrobial activity using Staphylococcus aureus ATCC 6538 test inoculum. The pH of the chitosan solutions was controlled below 6.5 since chitosan shows its antimicrobial activity only in acidic conditions because of its poor solubility above 6.5. In basic conditions, the samples did not show any antimicrobial activity. It appears from SEM images that the bonded chitosan in the structures exists. In acidic media (ph < 6.5), all samples showed antimicrobial activity. No correlation was found between pH levels and antimicrobial activity in acidic media.Keywords: chitosan, nylon 6, 6, crosslinking, pH stability, antimicrobial
Procedia PDF Downloads 2193779 From Binary Solutions to Real Bio-Oils: A Multi-Step Extraction Story of Phenolic Compounds with Ionic Liquid
Authors: L. Cesari, L. Canabady-Rochelle, F. Mutelet
Abstract:
The thermal conversion of lignin produces bio-oils that contain many compounds with high added-value such as phenolic compounds. In order to efficiently extract these compounds, the possible use of choline bis(trifluoromethylsulfonyl)imide [Choline][NTf2] ionic liquid was explored. To this end, a multistep approach was implemented. First, binary (phenolic compound and solvent) and ternary (phenolic compound and solvent and ionic liquid) solutions were investigated. Eight binary systems of phenolic compound and water were investigated at atmospheric pressure. These systems were quantified using the turbidity method and UV-spectroscopy. Ternary systems (phenolic compound and water and [Choline][NTf2]) were investigated at room temperature and atmospheric pressure. After stirring, the solutions were let to settle down, and a sample of each phase was collected. The analysis of the phases was performed using gas chromatography with an internal standard. These results were used to quantify the values of the interaction parameters of thermodynamic models. Then, extractions were performed on synthetic solutions to determine the influence of several operating conditions (temperature, kinetics, amount of [Choline][NTf2]). With this knowledge, it has been possible to design and simulate an extraction process composed of one extraction column and one flash. Finally, the extraction efficiency of [Choline][NTf2] was quantified with real bio-oils from lignin pyrolysis. Qualitative and quantitative analysis were performed using gas chromatographic connected to mass spectroscopy and flame ionization detector. The experimental measurements show that the extraction of phenolic compounds is efficient at room temperature, quick and does not require a high amount of [Choline][NTf2]. Moreover, the simulations of the extraction process demonstrate that [Choline][NTf2] process requires less energy than an organic one. Finally, the efficiency of [Choline][NTf2] was confirmed in real situations with the experiments on lignin pyrolysis bio-oils.Keywords: bio-oils, extraction, lignin, phenolic compounds
Procedia PDF Downloads 1103778 A Review of Sustainable Energy-Saving Solutions in Active and Passive Solar Systems of Zero Energy Buildings Based on the Internet of Things
Authors: Hanieh Sadat Jannesari, Hoori Jannesar, Alireza Hajian HosseinAbadi
Abstract:
In general, buildings are responsible for a considerable share of consumed energy and carbon emissions worldwide and play a significant role in formulating sustainable development strategies. Therefore, a lot of effort is put into the design and construction of zero-energy buildings (ZEBs) to help eliminate the problems associated with the reduction of energy resources and environmental degradation. Two strategies are significant in designing ZEBs: minimizing the need for energy utilization in buildings (particularly for cooling and heating) through highly energy-efficient designs and using renewable energies and other technologies to meet the remaining energy needs. This paper reviews the works related to these two strategies concerning sustainable energy-saving solutions using renewable energy technologies and the Internet of Things in ZEBs. Drawing on the theories and recently implemented projects of energy engineers in ZEBs, we have reported the required technologies within the framework of this paper’s objectives. Overall, solutions based on renewable and sustainable technologies such as photovoltaic (PV) modules, thermal collectors, Phase Change Material (PCM) techniques, etc., are used in active and passive systems designed for various applications in such buildings as cooling, heating, lighting, cooking, etc. The results obtained from examining these projects show that it is possible to minimize the amount of energy required to be produced for and consumed by these buildings.Keywords: active and passive renewable energy systems, internet of things, storage, zero energy buildings
Procedia PDF Downloads 293777 Management of Al-Khaldiyah Road (Al Khobar) in Order to Optimize Safety and Improve Sight View
Authors: Amer Alsari, Hassan Alhalal, Tahar Ayadat, Andi Asiz, Omar KM Ouda
Abstract:
