Search results for: human behaviors of learning and cooperation
16228 Balancing Independence and Guidance: Cultivating Student Agency in Blended Learning
Authors: Yeo Leng Leng
Abstract:
Blended learning, with its combination of online and face-to-face instruction, presents a unique set of challenges and opportunities in terms of cultivating student agency. While it offers flexibility and personalized learning pathways, it also demands a higher degree of self-regulation and motivation from students. This paper presents the design of blended learning in a Chinese lesson and discusses the framework involved. It also talks about the Edtech tools adopted to engage the students. Some of the students’ works will be showcased. A qualitative case study research method was employed in this paper to find out more about students’ learning experiences and to give them a voice. The purpose is to seek improvement in the blended learning design of the Chinese lessons and to encourage students’ self-directed learning.Keywords: blended learning, student agency, ed-tech tools, self-directed learning
Procedia PDF Downloads 7816227 Estimating Poverty Levels from Satellite Imagery: A Comparison of Human Readers and an Artificial Intelligence Model
Authors: Ola Hall, Ibrahim Wahab, Thorsteinn Rognvaldsson, Mattias Ohlsson
Abstract:
The subfield of poverty and welfare estimation that applies machine learning tools and methods on satellite imagery is a nascent but rapidly growing one. This is in part driven by the sustainable development goal, whose overarching principle is that no region is left behind. Among other things, this requires that welfare levels can be accurately and rapidly estimated at different spatial scales and resolutions. Conventional tools of household surveys and interviews do not suffice in this regard. While they are useful for gaining a longitudinal understanding of the welfare levels of populations, they do not offer adequate spatial coverage for the accuracy that is needed, nor are their implementation sufficiently swift to gain an accurate insight into people and places. It is this void that satellite imagery fills. Previously, this was near-impossible to implement due to the sheer volume of data that needed processing. Recent advances in machine learning, especially the deep learning subtype, such as deep neural networks, have made this a rapidly growing area of scholarship. Despite their unprecedented levels of performance, such models lack transparency and explainability and thus have seen limited downstream applications as humans generally are apprehensive of techniques that are not inherently interpretable and trustworthy. While several studies have demonstrated the superhuman performance of AI models, none has directly compared the performance of such models and human readers in the domain of poverty studies. In the present study, we directly compare the performance of human readers and a DL model using different resolutions of satellite imagery to estimate the welfare levels of demographic and health survey clusters in Tanzania, using the wealth quintile ratings from the same survey as the ground truth data. The cluster-level imagery covers all 608 cluster locations, of which 428 were classified as rural. The imagery for the human readers was sourced from the Google Maps Platform at an ultra-high resolution of 0.6m per pixel at zoom level 18, while that of the machine learning model was sourced from the comparatively lower resolution Sentinel-2 10m per pixel data for the same cluster locations. Rank correlation coefficients of between 0.31 and 0.32 achieved by the human readers were much lower when compared to those attained by the machine learning model – 0.69-0.79. This superhuman performance by the model is even more significant given that it was trained on the relatively lower 10-meter resolution satellite data while the human readers estimated welfare levels from the higher 0.6m spatial resolution data from which key markers of poverty and slums – roofing and road quality – are discernible. It is important to note, however, that the human readers did not receive any training before ratings, and had this been done, their performance might have improved. The stellar performance of the model also comes with the inevitable shortfall relating to limited transparency and explainability. The findings have significant implications for attaining the objective of the current frontier of deep learning models in this domain of scholarship – eXplainable Artificial Intelligence through a collaborative rather than a comparative framework.Keywords: poverty prediction, satellite imagery, human readers, machine learning, Tanzania
Procedia PDF Downloads 10416226 Existing International Cooperation Mechanisms and Proposals to Enhance Their Effectiveness for Marine-Based Geoengineering Governance
Authors: Aylin Mohammadalipour Tofighi
Abstract:
Marine-based geoengineering methods, proposed to mitigate climate change, operate primarily through two mechanisms: reducing atmospheric carbon dioxide levels and diminishing solar absorption by the oceans. While these approaches promise beneficial outcomes, they are fraught with environmental, legal, ethical, and political challenges, necessitating robust international governance. This paper underscores the critical role of international cooperation within the governance framework, offering a focused analysis of existing international environmental mechanisms applicable to marine-based geoengineering governance. It evaluates the efficacy and limitations of current international legal structures, including treaties and organizations, in managing marine-based geoengineering, noting significant gaps such as the absence of specific regulations, dedicated international entities, and explicit governance mechanisms such as monitoring. To rectify these problems, the paper advocates for concrete steps to bolster international cooperation. These include the formulation of dedicated marine-based geoengineering guidelines within international agreements, the establishment of specialized supervisory entities, and the promotion of transparent, global consensus-building. These recommendations aim to foster governance that is environmentally sustainable, ethically sound, and politically feasible, thereby enhancing knowledge exchange, spurring innovation, and advancing the development of marine-based geoengineering approaches. This study emphasizes the importance of collaborative approaches in managing the complexities of marine-based geoengineering, contributing significantly to the discourse on international environmental governance in the face of rapid climate and technological changes.Keywords: climate change, environmental law, international cooperation, international governance, international law, marine-based geoengineering, marine law, regulatory frameworks
Procedia PDF Downloads 7216225 Analysis of Facial Expressions with Amazon Rekognition
Authors: Kashika P. H.
Abstract:
The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection
Procedia PDF Downloads 10416224 Humans, Social Robots, and Mutual Love: An Application of Aristotle’s Nicomachean Ethics
Authors: Ruby Jean Hornsby
Abstract:
In our rapidly advancing techno-moral world, human-robot relationships are increasingly becoming a part of intimate human life. Indeed, social robots - that is, autonomous or semi-autonomous embodied artificial agents that generally possess human or animal-like qualities (such as responding to environmental stimuli, communicating, learning, performing human tasks, and making autonomous decisions) - have been designed to function as human friends. In light of such advances, immediate philosophical scrutiny is imperative in order to examine the extent to which human-robot interactions constitute genuine friendship and therefore contribute towards the good human life. Aristotle's conception of friendship is philosophically illuminating and sufficiently broad in scope to guide such analysis. On his account, it is necessary (though not sufficient) that for a friendship to exist between two agents - A and B - both agents must have a mutual love for one another. Aristotle claims that A loves B if: Condition 1: A desires those apparent good (qua pleasant, useful, or virtuous) properties attributable to B, and Condition 2: A has goodwill (wishes what is best) for B. This paper argues that human-robot interaction can (and does) successfully meet both conditions; as such, it demonstrates that robots and humans can reciprocally love one another. It will argue for this position by first justifying the claim that a human can desire apparent good features attributable to a robot (i.e., by taking them to be pleasant and/or useful) and outlining how it is that a human can wish a robot well in light of that robot's (quasi-) interests. Next, the paper will argue that a robot can (quasi-)desire certain properties that are attributable to a human before elucidating how it is possible for a robot to act in the interests of a human. Accordingly, this paper will conclude that it is already the case that humans can formulate relationships with robots that involve reciprocated love. This is significant because it suggests that social robots are candidates for human friendship and can therefore contribute toward flourishing human futures.Keywords: ancient philosophy, friendship, inter-disciplinary applied ethics, love, social robotics
Procedia PDF Downloads 10116223 Human Rights Abuse in the Garment Factory in Bekasi Indonesia
Authors: Manotar Tampubolon
Abstract:
Although the Indonesian human rights protection has increased in recent years, but human rights violations still occur in the industrial sector. Crimes against human rights continue to occur and go unnoticed in spite of the government's legislation on human rights, employment law in addition to an international treaty that has been ratified by Indonesia. The increasing number of garment companies in Bekasi, also give rise to increased human rights violations since the government does not have a commitment to protect it. The Indonesian government and industry owners should pay attention to and protect the human rights of workers and treat them accordingly. This paper will review the human rights violations experienced by workers at garment factories in the context of the law, as well as ideas to improve the protection of workers' rights.Keywords: human rights protection, human rights violations, workers’ rights, justice, security
Procedia PDF Downloads 46016222 Socio-Emotional Skills of Children with Learning Disability, Their Perceived Self-Efficacy and Academic Achievement
Authors: P. Maheshwari, M. Brindavan
Abstract:
The present research aimed to study the level of socio-emotional skills and perceived self-efficacy of children with learning disability. The study further investigated the relationship between the levels of socio-emotional skills, perceived self-efficacy and academic achievement of children with learning disability. The sample comprised of 40 children with learning disability as their primary condition, belonging to middle or upper middle class, living with both the parents, residing in Mumbai. Purposive or Judgmental and snowball sampling technique was used to select the sample for the study. Proformas in the form of questionnaires were used to obtain the background information of the children with learning disability. A self-constructed Child’s Perceived Self-Efficacy Assessment Scale and Child’s Social and Emotional Skills Assessment Scale was used to measure the level of child’s perceived self-efficacy and their level of social and emotional skill respectively. Academic scores of the child were collected from the child’s parents or teachers and were converted into a percentage. The data was analyzed quantitatively using SPSS. Spearman rho or Pearson Product Moment correlation was used to ascertain the multiple relationships between child’s perceived self-efficacy, child’s social and emotional skills and child’s academic achievement. The findings revealed majority (27) of the children with learning disability perceived themselves having above average level of social and emotional skills while 13 out of 40 perceived their level of social and emotional skills at an average level. Domain wise analyses revealed that, in the domain of self- management (26) and relationship skills (22) more number of the