Al Khaldiyah is a regional road situated in west-south of Al Khobar, precisely in the area of Half Moon Bay. It is characterized by four lines, which become six lines in some places, in both directions extending over about 10 km length. The road extends between the bridge near the Air Force Base and Half Moon Bay Road. Many accidents have been observed in this road notably over the last two years. Many injuries and deaths were recorded, some of the victims were PMU students. Consequently, management of the road to eliminate or reduce accidents to a large extend becomes imperative. The main goal of this project are to propose sustainable solutions for the purpose optimizing safety and improving its sight view by designing some appropriate junctions including bridge and tunnel in the critical locations.Keywords: management, road, accident, traffic, safety, sustainable, solutions
Procedia PDF Downloads 4493776 Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine
Authors: Hasan Aydogan
Abstract:
The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another.Keywords: bioethanol, biodiesel, safflower, combustion characteristics
Procedia PDF Downloads 5243775 Smart Development Proposals for an Indian Village
Authors: J. E. M. Macwan, D. A. Pastagia, Reeta Meena
Abstract:
Government of Gujarat (India) wishes to create smart villages to improve the quality of life. The significance of these efforts will result into higher rural productivity. The main aim of this research is to identify, design and propose implementable planning solutions suited for an Indian village set up. The methodology adopted is to create a database by conducting onsite study as well as gathering public opinion to help researchers to satisfy rural needs. The outcome of this research exercise is a planning design preparation and channelizing funds in right direction for a result oriented better village shape. The proposals are accepted after slight modifications by the stakeholders. Planning solutions were designed through public participatory approach. To control rural Urban migration, villagers were offered better quality of life.Keywords: smart village, digitization, development plan, gram panchayats
Procedia PDF Downloads 1313774 From Patient Satisfaction to Dental Service Reutilization: Innovative Solutions for Improving Dental Care Services
Authors: Seyed Kian Haji Seyed Javadi, Aisan Nouri
Abstract:
Patient satisfaction in dental care is shaped by experiences throughout the treatment journey. Challenges such as fear, lack of trust and poor communication can impact patient contentment and willingness to seek dental care. This narrative review explores these issues and presents innovative solutions to address them by searching PubMed and Scopus data sources. It examines factors affecting patient satisfaction and adherence across three phases—before, during and after treatment—emphasizing the roles of effective communication, payment and follow-up systems, appointment scheduling, welcoming reception and the treatment environment. The factors discussed in this study motivate patients to return for routine check-ups and preventive care, even if their initial visit was for an emergency.Keywords: patient satisfaction, dentistry, dental access, dental care services
Procedia PDF Downloads 193773 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 1613772 Perovskite-Type La1−xCaxAlO3 (x=0, 0.2, 0.4, 0.6) as Active Anode Materials for Methanol Oxidation in Alkaline Solutions
Authors: M. Diafi, M. Omari, B. Gasmi
Abstract:
Perovskite-type La1−xCaxAlO3 were synthesized at 1000◦C by a co- precipitation method. The synthesized oxide powders were characterized by X-ray diffraction (XRD) and the oxide powders were produced in the form of films on pretreated Ni-supports by an oxide-slurry painting technique their electrocatalytic activities towards methanol oxidation in alkaline solutions at 25°C using cyclic voltammetry, chronoamperometry, and anodic Tafel polarization techniques. The oxide catalysts followed the rhombohedral hexagonal crystal geometry. The rate of electro-oxidation of methanol was found to increase with increasing substitution of La by Ca in the oxide matrix. The reaction indicated a Tafel slope of ~2.303RT/F, The electrochemical apparent activation energy (〖∆H〗_el^(°#)) was observed to decrease on increasing Ca content. The results point out the optimum electrode activity and stability of the Ca is x=0.6 of composition.Keywords: electrocatalysis, oxygen evolution, perovskite-type La1−x Cax AlO3, methanol oxidation
Procedia PDF Downloads 4383771 Improving Water and Sanitation Systems in Rural Ethiopia
Authors: Betselot Girma Argaw
Abstract:
The health of people living in rural areas of Ethiopia depends a lot on how good their water and sanitation systems are. Even though there have been efforts to improve these systems, many communities still struggle to get clean water and proper sanitation, which leads to many health problems and unfair conditions. This research looks into the current situation of water and sanitation in rural Ethiopia, focusing on the main challenges that stop these communities from having safe and lasting solutions. By studying current practices, policies, and infrastructure, this paper highlights the areas that need urgent attention. It also reviews successful examples and suggests recommendations that fit the local context. The goal is to offer practical ideas that can help create better strategies to improve the lives of millions of rural Ethiopians, aiming for lasting improvements in water and sanitation in these vulnerable areas.Keywords: rural Ethiopia water, sanitation infrastructure, sustainable solutions, water accessibility
Procedia PDF Downloads 25