children perceived themselves as having average or below average level of social and emotional skills indicating that they perceived themselves as having average or below average skills in regulating their emotions, thoughts, and behaviors effectively in different situations, establishing and maintaining healthy and rewarding relationships with diverse groups and individuals. With regard to perceived self-efficacy, the majority of the children with learning disability perceived themselves as having above average level of self-efficacy. Looking at the data domain wise it was found that, in the domains of self-regulated learning and emotional self-efficacy, 50% of the children perceived themselves at average or below average level, indicating that they perceived themselves as average on competencies like organizing academic activities, structuring environment to make it conducive for learning, expressing emotions in a socially acceptable manner. Further, the correlations were computed, and significant positive correlations were found between children’s social and emotional skills and academic achievement (r=.378, p < .01), and between children’s social and emotional skills and child’s perceived self-efficacy (r = .724, p < .01) and a positive significant correlation was also found between children’s perceived self-efficacy and academic achievement (r=.332, p < .05). Results of the study emphasize on planning intervention for children with learning disability focusing on improving self-management and relationship skills, self-regulated learning and emotional self-efficacy.Keywords: learning disability, social and emotional skills, perceived self-efficacy, academic achievement
Procedia PDF Downloads 24116221 Moderating Role of Psychological Contract in Relationship between Moral Disengagement and Counterproductive Work Behavior
Authors: Afsheen Masood, Sumaira Rashid, Nadia Ijaz, Shama Mazahir
Abstract:
The current study examined the relationship between moral disengagement, psychological contract, organizational citizenship behavior and counterproductive work behavior. It is hypothesized that there is likely to be a significant relationship between moral disengagement, psychological contract, organizational citizenship behavior and counterproductive work behavior. It is hypothesized that moral disengagement is likely to significantly predict counterproductive work behavior. It is hypothesized that psychological contract is likely to moderate the relationship between moral disengagement, and counterproductive work behavior. Cross-sectional survey research design was used for the study. The sample consisted of 500 middle managers, age ranging between 30-45 years working in private and public sector. The measures used were Moral Disengagement Scale, Psychological Contract Scale, and Counterproductive Work Behavior. Series of Correlation analyses, Regression analysis, moderation analysis and t-test was run in order to execute descriptive and inferential analyses. The findings revealed that there was a significant positive relationship between moral disengagement and counterproductive work behaviors. Psychological contract significantly mediated the relationship between moral disengagement and counterproductive work behaviors. There were significant gender differences reported in psychological contract and counterproductive work behaviors. The insightful findings carry significant implication for organizational psychologists and organizational stakeholders.Keywords: psychological contract, moral disengagement, counterproductive work behaviors, mediation analysis
Procedia PDF Downloads 31616220 Effects of the Mathcing between Learning and Teaching Styles on Learning with Happiness of College Students
Authors: Tasanee Satthapong
Abstract:
The purpose of the study was to determine the relationship between learning style preferences, teaching style preferences, and learning with happiness of college students who were majors in five different academic areas at the Suansunandha Rajabhat University in Thailand. The selected participants were 729 students 1st year-5th year in Faculty of Education from Thai teaching, early childhood education, math and science teaching, and English teaching majors. The research instruments are the Grasha and Riechmann learning and teaching styles survey and the students’ happiness in learning survey, based on learning with happiness theory initiated by the Office of the National Education Commission. The results of this study: 1) The most students’ learning styles were participant style, followed by collaborative style, and independent style 2) Most students’ happiness in learning in all subjects areas were at the moderate level: Early Childhood Education subject had the highest scores, while Math subject was at the least scores. 3) No different of student’s happiness in learning were found between students who has learning styles that match and not match to teachers’ teaching styles.Keywords: learning style, teaching style, learning with happiness
Procedia PDF Downloads 69116219 Strategic Model of Implementing E-Learning Using Funnel Model
Authors: Mohamed Jama Madar, Oso Wilis
Abstract:
E-learning is the application of information technology in the teaching and learning process. This paper presents the Funnel model as a solution for the problems of implementation of e-learning in tertiary education institutions. While existing models such as TAM, theory-based e-learning and pedagogical model have been used over time, they have generally been found to be inadequate because of their tendencies to treat materials development, instructional design, technology, delivery and governance as separate and isolated entities. Yet it is matching components that bring framework of e-learning strategic implementation. The Funnel model enhances all these into one and applies synchronously and asynchronously to e-learning implementation where the only difference is modalities. Such a model for e-learning implementation has been lacking. The proposed Funnel model avoids ad-ad-hoc approach which has made other systems unused or inefficient, and compromised educational quality. Therefore, the proposed Funnel model should help tertiary education institutions adopt and develop effective and efficient e-learning system which meets users’ requirements.Keywords: e-learning, pedagogical, technology, strategy
Procedia PDF Downloads 45216218 Gamification: A Guideline to Design an Effective E-Learning
Authors: Rattama Rattanawongsa
Abstract:
As technologies continue to develop and evolve, online learning has become one of the most popular ways of gaining access to learning. Worldwide, many students are engaging in both online and blended courses in growing numbers through e-learning. However, online learning is a form of teaching that has many benefits for learners but still has some limitations. The high attrition rates of students tend to be due to lack of motivation to succeed. Gamification is the use of game design techniques, game thinking and game mechanics in non-game context, such as learning. The gamifying method can motivate students to learn with fun and inspire them to continue learning. This paper aims to describe how the gamification work in the context of learning. The first part of this paper present the concept of gamification. The second part is described the psychological perspectives of gamification, especially motivation and flow theory for gamifying design. The result from this study will be described into the guidelines for effective learning design using a gamification concept.Keywords: gamification, e-learning, motivation, flow theory
Procedia PDF Downloads 52416217 Evolutionary Advantages of Loneliness with an Agent-Based Model
Authors: David Gottlieb, Jason Yoder
Abstract:
The feeling of loneliness is not uncommon in modern society, and yet, there is a fundamental lack of understanding in its origins and purpose in nature. One interpretation of loneliness is that it is a subjective experience that punishes a lack of social behavior, and thus its emergence in human evolution is seemingly tied to the survival of early human tribes. Still, a common counterintuitive response to loneliness is a state of hypervigilance, resulting in social withdrawal, which may appear maladaptive to modern society. So far, no computational model of loneliness’ effect during evolution yet exists; however, agent-based models (ABM) can be used to investigate social behavior, and applying evolution to agents’ behaviors can demonstrate selective advantages for particular behaviors. We propose an ABM where each agent contains four social behaviors, and one goal-seeking behavior, letting evolution select the best behavioral patterns for resource allocation. In our paper, we use an algorithm similar to the boid model to guide the behavior of agents, but expand the set of rules that govern their behavior. While we use cohesion, separation, and alignment for simple social movement, our expanded model adds goal-oriented behavior, which is inspired by particle swarm optimization, such that agents move relative to their personal best position. Since agents are given the ability to form connections by interacting with each other, our final behavior guides agent movement toward its social connections. Finally, we introduce a mechanism to represent a state of loneliness, which engages when an agent's perceived social involvement does not meet its expected social involvement. This enables us to investigate a minimal model of loneliness, and using evolution we attempt to elucidate its value in human survival. Agents are placed in an environment in which they must acquire resources, as their fitness is based on the total resource collected. With these rules in place, we are able to run evolution under various conditions, including resource-rich environments, and when disease is present. Our simulations indicate that there is strong selection pressure for social behavior under circumstances where there is a clear discrepancy between initial resource locations, and against social behavior when disease is present, mirroring hypervigilance. This not only provides an explanation for the emergence of loneliness, but also reflects the diversity of response to loneliness in the real world. In addition, there is evidence of a richness of social behavior when loneliness was present. By introducing just two resource locations, we observed a divergence in social motivation after agents became lonely, where one agent learned to move to the other, who was in a better resource position. The results and ongoing work from this project show that it is possible to glean insight into the evolutionary advantages of even simple mechanisms of loneliness. The model we developed has produced unexpected results and has led to more questions, such as the impact loneliness would have at a larger scale, or the effect of creating a set of rules governing interaction beyond adjacency.Keywords: agent-based, behavior, evolution, loneliness, social
Procedia PDF Downloads 9616216 The Impact of Neuroscience Knowledge on the Field of Education
Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena
Abstract:
Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors
Procedia PDF Downloads 6216215 Color-Based Emotion Regulation Model: An Affective E-Learning Environment
Authors: Sabahat Nadeem, Farman Ali Khan
Abstract:
Emotions are considered as a vital factor affecting the process of information handling, level of attention, memory capacity and decision making. Latest e-Learning systems are therefore taking into consideration the effective state of learners to make the learning process more effective and enjoyable. One such use of user’s affective information is in the systems that tend to regulate users’ emotions to a state optimally desirable for learning. So for, this objective has been tried to be achieved with the help of teaching strategies, background music, guided imagery, video clips and odors. Nevertheless, we know that colors can affect human emotions. Relationship between color and emotions has a strong influence on how we perceive our environment. Similarly, the colors of the interface can also affect the user positively as well as negatively. This affective behavior of color and its use as emotion regulation agent is not yet exploited. Therefore, this research proposes a Color-based Emotion Regulation Model (CERM), a new framework that can automatically adapt its colors according to user’s emotional state and her personality type and can help in producing a desirable emotional effect, aiming at providing an unobtrusive emotional support to the users of e-learning environment. The evaluation of CERM is carried out by comparing it with classical non-adaptive, static colored learning management system. Results indicate that colors of the interface, when carefully selected has significant positive impact on learner’s emotions.Keywords: effective learning, e-learning, emotion regulation, emotional design
Procedia PDF Downloads 30516214 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
Authors: Ying Su, Morgan C. Wang
Abstract:
Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis
Procedia PDF Downloads 10516213 Constructivism Learning Management in Mathematics Analysis Courses
Authors: Komon Paisal
Abstract:
The purposes of this research were (1) to create a learning activity for constructivism, (2) study the Mathematical Analysis courses learning achievement, and (3) study students’ attitude toward the learning activity for constructivism. The samples in this study were divided into 2 parts including 3 Mathematical Analysis courses instructors of Suan Sunandha Rajabhat University who provided basic information and attended the seminar and 17 Mathematical Analysis courses students who were studying in the academic and engaging in the learning activity for constructivism. The research instruments were lesson plans constructivism, subjective Mathematical Analysis courses achievement test with reliability index of 0.8119, and an attitude test concerning the students’ attitude toward the Mathematical Analysis courses learning activity for constructivism. The result of the research show that the efficiency of the Mathematical Analysis courses learning activity for constructivism is 73.05/72.16, which is more than expected criteria of 70/70. The research additionally find that the average score of learning achievement of students who engaged in the learning activities for constructivism are equal to 70% and the students’ attitude toward the learning activity for constructivism are at the medium level.Keywords: constructivism, learning management, mathematics analysis courses, learning activity
Procedia PDF Downloads 53216212 Measuring E-Learning Effectiveness Using a Three-Way Comparison
Authors: Matthew Montebello
Abstract:
The way e-learning effectiveness has been notoriously measured within an academic setting is by comparing the e-learning medium to the traditional face-to-face teaching methodology. In this paper, a simple yet innovative comparison methodology is introduced, whereby the effectiveness of next generation e-learning systems are assessed in contrast not only to the face-to-face mode, but also to the classical e-learning modality. Ethical and logistical issues are also discussed, as this three-way approach to compare teaching methodologies was applied and documented in a real empirical study within a higher education institution.Keywords: e-learning effectiveness, higher education, teaching modality comparison
Procedia PDF Downloads 38616211 Human Smuggling and Turkey
Authors: Perihan Hazel Kaya, Mustafa Göktuğ Kaya
Abstract:
Turkey has been a busy destination for immigration and it will always be as it is the geographical and cultural exit door of the East and the entrance door of the West. Among these immigrations, we can see the victims of human trafficking, human smuggling, refugees and those who came here to work and live. Human smuggling, which is one of the movements of illegal immigration, is the specific subject of this work. The fact that our country lies on the transportation destinations between the continents of Asia, Europe and Africa, the crime of human smuggling is highly committed in our country. The aim of the victims of human smuggling is to go to a more developed country to have higher standards of living, to get a better job and to escape from the economic and social instability of their countries. The human smuggling, which has gathered pace due to the improvements in communication and transportation, is not a regional issue and has become one of the most important problems for almost all countries. Accordingly, the reasons, methods and extent of human smuggling will be dealt firstly. Later, it will be studied why Turkey is preffered in human smuggling. Finally, statistical data will be given to show how much human smuggling has gone far in Turkey and the study will be finished with that what is being done and what can be done to prevent it.Keywords: human smuggling, immigration, immigrator, human trafficking, Turkey
Procedia PDF Downloads 40616210 The Adoption of Mobile Learning in Saudi Women Faculty in King Abdulaziz University
Authors: Leena Alfarani
Abstract:
Although mobile devices are ubiquitous on university campuses, teacher-readiness for mobile learning has yet to be fully explored in the non-western nations. This study shows that two main factors affect the adoption and use of m-learning among female teachers within a university in Saudi Arabia—resistance to change and perceived social culture. These determinants of the current use and intention to use of m-learning were revealed through the analysis of an online questionnaire completed by 165 female faculty members. This study reveals several important issues for m-learning research and practice. The results further extend the body of knowledge in the field of m-learning, with the findings revealing that resistance to change and perceived social culture are significant determinants of the current use of and the intention to use m-learning.Keywords: blended learning, mobile learning, technology adoption, devices
Procedia PDF Downloads 46416209 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning
Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar
Abstract:
Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.Keywords: augmented reality sandbox, constructivism, deep learning, geoscience
Procedia PDF Downloads 40216208 People Management, Knowledge Sharing and Intermediary Variables
Authors: Nizar Mansour, Chiha Gaha, Emna Gara
Abstract:
The present research investigates the relationship among HRM practices, knowledge sharing behavior and a certain number of intermediary variables in the context of Tunisian knowledge-intensive firms. Results suggest that five HR practices influence either directly or indirectly the knowledge sharing behavior through enhancing the value of human capital and fostering a learning-oriented organizational climate. Results have strong theoretical implications for both the fields of knowledge management and strategic human resource management. Managerial implications are also derived.Keywords: human capital, knowledge intensive firms, knowledge sharing, organizational climate, Tunisia
Procedia PDF Downloads 33216207 Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations
Authors: Chungkuk Jin, Moohyun Kim, Woo Chul Chung
Abstract:
This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder’s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder’s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses.Keywords: floating bridge, mooring line, pontoon, wave excitation
Procedia PDF Downloads 12916206 Enhancing Learning Ability among Deaf Students by Using Photographic Images
Authors: Aidah Alias, Mustaffa Halabi Azahari, Adzrool Idzwan Ismail, Salasiah Ahmad
Abstract:
Education is one of the most important elements in a human life. Educations help us in learning and achieve new things in life. The ability of hearing gave us chances to hear voices and it is important in our communication. Hearing stories told by others; hearing news and music to create our creative and sense; seeing and hearing make us understand directly the message trying to deliver. But, what will happen if we are born deaf or having hearing loss while growing up? The objectives of this paper are to identify the current practice in teaching and learning among deaf students and to analyse an appropriate method in enhancing learning process among deaf students. A case study method was employed by using methods of observation and interview to selected deaf students and teachers. The findings indicated that the suitable method of teaching for deaf students is by using pictures and body movement. In other words, by combining these two medium of images and body movement, the best medium that the study suggested is by using video or motion pictures. The study concluded and recommended that video or motion pictures is recommended medium to be used in teaching and learning for deaf students.Keywords: deaf, photographic images, visual communication, education, learning ability
Procedia PDF Downloads 28416205 Impact of Islamic Hr Practices on Job Satisfaction: An Empirical Study of Banking Sector in Pakistan
Authors: Naheed Malik, Waheed Akhtar
Abstract:
An introduction to the Islamic move towards the managing human resource is a preliminary attempt to provide managers with a useful way of managing and accepting employees. This knowledge would be helpful to even non-Muslim managers. Muslim managers are required not to know only the Islamic HR but also it is expected from them to apply the Islamic approach in managing the employees. Human resource is considered the most substantial asset of organizations. Studies have recommended that successful human resource management (HRM) leads to positive attitudes and behaviors at the workplace. On the contrary, unproductive use of human resources results in negative penalty in the form of lower job satisfaction, lower commitment, or even high employee turnover and even poor workforce quality.The study examined the Impact of Islamic HR practices on job satisfaction. Islamic HR variables encompass the aspects of performance appraisal, training and development, selection and recruitment. Data was obtained via self –administered questionnaires distributed among the employees of Banks in Pakistan which are practicing Islamic Banking. The sampling method employed was purposive sampling.Based on 240 responses obtained ,the study revealed that Islamic HRM deliberates the 40per cent of the variances in Job satisfaction .All variables excluding recruitment were found to be substantially pertinent to the dependent variable. The study also meditated the implications for future studies.Keywords: islamic HRM, job satisfaction, islamic and conventional banks, Pakistan
Procedia PDF Downloads 29616204 Project and Module Based Teaching and Learning
Authors: Jingyu Hou
Abstract:
This paper proposes a new teaching and learning approach-project and Module Based Teaching and Learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice, and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units.Keywords: computer science education, project and module based, software engineering, module based teaching and learning
Procedia PDF Downloads 49216203 State of the Art on the Recommendation Techniques of Mobile Learning Activities
Authors: Nassim Dennouni, Yvan Peter, Luigi Lancieri, Zohra Slama
Abstract:
The objective of this article is to make a bibliographic study on the recommendation of mobile learning activities that are used as part of the field trip scenarios. Indeed, the recommendation systems are widely used in the context of mobility because they can be used to provide learning activities. These systems should take into account the history of visits and teacher pedagogy to provide adaptive learning according to the instantaneous position of the learner. To achieve this objective, we review the existing literature on field trip scenarios to recommend mobile learning activities.Keywords: mobile learning, field trip, mobile learning activities, collaborative filtering, recommendation system, point of interest, ACO algorithm
Procedia PDF Downloads 44616202 Multimodal Characterization of Emotion within Multimedia Space
Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal
Abstract:
Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.Keywords: affective computing, deep learning, emotion recognition, multimodal
Procedia PDF Downloads 15616201 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)
Procedia PDF Downloads 2016200 Study on the Characteristics of Chinese Urban Network Space from the Perspective of Innovative Collaboration
Abstract:
With the development of knowledge economy era, deepening the mechanism of cooperation and adhering to sharing and win-win cooperation has become new direction of urban development nowadays. In recent years, innovative collaborations between cities are becoming more and more frequent, whose influence on urban network space has aroused many scholars' attention. Taking 46 cities in China as the research object, the paper builds the connectivity of innovative network between cities and the linkages of urban external innovation using patent cooperation data among cities, and explores urban network space in China by the application of GIS, which is a beneficial exploration to the study of social network space in China in the era of information network. The result shows that the urban innovative network space and geographical entity space exist differences, and the linkages of external innovation are not entirely related to the city innovative capacity and the level of economy development. However, urban innovative network space and geographical entity space are similar in hierarchical clustering. They have both formed Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta three metropolitan areas and Beijing-Shenzhen-Shanghai-Hangzhou four core cities, which lead the development of innovative network space in China.Keywords: innovative collaboration, urban network space, the connectivity of innovative network, the linkages of external innovation
Procedia PDF Downloads 17816199 Using the Dokeos Platform for Industrial E-Learning Solution
Authors: Kherafa Abdennasser
Abstract:
The application of Information and Communication Technologies (ICT) to the training area led to the creation of this new reality called E-learning. That last one is described like the marriage of multi- media (sound, image and text) and of the internet (diffusion on line, interactivity). Distance learning became an important totality for training and that last pass in particular by the setup of a distance learning platform. In our memory, we will use an open source platform named Dokeos for the management of a distance training of GPS called e-GPS. The learner is followed in all his training. In this system, trainers and learners communicate individually or in group, the administrator setup and make sure of this system maintenance.Keywords: ICT, E-learning, learning plate-forme, Dokeos, GPS
Procedia PDF Downloads 477